Improving knowledge, skills and capacity building to ensure plant health in more sustainable agricultural systems

Collaborative research and knowledge sharing on basic substances as an environmentally friendly alternative to synthetic plant protection products for plant protection Gianfranco Romanazzi - Marche Polytechnic University, Ancona, Italy E-mail <u>g.romanazzi@univpm.it</u>

3-11 June 2023 #EUGreenWeek PARTNER EVENT

Date

June

5

In 2015, the UN Member States adopted the Sustainable Development Goals (SDGs) – Agenda 2030

Farm to Fork Strategy

European

Commission

For a fair, healthy and environmentally-friendly food system

#EUGreenDeal

WITHIN 2030:

+25% organic agriculture

-50% food waste (including fresh fruit and vegetables)

Annual loss and waste along the food chain

(occuring during harvest, post-harvest, distribution, processing and/or distribution) source: FAO

of food are wasted per year

or

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

Overall use and risk of chemical pesticides

on the sustainable use of plant protection products and amending Regulation (EU) 2021/2115

Italy	62%				
Malta	61%				
Slovenia	59%				
Cyprus	58%				
Germany	55%				
Belgium	55%				
France	54%				
Spain	54%				
Finland	53%				
Austria	53%				
Latvia	53%				
Estonia	53%				
Lithuania	53%				
Netherlands	53%				
Portugal	49%				
Hungary	48%				
Ireland	48%				
Poland	45%				
Sweden	35%				
Romania	35%				
Bulgaria	35%				
Slovakia	35%				
Greece	35%				
Croatia	35%				
Czech Rep.	35%				
0	:	20%	40%		60%

MDPI

Basic Substances, a Sustainable Tool to Complement and **Eventually Replace Synthetic Pesticides in the Management of** Pre and Postharvest Diseases: Reviewed Instructions for Users

Gianfranco Romanazzi 1.*, Yann Orconneau ², Marwa Moumni ¹, Yann Davillerd ² and Patrice André Marchand ²

- ¹ Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; m.moumni@staff.univpm.it
- ² Institut Technique de l'Agriculture et de l'Alimentation Biologiques (ITAB),149 rue de Bercy, 75012 Paris France; y.orco17@gmail.com (Y.O.); yann.davillerd@itab.asso.fr (Y.D.); patrice.marchand@itab.asso.fr (P.A.M.)
- * Correspondence: g.romanazzi@univpm.it; Tel.: +39-071-220-4336

Abstract: Synthetic pesticides are widely used to protect crops from pathogens and pests, especially for fruits and vegetables, and this may lead to the presence of residues on fresh produce. Improving the sustainability of agriculture and, at the same time, reducing the adverse effects of synthetic pesticides on human health requires effective alternatives that improve the productivity while maintaining the food quality and safety. Moreover, retailers increasingly request fresh produce with the amounts of pesticides largely below the official maximum residue levels. Basic substances are relatively novel compounds that can be used in plant protection without neurotoxic or immune-toxic effects and are still poorly known by phytosanitary consultants (plant doctors), researchers, growers, consumers, and decision makers. The focus of this review is to provide updated information about 24 basic substances currently approved in the EU and to summarize in a single document their properties and instructions for users. Most of these substances have a fungicidal activity (calcium hydroxide, chitosan, chitosan hydrochloride, Equisetum arvense L., hydrogen peroxide, lecithins, cow milk, mustard seed powder, Salix spp., sunflower oil, sodium chloride, sodium hydrogen carbonate, Urtica spp., vinegar, and whey). Considering the increasing requests from consumers of fruits and vegetables for high quality with no or a reduced amount of pesticide residues, basic substances can complement and, at times, replace the application of synthetic pesticides with benefits for users and for consumers. Large-scale trials are important to design the best dosage and strategies for the application of basic substances against pathogens and pests in different growing environments and contexts.

Table 5. Examples of requests from the retailer of the amount of the Maximum Residue Level (MRL) and Acute reference doses (ARfD).

