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Abstract: This paper addresses two state space models for 
generating approximate power law noise and shows that these 
models are related through partial fractions in frequency domain. 

Keywords: State Space Model, Power Law Noise, Partial 
Fractions, Mandelbrot Model, Barnes-Jarvis Model. 

I. INTRODUCTION 

Power law noise is ubiquitous in a wide variety of dynamic 
systems ranging from electronic oscillators [1], [2], [3], [4], 
[5], [6] to quantum information processing systems [7], [8], 
[9] and quantum sensors [10]. For example, the stability of 
optical atomic clocks [11] is often limited by frequency noise 
of the laser (local oscillator) used to probe the atomic 
transition. State-of-the-art cavity-stabilized lasers are limited 
by thermomechanical noise with a flicker power law 
spectrum [12]. In general, the instabilities of most oscillators 
can be modeled by a combination of power-law noise types 
having a power spectral density (PSD) 𝑆𝑦(𝑓) ∝ 𝑓𝜆 where 𝑓 
is the noise frequency in Hz and 𝜆 is a constant defining the 
PSD slope. Table 1 below shows some of these power law 
noise types.  
 

TABLE 1: POWER LAW NOISE TYPES [13] 
 

Noise Type Exponent 𝜆 PSD 𝑆𝑦(𝑓) 

White PM 2 - 

Flicker PM 1 ℎ1𝑠𝑖𝑛𝑐2(𝜋𝑓𝜏) 

White FM 0 ℎ0𝑓
−0 

Flicker −1 ℎ−1𝑓
−1 

Random Walk FM −2 ℎ−2𝑓
−2 

Flicker Walk −3 ℎ−3𝑓
−3 

Random Run −4 ℎ−4𝑓
−4 

 
In the field of quantum information processing a central 
challenge is the detailed understanding and mitigation of 
decoherence inducing noise processes. Methods for 
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mitigation include hardware optimization [14] and noise 
filtering through control methods [15]. Here too, dominant 
noise sources are often power law in character either due to 
fluctuating background fields [16] or in very well isolated 
systems due to the fundamental instability of the controller’s 
clock reference. As such detailed characterization [17] and 
modeling [18] of noise processes is crucial to further 
progress. Measurement and control of dynamic systems 
exhibiting power law noise using the smoothing, filtering and 
prediction algorithms of modern control and machine 
learning often requires identification and state-space 
modeling of their noise. There are various techniques for 
modeling approximate power law noise, with most 
techniques involving filtering of white noise in either the 
Fourier [19] or state-space domain. In this paper we provide a 
tutorial description of two well-known state-space models for 
modeling approximate power law noise: the Mandelbrot 
model, which is simply a linear aggregation of first order low 
pass filters [20], [21] and the Barnes-Jarvis model, which is 
formed by a cascade of first order filters [22], [23]. We show 
that these two models are related through a partial fractions 
transformation and unify their description using a common 
mathematical framework. This paper proceeds as follows. In 
the Section II we present the model for a general power law 
noise and show the transformation from Barnes-Jarvis model 
to Mandelbrot model using partial fractions. Section III 
concludes this paper with some remarks and possible future 
work, and the Appendix provides some derivations. 

II.  POWER LAW NOISE MODELS 

A. Overview 

We adopt the frequency domain approach presented in [22] 
for constructing power law noise generation model. Consider 
a transfer function 𝐺(𝑠) made up of cascade of first order 
filters as shown below, 
 

 𝐺(𝑠) = ∏ 𝐺𝑖(𝑠)

𝑚−1

𝑖=0

= ∏
𝜏𝑠 + 𝛽𝑖

𝛼𝜏𝑠 + 𝛽𝑖

𝑚−1

𝑖=0

 (1) 

where 𝑠 is the Laplace parameter, 
𝛽𝑖

𝜏
 is the 𝑖𝑡ℎ stage zero and 

𝛽𝑖

𝛼𝜏
 is the 𝑖𝑡ℎ  stage pole with 𝛽 > 1 . For each stage it is 

obvious that the low frequency (DC) gain is unity 
( lim

𝑠→0
 𝐺𝑖(𝑠) = 1 ) while the high frequency gain is 𝛼−1 , 

( lim
𝑠→∞

 𝐺𝑖(𝑠) = 𝛼−1). That means a single stage changes the 

magnitude of the transfer function by a factor 𝛼−1. It is clear 
then that for an 𝑚 -stage cascade the magnitude of 𝐺(𝑠) 
changes by a factor 𝛼−𝑚  in the 

frequency range [
𝛽0

2𝜋𝜏
, 

𝛽𝑚

2𝜋𝜏
].  
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The power spectral density 𝑆𝑦(𝑠) of a power law noise has 
the following general form, 
 
