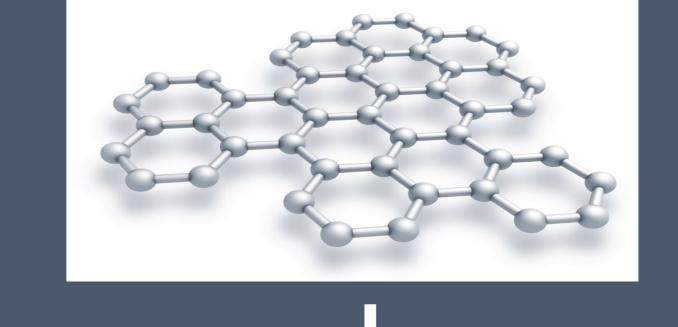


Diagonal project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 953152.

IN VITRO ASSESSMENT OF SKIN IRRITATION POTENTIAL OF GRAPHENE BASED MATERIALS USING RECONSTRUCTED HUMAN EPIDERMIS (RhE)

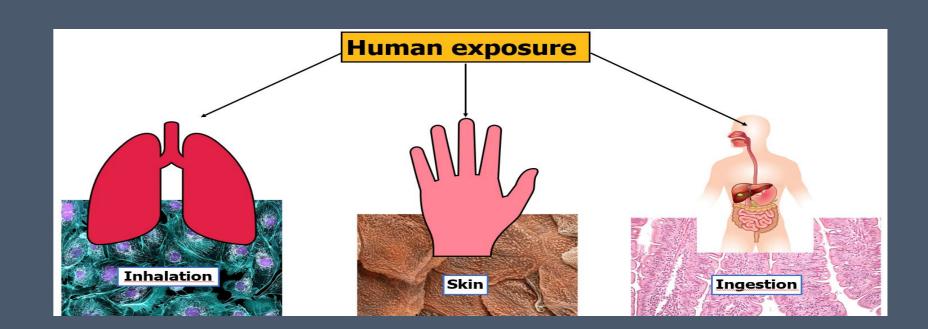

Natalia Fernández-Pampín¹, Juan Antonio Tamayo-Ramos², Nandita Dasgupta¹, Dalia de la Fuente-Vivas¹, Rocío Barros¹, Sonia Martel Martín¹, Laura Gómez-Cuadrado¹, Carlos Rumbo¹

¹ International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain

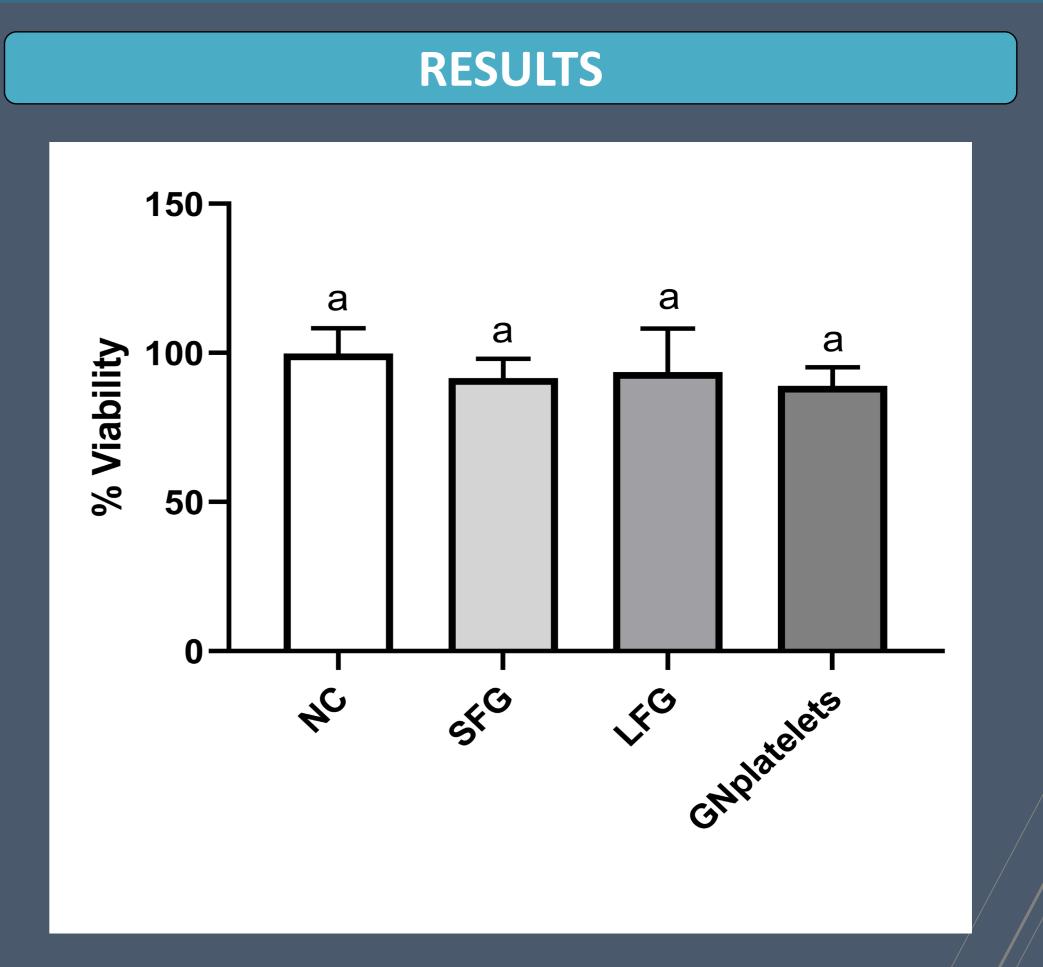
² ITENE, Parque Tecnológico, C/ Albert Einstein 1, 46980 Paterna, Valencia, Spain