Retailer		Max. %MRL/ Active Substance	Max. Sum %MRL/Sam- ple	Max. %ARfD/Ac- tive Substance	Max. Sum %ARfD/Sample	Max. Number of Active Substances /Samples
ALDI/ HOFER		70%	80%	70%	80%	3–5
ALBERT HEIJN	on	50%	-	50%	-	-
ASDA	ASDA	80%	-	-	-	-
BILLA	BILLA	100%	-	100%	-	-
DOHLA	Doble	-	70%	-	70%	3–5
EDEKA		70%	-	100%	-	5
EDEKA OWN BRANDS	EDEKA	50%	-	70%	-	5
GLOBUS	Globus	70%	-	70%	100%	5
LIDL	T.÷DT.	33.3%	80%	100%	-	5
KAUFLAND	Kaufland	33.3%	80%	50%	50%	5
NORMA	NORMA	-	70%	-	70%	5
METRO	METRO	50%	80%	70%	100%	5
MIGROS	MIGROS	-	-	-	-	6
NETTO	Merio Marken-Discount	70%	-	100%	-	5
REWE		50%	100%	70%	100%	5
REWE OWN BRANDS	REWE	50%	100%	50%	-	5
TEGUT	tegut	70%	_	70%	-	Max. 4 (>0.01 mg/kg)
TENGEL MANN		70%	150%	70%	100%	-

Citation: Romanazzi, G.: Orçonneau, Y.; Moumni, M.; Davillerd, Y.; Marchand, P.A. Basic Substances, a Sustainable Tool to Complement and Eventually Replace Synthetic Pesticides in the Management of Pre and Postharves Diseases: Reviewed Instructions for Users. Molecules 2022, 27, 3484. https://doi.org/10.3390/ molecules27113484

Academic Editor: James Barker

How we can measure the amount of pesticides to decrease the risk?

Ask question at slido.com with #PlantHealth GW2023

NOT ALL PESTICIDES HAVE THE SAME WEIGHT

Low-risk active substances		Other compounds		Candidates for substitution		Provisional authorization	
Α	В	С	D	Ε	F	G	
Microrganisms	Chemical compounds	Microrganisms	Chemical compounds	List n. 1	List n. 2		
20 (3 IT)	13 (7 IT)	48 IT	359 IT	71 IT	12 IT	?	
1		8		16		64	

Basic substances are not included into the list

Article 51

Extension of authorisations for minor uses

1. The authorisation holder, official or scientific bodies involved in agricultural activities, professional agricultural organisations or professional users may ask for the authorisation of a plant protection product already authorised in the Member State concerned to be extended to minor uses not yet covered by that authorisation.

EU Pesticides Database (europa.eu)

European Commission > Food, farming, fisheries > Food Safety > Plants > Pesticides > EU Pesticides database

Search Active substances, safeners and synergists

Search options	
Category	
Nothing selected	
Туре	
Type Nothing selected	
Type Nothing selected Basic substance	
Type Nothing selected Basic substance Low risk Active substance	

Active substances, safeners and synergists (1464 matching records)

Q Filter results

(4Z-9Z)-7.9-Dodecadien-1-ol

1. Content of the 'Topic Description' document

1.1. Topic area

Management of pests/vectors

1.2. Links to the Euphresco Strategic Research Agenda

The topic addresses the following objective(s) of the 2017-2022 Euphresco Strategic Research Agenda (*Please keep only relevant objectives*).

Objective 2017-R-3.1: to identify and evaluate (horizontal) risk reduction options (effectiveness, feasibility and cost)

Objective 2017-R-7.1: to validate cost-effective and socially acceptable phytosanitary measures for consignments (pre-border and at border)

Objective 2017-R-7.2: to validate cost-effective and socially acceptable phytosanitary measures at the place of production (inland) for plants, plant products, water and soil

1.3. Topic title

Basic substances as an environmentally friendly alternative to synthetic pesticides for plant protection (BasicS) (*Objective 2017*-R-7.1+ -R-7.2 + *2020*-*C*-353)