 𝑆𝑦(𝑠) = 𝐴2|𝑠|𝜆 (2) 

where 𝐴 is a constant, 𝜆 ∈ [2, 4] , i.e. for flicker noise 𝜆 =
−1 . To mimic this power spectral density the following 
condition must hold [22], 
 

 |
𝑆𝑦 (

𝑗𝛽𝑚

𝜏
)

𝑆𝑦 (
𝑗𝛽0

𝜏
)
| = |

𝛽𝑚

𝛽0 |

𝜆

= 𝛽𝑚𝜆 ≈ |
𝐺 (

𝑗𝛽𝑚

𝜏
)

𝐺 (
𝑗𝛽0

𝜏
)
|

2

= 𝛼−2𝑚 

 

(3) 

Thus, 

 𝛽 ≈ 𝛼−
2
𝜆 

 
(4) 

It should be noted that while 𝛽𝑚  controls the band of 
frequencies (i.e. bandwidth) over which the model 
approximation is valid, 𝜏  controls where this band of 
frequencies begins and ends (or centered). This means a fixed 
bandwidth of 𝛽𝑚  can be shifted back and forth on the 
frequency line by simply varying 𝜏. Next we consider two 
state space models derived from this general cascade transfer 
function model. For simulation purposes we need to pick a 
value, or a few, for 𝜆 and here we choose 𝜆 = −1 from now 
onward, without loss of generality. 

B. Barnes-Jarvis State Space Model 

In this section we consider a cascade model from the previous 
section and show its Bode diagram and power spectral 
density, which falls approximately as 1/𝑓 over a frequency 
interval dictated by the choice of 𝜏  and 𝛽𝑚 . The transfer 
function 𝐺(𝑠) for this cascade model is shown below, 
 

 𝐺(𝑠) = ∏
𝜏𝑠 + 𝛽𝑖

𝛼𝜏𝑠 + 𝛽𝑖

𝑚−1

𝑖=0

  

 

(5) 

Fig. 1 below shows the Bode plot of this transfer function 
together with its constituent cascade stages for settings 𝑚 =
 4, 𝜆 = −1, 𝜏 = 500𝑠, 𝛼 = 3 and 𝛽 = 9. 

 

Fig. 1. Bode diagram for Barnes-Jarvis cascade model 

The Bode diagram paints a picture of how individual 
frequency-shifted low pass filter stages contribute to the 
overall appearance of a 1/𝑓 fall-off. Fig. 2 below shows the 
log-log plot of the above model superimposed on the 
exact/expected flicker noise spectral plot slope. 

 

Fig. 2. Barnes-Jarvis model power spectral density fit. 

Given the desired approximation accuracy, the parameters 𝜏 
and 𝛽𝑚 can be adjusted until the acceptable approximation 
error is obtained to within the desired range of frequencies by 
making reference to the power spectral density plot in Fig. 2 
above. One way to convert the above transfer function to state 
space is by converting each cascade stage into state space and 
augment the resulting state space models by noting that the 
output of one stage becomes the input to the next stage. 
Following this line of thinking the resulting continuous-time 
state space is as follows, 

 
𝒛̇ = 𝑨𝒄𝒛 + 𝑩𝒄𝑟 

𝑤 = 𝑪𝑻𝒛 + 𝑫𝑟 
(6) 

where 𝑟 is the input white noise, 𝑤 is the estimated output 
flicker noise, 𝒛 is the state vector and the continuous-time 
matrices 𝑨𝒄 , 𝑩𝒄 , 𝐂 and 𝐃 for model size 𝑚 =  4 are given 
by, 
 

 

𝑨𝑐 =

[
 
 
 
 
 
 
 
 