Corresponding author's e-mail: nfpampin@ubu.es

INTRODUCTION



Graphene-based materials (GBMs) are employed in a wide range of fields, including electronic and biomedical applications due to their extraordinary physicochemical properties^{1,2,3}. The main risk to human health posed by GBMs is associated with the occupational exposure⁴, being the inhalation and dermal contact the most relevant routes of exposure⁵. In this context, around 90 % of skin diseases associated with occupational settings are represented by irritant and allergic contact dermatitis⁶.


Considering the possible risks in the work environment due to the skin irritation potential of these materials, the cutaneous toxicity of a group of GBMs, including small flakes graphene (SFG), large flakes graphene (LFG) and graphene nanoplatelets (GNplatelets) was evaluated following the Organization for Economic Co-operation and Development (OECD) guidelines.

METHODS

 The skin irritation potential of the small flakes graphene (SFG), large flakes graphene (LFG) and graphene nanoplatelets (GNplatelets) was determined using *In Vitro* EpiDerm Skin Irritation Test.

Figure 1: Routes of exposure to the Graphene.

- Tissues were exposed to 25 mg of GBMs during 1 h.
- The viability was analysed by MTT assay, and it is expressed as a percent of negative control (PBS).

Figure 2: 3D-Reconstructed human epidermis model.

Figure 3. EpiDerm tissues were exposed to SFG, LFG and Gnplatelets during 1 h. Tissues treated with PBS were used as negative control. Data represented the mean \pm standard deviation (SD). Differences were established using a one-way ANOVA followed by multiple comparisons test (Tukey test) and considered significant when $P \leq$ 0.05. The same letter indicates no significant differences between treatments.

CONCLUSIONS

REFERENCES

• None of the GBMs caused a reduction in the tissue viability over 50 % when compared to the controls.

 According to EU and Globally Harmonized System of Classification and Labelling Chemicals, GHS, (R38 / Category 2 or no label) none of the GBMs could be considered an irritant in the conditions tested.

AKNOWLEDGEMENTS

This work received funding from the DIAGONAL project (Grant Agreement No. 953152).

 Kim, J., Lee, J., Son, D., Choi, M. K. & Kim, D. H. Deformable devices with integrated functional nanomaterials for wearable electronics. *Nano Converg.* 3, 1–13 (2016).

- 2. Guo, X. & Mei, N. Assessment of the toxic potential of graphene family nanomaterials. *J. Food Drug Anal.* **22**, 105–115 (2014).
- 3. Shin, S. R. *et al.* Graphene-based materials for tissue engineering. *Adv. Drug Deliv. Rev.* **105**, 255–274 (2016).
- 4. Park, M. V. D. Z. *et al.* Considerations for Safe Innovation: The Case of Graphene. *ACS Nano* **11**, 9574–9593 (2017).
- 5. Pelin, M., Sosa, S., Prato, M. & Tubaro, A. Occupational exposure to graphene based nanomaterials: Risk <u>assessment. *Nanoscale* 10</u>, 15894–15903 (2018).
- 6. C. Klaassen, Casarett & Doull's Toxicology: the basic science of poisons, McGraw-Hill, Health Professions Division, New York (2013).