May 2021 - August 2023

Ask question at slido.com with #PlantHealth_GW2023

Mexico (1) Colombia (1) Brazil (2)

Czech Republic France Poland (1) France Hungar (1) (2) Italy Spain (11) (1) Tunisia Cyprus (1) Iran (1) (1) Egypt (1)

China (2)

Australia (1)

Powered by Bing

info. OpenStreetMap. TomTom

Number of research units

11

Budget 618 kEuro (in kind)

EUPHRESCO BASICS ACTIVITIES

WORK PACKAGE TITLE (WP)	LEADER	CO-LEADER	
WP0: Project management and co-ordination	UNIVPM (IT)		
WP1: Review on applications of basic substances*	UNIVPM (IT)	NPI (MX)	*in progress review of
WP2: Review on the applications of potential basic substances*	UNIVPM (IT)	NSW (AU)	the state of the art on applications of BS and
WP3: Testing basic substances and potential basic substances to manage diseases and pests in the field*	UNIMI (IT)	ARC (EG)	PBS
WP4: Testing basic substances and potential basic substances to manage postharvest diseases and pests*	UNIBA (IT)	UNIVPM (IT)	
WP5: Testing basic substances and potential basic substances to manage seedborne pathogens and pests*	CREA (IT)	INRAT (TU)	
WP6: Investigation on mechanisms of action of basic substances*	CSIC (ES)	UNIVR (IT)	
WP7: Drawing reports for approval or extension of use	ITAB (FR)	UNIDEB (HU)	
WP8: Drawing reports for EPPO	ITAB (FR)	UNIVPM (IT)	
WP9: Communication of project activities	UNIVPM (IT)	EPPO (Int)	

EuphrescoBasicS

y

euphrescobasics

F<u>EuphrescoBasicS</u>

Euphresco BasicS

YouTube Euphresco BasicS

The phytosanitary purpose is secondary for basic substances, since they are product with foodstuff properties and have a side effect in the control of plant pests and pathogens Some basic substances (e.g., vinegar, sodium bicarbonate, chitosan, nettle extract) have already been tested for plant disease management

Euphresco BasicS
 EuphrescoBasicS
 EuphrescoBasicS
 euphrescoBasics

VouTube Euphresco BasicS

Chronicle of Bioresource Management 2021, 5(3):077-080

September 2021

Open Access
Corresponding Author
P. A. Marchand
e-mail: patrice.marchand@itab.asso.fr

Citation: Marchand et al., 2021. BasicS, an Euphresco international network on renewable natural substances for durable crop protection products. Chronicle of Bioresource Management 5(3), 077-080.

Copyright: © 2021 Marchand et al. This is an open access article that permits unrestricted use, distribution and reproduction in any medium after the author(s) and source are credited.

Data Availability Statement: Legal restrictions are imposed on the public sharing of raw data. However, authors have full right to transfer or share the data in raw form upon request subject to either meeting the conditions of the original consents and the original research study. Further, access of data needs to meet whether the user complies with the ethical and legal obligations as data controllers to allow for secondary use of the data outside of the original study.

Conflict of interests: The authors have declared that no conflict of interest exists.

Keywords:

Basic substances, biopesticides, biocontrol agents, international project

Article History

Article ID: CBM71 Received on 02nd July 2021 Received in revised form on 07th August 2021 Accepted in final form on 14th August 2021

Author's Address

BasicS, an Euphresco International Network on Renewable Natural Substances for Durable Crop Protection Products