−𝛽0

𝛼𝜏
0    0        0

(𝛼 − 1)𝛽0

𝛼2𝜏

−𝛽1

𝛼𝜏
   0        0

(𝛼 − 1)𝛽0

𝛼3𝜏
(𝛼 − 1)𝛽0

𝛼4𝜏

(𝛼 − 1)𝛽1

𝛼2𝜏
(𝛼 − 1)𝛽1

𝛼3𝜏

−𝛽2

𝛼𝜏
(𝛼 − 1)𝛽2

𝛼2𝜏

0
−𝛽3

𝛼𝜏
]
 
 
 
 
 
 
 
 

 

𝑩𝑐
𝑇 = [

1

𝛼1𝜏

1

𝛼2𝜏

1

𝛼3𝜏

1

𝛼4𝜏
] 

𝑪𝑇 = (𝛼 − 1) [
𝛽0

𝛼4

𝛽1

𝛼3

𝛽2

𝛼2

𝛽3

𝛼1
] 

𝑫 = [
1

𝛼4
] 

(7) 

The details of this conversion above can be found in the 
Appendix. The corresponding discrete-time state space 
model has the following form, 

 
𝒛𝑘+1 = 𝑨𝒛𝑘 + 𝑩𝑟𝑘  

𝑤𝑘 = 𝑪𝑻𝒛𝑘 + 𝑫𝑟𝑘 
(8) 

where 𝑘 represents the 𝑘𝑡ℎ time instance at time 𝑡 =  𝑘𝑇 for 
some sampling period 𝑇 and the discrete-time matrices are 
given by, 
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𝑨 = 𝑒𝑨𝑐𝑇  

𝑩 = 𝑨𝑐
−1(𝑒𝑨𝑐𝑇 − 𝑰)𝑩𝑐 

(9) 

Fig. 3 below shows the PSD plot of a flicker noise data (as 
reference) and the above Barnes-Jarvis discrete-time state 
space model simulation output with; 𝑇 =  12𝑚𝑠, 𝑚 =  4, 
𝜆 = −1, 𝜏 = 500𝑠, 𝛼 = 3 and 𝛽 = 9. 
 

 
Fig. 3. Barnes-Jarvis discrete-time state space model 

simulation. 
In Fig. 3 above it can be seen that Barnes-Jarvis model is 
approximating the flicker noise reasonably well for the first 
two decades and starts to flatten out afterwards thus 
indicating that the Gaussian white noise is taking over the 
lead. This is also around the same frequency where our model 
seemed to deviate from the expected flicker noise slope in 
Fig. 1 and Fig. 2. From calculations this model should 

approximate well in the frequency range [
𝛽0

2𝜋𝜏
,
𝛽𝑚

2𝜋𝜏
] =

 [0.32𝑚𝐻𝑧, 2.09𝐻𝑧]. 

C. Mandelbrot State Space Model 

For the same dynamic process there exist many state space 
representations which can be transformed from one to 
another through some appropriate linear transforms. In the 
previous section we presented the state space model with a 
lower triangular transition matrix 𝑨𝒄  as a consequence of 
deriving state space directly from Barnes- Jarvis cascade 
filter model. This transition matrix may not be favorable 
compared to diagonal transition matrix not just for 
complicating discretization but also for invoking coupling 
among state components which may be preferable if they 
were identically independent for some probability 
distribution estimations. In this section we transform the 
Barnes-Jarvis cascade filter approach into a linear 
combination of low pass filters, which resembles 
Mandelbrot-like model presented in [20]. This approach will 
yield a diagonal state transition matrix. We consider again the 
transfer function 𝐺(𝑠) as given in equation (5) and argue that 
the constituent cascade stages can be represented as a linear 
combination of corresponding low pass filters with the help 
of partial fractions. The resulting equivalent transfer function 
is of the following form, 

 𝐺(𝑠) = ∏
𝜏𝑠 + 𝛽𝑖

𝛼𝜏𝑠 + 𝛽𝑖

𝑚−1

𝑖=0

= ∑
𝛾𝑖

𝛼𝛽𝑗 − 𝛽𝑖
+ ∑

𝛾𝑖

𝛼𝜏𝑠 − 𝛽𝑖

𝑚−1

𝑖=0

𝑚−1

𝑖=0

 (10) 

where 𝛾𝑖 is given by, 

 𝛾𝑖 =
(𝛼 − 1)𝛽𝑖

𝛼𝑚
  ∏

𝛼𝛽𝑗 − 𝛽𝑖

𝛽𝑗 − 𝛽𝑖

𝑚−1

𝑗=0
𝑖≠𝑗

 (11) 

The details of partial fractions procedure for the above model 
can be found in the Appendix. Fig. 4 below shows the Bode 

plot of this transfer function together with its constituent low 
pass filters for settings 𝑚 =  4, 𝜆 = −1, 𝜏 = 500𝑠 , 𝛼 = 3 
and 𝛽 = 9. 
 