Patrice A. Marchand^{1*}, Yann Davillerd¹, Luca Riccioni², Simona Marianna Sanzani³, Nico Horn⁴, Ewa Matyjaszczyk⁴, John Golding⁵, Sergio Ruffo Roberto⁶, Ben-Hur Mattiuz⁷, Dandan Xu⁸, Xiaomeng Guo⁹, Nikolaos Tzortzakis¹⁰, Yeimmy Yolima Peralta Ruiz¹¹, Roman Pavela¹², Erzsebet Monika Karaffa¹³, Youssef Khamis¹⁴, Mehdi Hosseinifarahi¹⁵, Antonio Ippolito¹⁶, Alessandra Di Francesco¹⁷, Giacinto Salvatore Germinara¹⁸, Silvia Toffolatti¹⁹, Filomena Sannino²⁰, Clemencia Chaves-Lopez²¹, Monica Mezzalama²², Nicola Mori²³, Silvia Bautista-Banos²⁴, Porfirio Gutierrez Martinez²⁵, Jolanta Kowalska²⁶, Luis Gonzalez-Candelas²⁷, Teresa Garde-Cerdán²⁷, Mohamed Bechir Allagui²⁸, Pervin Kinay Teksur²⁹, Marwa Moumni³⁰, Baldissera Giovanj³¹ and Gianfranco Romanazzi³⁰

Abstract

Under the European Union aegis, a new round of non-competitive projects is being initiated via Euphresco. The topic description developed within the consortium created within Euphresco research coordination is the development of the basic substance for management of pests/vectors via natural compounds. Basic substances are approved for use in the European Union and are products which are already sold for certain purposes, e.g., as a foodstuff or a cosmetic, but which can also serve as plant protection products. A list of 23 basic substances approved is available through the EU Pesticides database. These substances are mostly biorationals (medicinal plant extracts like *Equisitum, Urtita, Salix* and Mustard seeds powder), products used in human medicine (chitosan, calcium hydroxide), food compounds (milk, whey, vinegar, beer, fructose, sucrose, lecithin, vegetable oils, bicarbonate, sodium

0

Popular Article

¹Institut Technique de l'Agriculture Biologique (ITAB), France; ²Council for Agronomic Research and bioeconomy, Italy; ³International Centre for Advanced Mediterranean Agronomic Studies, Italy; ⁴European and Mediterranean Plant Protection Organization, France; ⁵New South Wales, Department of Primary Industries, Australia; ⁶State University of Londrina, Brazil; ⁷Sao Paulo State University, Institute of Biosciences, Brazil; ⁶Shenzhen Polytechnic, China; ⁹Couth China Agricultural University, China; ¹⁰Cyprus University of Technology, Cyprus; ¹¹University of Atlantico, Colombia; ¹²Crop Research Institute, Czech Republic; ¹³University of Debrecen, Hungary; ¹⁴Agricultural Research Center, Egypt; ¹⁵Islamic University of Azad, Iran; ¹⁶University of Bari, Italy; ¹⁷University of Bologna, Italy; ¹⁸University of Foggia, Italy; ¹⁹University of Milan, Italy; ²⁰University of Napoli, Italy; ²¹University of Teramo, Italy; ²¹University of Turin, Italy; ²²University of Verona, Italy; ²⁴National Polytechnic Institute, Mexico; ²⁶Technical Institute of Tepic, Mexico; ²⁶Institute of Plant Protection-National Research Institute, Poland; ²⁷Spanish National Research Council, Spain; ²⁸National Institute for Agronomic Research, Tunisia; ²⁵Ege University, Turkey; ³⁰Marche Polytechnic University, Italy; ³¹Euphresco, European and Mediterranean Plant Protection Organization, France

Journal Home: https://pphouse.org/cbm.php

Molecules 2022, 27, 3484

Ask question at slido.com with #PlantHealth_GW2023

Review

Basic Substances, a Sustainable Tool to Complement and Eventually Replace Synthetic Pesticides in the Management of Pre and Postharvest Diseases: Reviewed Instructions for Users

Gianfranco Romanazzi ^{1,*}, Yann Orçonneau ², Marwa Moumni ¹, Yann Davillerd ² and Patrice André Marchand ²

https://doi.org/10.3390/molecules27113484

Basic substances

Calcium hydroxide, <u>Equisetum arvense extract</u>*, <u>Chitosan hydrochloride</u>*, Sucrose*, Vinegar, Fructose*, Cow milk*, <u>Urtica spp. extract</u>*, Sunflower oil, Beer, Mustard seed powder, Onion oil, <u>Sodium hydrogen carbonate</u>*, Salix cortex*, Diammonium phosphate, Hydrogen peroxide*, Sodium chloride*, Whey*, L-cysteine, <u>Alliumcepa</u> extract, <u>Lecithins</u>*, Talc E553b, Clayed charcoal*, <u>Chitosan</u>*