 
Fig. 4. Bode diagram for Mandelbrot model. 

 
Fig. 5 below shows the log-log plot of the above model 
superimposed on the exact/expected flicker noise spectral 
plot. 

 
Fig. 5. Mandelbort model power spectral density fit. 

 
Converting the above transfer function to state space is pretty 
straight forward. We need only convert one low pass filter 
and copy the procedure to the rest of the low pass filters. The 
resulting continuous-time state space model has the 
following form, 

 
𝒛̇ = 𝑨𝒄𝒛 + 𝑩𝒄𝑟 

w = 𝐂𝐓𝐳 + 𝐃r 
(12) 

where the continuous-time matrices for model size  𝑚 =
4 are as follows, 
 

 

𝐀𝐜 =
−1

𝛼𝜏
𝑑𝑖𝑎𝑔([𝛽0 𝛽1     𝛽2 𝛽3]) 

𝐁𝒄
𝑻 =

1

𝛼𝜏
[1 1     1 1] 

𝐂𝑻 = [𝛾0 𝛾1     𝛾2 𝛾3] 

𝐃 = ∑
𝛾𝑗

𝛼𝛽𝑖 − 𝛽𝑗

3

𝑗=0

 

(13) 

 
The details of this conversion above can be found in the 
Appendix. The discretization procedure is the same as done 
with the Barnes-Jarvis model in the previous section and 
yields, 
 

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/


 
Relating Mandelbrot and Barnes-Jarvis Power Law Noise State Space Models using Partial Fractions 

84 

Retrieval Number: 100.1/ijeat.D34750411422 
DOI: 10.35940/ijeat.D3475.0411422 
Journal Website: www.ijeat.org   

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

 
𝒛𝒌+𝟏 = 𝑨𝒛𝒌 + 𝑩𝒓𝑘 

𝒔𝑘 = 𝑪𝑻𝒛𝒌 + 𝑫𝒓𝒌 
(14) 

The corresponding discrete-time Mandelbort model matrices 
are given by, 
 
𝐀 = 𝑑𝑖𝑎𝑔 ([𝑒

−𝛽0𝑇
𝛼𝜏 𝑒

−𝛽1𝑇
𝛼𝜏      𝑒

−𝛽2𝑇
𝛼𝜏 𝑒

−𝛽3𝑇
𝛼𝜏 ]) 

𝐁𝐓 = [1 − 𝑒
−𝛽0𝑇
𝛼𝜏

𝛽0

1 − 𝑒
−𝛽1𝑇
𝛼𝜏

𝛽1
     1 − 𝑒

−𝛽2𝑇
𝛼𝜏

𝛽2

1 − 𝑒
−𝛽3𝑇
𝛼𝜏

𝛽3
] 

𝐂𝑻 = [𝛾0 𝛾1     𝛾2 𝛾3] 

𝐃 = ∑
𝛾𝑗

𝛼𝛽𝑖 − 𝛽𝑗

3

𝑗=0

 

(15) 

An emphasis can be made on the discrete-time input matrix 𝑩 
that for it to be evaluated precisely, the continuous-time state 
transition matrix 𝑨𝒄 needs to be full rank (non-singular). In 
the case whereby 𝑨𝒄 is singular the first order Euler methods 
would suffice as approximate discrete models and the 
discrete-time state transition and input matrices would simply 
be 𝑨 = 𝑰 + 𝑨𝒄𝑇  and 𝑩 = 𝑩𝒄𝑇 , respectively. Fig. 6 below 
shows the simulation of the corresponding discrete-time state 
space model with 𝑇 = 2𝑠,  𝜆 = −1, 𝜏 = 500𝑠, 𝛼 = 3, 𝛽 = 9 
and 𝛾𝑖  as given in equation (11). 
 

 
Fig. 6. Mandelbort discrete-time state space model 

simulation. 

Just like with the Barnes-Jarvis there is a deviation from the 
expected slope after the first two decades. The approximation 
frequency range is the same as that of Barnes-Jarvis because 
the two models are related by a linear transformation.    
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IV. CONCLUSION 

In this paper we presented Barnes-Jarvis and Mandelbrot 
state space models for generating power law noise in a linear 
time-invariant fashion. We also demonstrated a partial 
fraction-based transformation from Barnes-Jarvis cascaded 

transfer function model to Mandelbrot transfer function 
model under the assumption of a common/single input 
Gaussian noise source. These models gave us a way of 
approximating the power law noise in terms of components 
of well-known Gaussian white noise such that the precision 
of the approximation is dependent on the number of Gaussian 
white noise components used in the model, which is the 
model size. This way of representing the power law noise in 
terms of a mixture of Gaussian noise components allows us to 
adopt the Gaussian mixture models as the framework for 
estimating and keeping track of the probability distributions 
associated with power law noise. In future work we wish to 
demonstrate Bayesian estimation applied on a linear 
time-invariant process which has power law noise associated 
with both process dynamics and observation.  

V. APPENDIX 

A. Barnes-Jarvis State Space Derivation 

The cascaded transfer function model in equation (5) can be 
converted from frequency domain to time domain by 
considering the idea that the output of one stage becomes an 
input to the next stage. This means we only convert the 
individual stages and connect the results together. The 
individual 𝑖𝑡ℎ  stage, relating the input 𝑅𝑖(𝑠)  and 𝑌𝑖(𝑠) , is 
converted as follows into the corresponding differential 
equation: 

 
𝑌𝑖(𝑠)

𝑅𝑖(𝑠)
=

𝜏𝑠 + 𝛽𝑖

𝛼𝜏𝑠 + 𝛽𝑖

𝑍𝑖(𝑠)

𝑍𝑖(𝑠)
 

 
(16) 

where 𝑍𝑖(𝑠) represents the 𝑖𝑡ℎ internal state of the model. 
Separating the numerators and denominators into separate 
equations and distributing the internal state throughout we 
get the following, 

 
 𝑅𝑖(𝑠) =  𝛼𝜏𝑠𝑍𝑖(𝑠) + 𝛽𝑖𝑍𝑖(𝑠) (17) 

 𝑌𝑖(𝑠) =  𝜏𝑠𝑍𝑖(𝑠) + 𝛽𝑖𝑍𝑖(𝑠) (18) 

   

Taking the Laplace inverse we get the following state space 
model for the 𝑖𝑡ℎ  cascade stage, 
 
 𝑟𝑖(𝑡) =  𝛼𝜏𝑧̇𝑖(𝑡) + 𝛽𝑖𝑧𝑖(𝑡) (19) 

 

 𝑦𝑖(𝑡) =  𝜏𝑧̇𝑖(𝑡) + 𝛽𝑖𝑧𝑖(𝑡) (20) 

Rearranging terms and making substitutions we get, 
 

 𝑧̇𝑖(𝑡) =  
−𝛽𝑖

𝛼𝜏
𝑧𝑖(𝑡) +

1

𝛼𝜏
𝑟𝑖(𝑡) (21) 

 𝑦𝑖(𝑡) =  
(𝛼 − 1)𝛽𝑖

𝛼
𝑧𝑖(𝑡) +

1

𝛼
𝑟𝑖(𝑡) (22) 

 
Now connecting cascade stages means 𝑟𝑖(𝑡) =  𝑦𝑖−1(𝑡) and 
𝑟𝑖+1(𝑡) =  𝑦𝑖(𝑡). From now on we drop off the arguments for 
convenience. This connection procedure leads to the 
following coupled differential 
equations for a model of size 𝑚, 
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 𝑧̇0 =  −
1

𝛼𝜏
𝑧0 +

1

𝛼𝜏
𝑟0 (23) 

 𝑧̇1 = 
(𝛼 − 1)

𝛼2𝜏
𝑧0 −

𝛽

𝛼𝜏
𝑧1 +

1

𝛼2𝜏
𝑟0 (24) 

 𝑧̇2 = 
(𝛼 − 1)

𝛼3𝜏
𝑧0 +

(𝛼 − 1)𝛽

𝛼2𝜏
𝑧1 −

𝛽2

𝛼𝜏
𝑧2 +

1

𝛼3𝜏
𝑟0 (25) 