8 BASIC SUBSTANCES OUT OF 24 CAN BE USED ON STRAWBERRIES (*13 ON GRAPEVINE)

Chitin related food science today (and two centuries ago)

RICCARDO A.A. MUZZARELLI

Polytechnic University of Marche, Institute of Biochemistry Via Ranieri 67 IT-60100 Ancona, Italy

CORRADO MUZZARELLI

Chitin/Chitos

THE DISCOVERY OF CHITIN (IN A BOTANIC GARDEN

in 1807 Henry Braconnot was appointed director of the Botanic Garden and Professor of Natural History in Nancy. The four-century old University of Nancy, as well as the University of Strasbourg, had been suppressed by the Assemblée Générale. and in Nancy the Medical School and the Academy were the only earned structures. Actually, the Garden and the Chair were part of the Medical School because of the interest in officinal plants Those years were crucial for the connections between botany. hemistry and medicine. For example, morphine was isolated by Serturner in 1806, guinine was discovered by Pelletier and aventon in 1823 and atropine was crystallized in 1833. The liscovery of the anaesthetic action of nitrous oxide, diethyl ether and chloroform started a revolution in surger Braconnot had access to very modest means for doing research.

also due to the continental embargo consequent to the Napoleon's wars. Nevertheless, while taking care of the heavily damaged Garden discovered chitin in 1811 started large scale cultivation of the sugar beet and the extraction and purification of sugar with the intention of alleviating food shortage. This activity was abruptly put to an end by the changed political situation which permitted to import sugar from tropical countries. He went on, however, with his idea of extracting ugars from plants and remarkably anticipated the modern approaches by directing attention to Heliantus tuberosus from which inulin is extracted today

Braconnot was interested in the definition of the nutritiona value of mushrooms. Braconnot wrote that poor countrymen considered mushrooms a manna given free as a gift of providence, and eagerly waited for the mushroom seasons. Today Agaricus bisporus is widely cultivated

stematic sulfuric acid treatment of a large number of ubstances led him to isolate two amino acids, glycine and ucine, in 1820. This discovery brought a certain renown to him. The direction of the Garden and the relevant problems (risky use of gas for heating the hothouses, fights against military plans to uild caserns inside the Garden) prevented Braconnot from exploiting his chemical discoveries. He was a precursor of Chevreul with his studies on fats, but he had no means to dentify the fatty acids: he brought forward the idea of plant alkali but he could not isolate the alkaloids

On the theoretical ground, he expressed the view that hydrogen and oxygen together with fire were the fundamental constituents of the universe, and plants can produce a number of elements from light and water

Braconnot published 112 papers in the form of memoirs of the Academy of Sciences, Letters and Arts of Nancy, also known as Academy of Stanislas, the King of Polish origin who ruled the Lorraine region. Other publications are in the Annales de Chimie et Physique and Journal de Chimie Médicale. He was also

appointed corresponding member of the national Académie des Sciences, after Wollaston. Braconnot certainly was an eminent chemist, as D.A. Godron, his successor, wrote, but he profused many energies in botany. Actually his teaching was according to Linnée, in a time period

when novel theories on cellular structure, plant sexuality and alternate generations were being brought forward, as a consequence of the studies done on enormous collections of previously unknown plants. For instance the Flinders expedition (1801) made available 4000 unknown species of plants from Australia. In 1852 the 14.100 m² Garden had 3452 plants species, including some from New Zealand and Reunion Island provided by Empress Joséphine. Braconnot took into account the novel views in botany, but dimmed sight forced him to refrain from teaching for several years before retirement. He left everything to the City of Nancy.