 ⋮ (26) 

 

 

𝑧̇𝑚−1 = 
(𝛼 − 1)

𝛼𝑚𝜏
𝑧0 +

(𝛼 − 1)𝛽

𝛼𝑚−1𝜏
𝑧1  + ⋯

+ 
(𝛼 − 1)𝛽𝑚−2

𝛼2𝜏
𝑧𝑚−2  

−
𝛽𝑚−1

𝛼𝜏
𝑧𝑚−1 +

1

𝛼𝑚𝜏
𝑟0 

(27) 

 

𝑦𝑚−1 = 
(𝛼 − 1)

𝛼𝑚 𝑧0 +
(𝛼 − 1)𝛽

𝛼𝑚−1 𝑧1

+ ⋯
(𝛼 − 1)𝛽𝑚−1

𝛼
𝑧𝑚−2 +

1

𝛼𝑚 𝑟0 

(28) 

From here we can present everything in a compact matrix 
formalism by considering a state vector 𝒛 =
[𝑧0 𝑧1    … 𝑧𝑚−1] and we get the following compact form 
of state space model, 
 

 
𝒛̇ = 𝑨𝒄𝒛 + 𝑩𝒄𝑟0 

𝑦𝑚−1 = 𝑪𝑻𝒛 + 𝑫𝑟0 
(29) 

and the matrices are made up of the coefficients in the 
coupled differential equations above as shown below, 
 

 

𝑨𝒄 =

[
 
 
 
 
 
 
 
 
 −

𝛽0

𝛼1𝜏
0 ⋯ 0 0

(𝛼 − 1)𝛽0

𝛼2𝜏
−

𝛽1

𝛼1𝜏
⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
(𝛼 − 1)𝛽0

𝛼𝑚−1𝜏

(𝛼 − 1)𝛽1

𝛼𝑚−2𝜏
⋯ −

𝛽𝑚−2

𝛼1𝜏
0

(𝛼 − 1)𝛽0

𝛼𝑚𝜏

(𝛼 − 1)𝛽1

𝛼𝑚−1𝜏
⋯

(𝛼 − 1)𝛽𝑚−2

𝛼2𝜏
−

𝛽𝑚−1

𝛼1𝜏 ]
 
 
 
 
 
 
 
 
 

 

𝑩𝒄
𝑇 = [

1

𝛼1𝜏

1

𝛼2𝜏
…

1

𝛼𝑚𝜏
] 

𝑪𝑇 = [
(𝛼 − 1)𝛽0

𝛼𝑚𝜏

(𝛼 − 1)𝛽1

𝛼𝑚 − 1𝜏
…

(𝛼 − 1)𝛽𝑚−1

𝛼1𝜏
] 

𝑫 = [
1

𝛼𝑚
] 

 

 

(30) 

   

B. Partial Fractions 

The transfer function from Barnes-Jarvis model, equation (5), 
has the same degree in the numerator and denominator. 
However before performing partial fractions decomposition 
the numerator polynomial must be at least one degree less 
than the denominator. This can be achieved by carrying out 
the long division which results in a constant quotient 𝐾 and 
the remainder polynomial with at least one degree less than 
the divisor (denominator) polynomial as shown below, 

 ∏
𝜏𝑠 + 𝛽𝑖

𝛼𝜏𝑠 + 𝛽𝑖
= 𝐾 + ∑

𝛾𝑖

𝛼𝜏𝑠 + 𝛽𝑖

𝑚−1

𝑖=0

𝑚−1

𝑖=0

 (31) 

with the unknowns 𝑠, 𝑖 and 𝐾. To find 𝑖 we simply multiply 
the above equation by the denominator 𝛼𝜏𝑠 + 𝛽𝑖 
corresponding to 𝑖  and substitute the pole 𝑠 = −𝛽𝑖/𝛼𝜏 
throughout as shown below, 

 (𝛼𝜏𝑠 + 𝛽𝑖) ∏
𝜏𝑠 + 𝛽𝑖

𝛼𝜏𝑠 + 𝛽𝑗
|
𝑠=

−𝛽𝑖

𝛼𝜏

𝑚−1

𝑗=0

= 𝛾𝑖 (32) 

The right-hand side leave 𝛾𝑖 since the rest of the terms are 
effectively multiplied by zero. Simplifying the left-hand side 
and rearranging terms we arrive at, 

 𝛾𝑖 =
(𝛼 − 1)𝛽𝑖

𝛼𝑚
  ∏

𝛼𝛽𝑗 − 𝛽𝑖

𝛽𝑗 − 𝛽𝑖

𝑚−1

𝑗=0
𝑖≠𝑗

 (33) 

To find 𝐾 we just choose any of the numerator factor 𝜏𝑠 + 𝛽𝑖 
and substitute its root 𝑠 = −𝛽𝑖/𝜏 throughout. This forces the 
left-hand side of equation (31) to be zero so that we can 
express 𝐾 as follows, 
 

 𝐾 = − ∑
𝜏𝑠 + 𝛽𝑖

𝛼𝜏𝑠 + 𝛽𝑗
|
𝑠=

−𝛽𝑖

𝛼𝜏

𝑚−1

𝑗=0

 (34) 

 = ∑
𝛾𝑗

𝛼𝛽𝑖 − 𝛽𝑗

𝑚−1

𝑗=0

 (35) 

C. Mandelbort State Space Derivation 

To convert the 𝑖𝑡ℎ component of the Mandelbrot transfer 
function, equation (10), from frequency to time domain we 
follow the same procedure shown with Barnes-Jarvis cascade 
stage. The 𝑖𝑡ℎ  low pass filter component lead to the 
following, 

 
𝑌𝑖(𝑠)

𝑅𝑖(𝑠)
=

𝛾𝑖

𝛼𝜏𝑠 + 𝛽𝑖

𝑍𝑖(𝑠)

𝑍𝑖(𝑠)
 (36) 

which gives rise to the following state space model, 

 𝑧̇𝑖(𝑡) =
𝛾𝑖

𝛼𝜏
𝑧𝑖(𝑡) +

1

𝛼𝜏
𝑟𝑖(𝑡) (37) 

 𝑦𝑖(𝑡) = 𝛾𝑖𝑧𝑖(𝑡) (38) 

The constant 𝐾  gives 𝑦𝑚(𝑡)  =  𝐾𝑟𝑚(𝑡) . In this case the 
internal states 𝑧𝑖(𝑡) are not coupled and the output 𝑦𝑀(𝑡) is 
given by the sum of all component outputs 𝑦𝑖(𝑡) . The 
resulting equations are as shown below, 

 𝑧̇0 = −
𝛽0

𝛼𝜏
𝑧0 +

1

𝛼𝜏
𝑟0 (39) 

 

 𝑧̇1 = −
𝛽1

𝛼𝜏
𝑧1 +

1

𝛼𝜏
𝑟1 (40) 

 

 𝑧̇2 = −
𝛽2

𝛼𝜏
𝑧2 +

1

𝛼𝜏
𝑟2 (41) 
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 ⋮ (42) 

 𝑧̇𝑚−1 = −
𝛽𝑚−1

𝛼𝜏
𝑧𝑚−1 +

1

𝛼𝜏
𝑟𝑚−1 (43) 

 𝑦𝑀 = 𝛾0𝑧0 + 𝛾1𝑧1 + ⋯ + 𝛾𝑚−1𝑧𝑚−1 + 𝐾𝑟𝑚 (44) 

 
In compact form with state vector 𝒛 =
[𝑧0 𝑧1 … 𝑧𝑚−1]𝑇 and input vector 𝒓 =
[𝑟0 𝑟1 … 𝑟𝑚−1]𝑇 we get the following, 
 

 𝒛̇ = 𝑨𝒄𝒛 + 𝑩𝒄𝒓 (45) 

 𝑦𝑀 = 𝑪𝑻𝒛 + 𝑫𝑟𝑚 (46) 

where the matrices are given by, 
 

 

𝐀𝐜 =
−1

𝛼𝜏
𝑑𝑖𝑎𝑔([𝛽0 𝛽1     … 𝛽𝑚−1]) 

𝐁𝒄
𝑻 =

1

𝛼𝜏
[1 1     … 1] 

𝐂𝑻 = [𝛾0 𝛾1     … 𝛾𝑚−1] 

𝐃 = [𝐾] 

(47) 

In equation (13) we made a simplifying assumption that all 
input 𝑟𝑖 are the same, however in general they need not be the 
same. 
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