The discovery of chitin was essentially based on some reactions carried out on raw material isolated from Agaricus volvaceus, A. acris, A. cantarellus, A. piperatus, Hydnum repandum, H. hybridum and Boletus viscidus The existence of chitosan in nature remained unknown until 1954, when it was discovered in the yeast Phycomyces blakesleeanus. Chitosan occurs as the major structural component of the cell walls of certain fungi, mainly of the Zvgomvcetes species. However, to date, chitosans have been commercially produced by alkaline deacetylation of crustacean chitins

MODERN APPLICATIONS OF CHITOSAN IN FOOD SCIENCES

The antibacterial activity of chitosan was originally documented by Muzzarelli et al. (1990) who published electron micrographs showing the alterations produced in the bacterial cell wall and organelles. Those results were brilliantly confirmed more than a decade later by Helander et al (2001). Chemical and electrophoretic analyses of cell-free supernatants of chitosan treated cell suspensions showed that interaction of chitosan with E. coli and the salmonellae involved no release of lipopolysaccharide or other membrane lipids. Highly cationic mutants of S. typhimurium were more resistant to chitosan than the parent strains. Electron microscopy showed that chitosan caused extensive cell surface alterations and covered the oute membrane with vesicular structures. Chitosan thus appeared to bind to the outer membrane, explaining the loss of the barrier function. This property makes chitosan useful for food protection (Helander et al., 2001). It was also found that the antibacterial activity of quaternized chitosan against E. coli is stronger than that of chitosan (Jia et al., 2001) The antibacterial activity may be either bactericidal or

💽 frontiers in Microbiology

Antibacterial Activity

Chitosan, a Biopolymer With Triple Action on Postharvest Decay of Fruit and Vegetables: Eliciting, **Antimicrobial and Film-Forming** Properties

Gianfranco Romanazzi1*, Erica Feliziani1 and Dharini Sivakumar2

Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy, ² Department of Crop Sciences, Postharvest Technology Group, Tshwane University of Technology, Pretoria, South Africa

What's chitosan?

Chitosan is a natural biopolymer obtained from deacetylation of crab shells or extracted from fungi (e.g. Aspergillus sp.) with threefold activity

> Antimicrobial properties (35-45%)

> > Film-forming properties Ask question at slido.com (20-30%)

with #PlantHealth GW2023

Eliciting

properties

30-40%

Figure 1. Main proprieties of edible coatings applied on fruit and vegetables, affecting the permeability to ethylene (C_2H_4), water (H_2O), oxygen (O_2), and carbon dioxide (CO_2).

Ask question at slido.com with #PlantHealth_GW2023

> Romanazzi and Moumni, 2022 Current Opinion in Biotechnology https://doi.org/10.1016/j.copbio.2022.102834

Table 2. Examples of chitosan-based commercial products that are available for the control of diseases of fresh fruit and vegetables (modified by Romanazzi et al. [17]).

Product trade name	Company (Country)	Formulation	Active ingredient (%)			
Chito Plant	ChiPro GmbH (Bremen, Germany)	Powder	99.9			
Chitosano	Agrilante (Balmanava UD Italia)	Powder	100			
Chitosano denso	- Agriaete (Palmanova, UD, Italia)	Liquid	50			
OII-YS ¹	Venture Innovations (Lafayette, LA, USA)	Liquid	2			
KaitoSol	Advanced Green Nanotechnologies Sdn Bhd (Cambridge, United Kindom)	Liquid	12.5			
Armour-Zen	Botry-Zen Limited (Dunedin, New Zealand)	Liquid	14.4			
Biorend	Bioagro S.A.(Chile)	Liquid	1.25			
Kiforce	Alba Milagro (Milano, Italy)	Liquid	6			
FreshSeal	BASF Corporation	Liquid	2.5			
	(Mount Olive, NJ, USA)		2.5			
ChitoClear	Primex ehf (Siglufjordur, Iceland)	Powder	100			
Bioshield	Seafresh (Bangkok, Thailand)	Powder	100			
Biochikol 020 PC	Gumitex (Lowics, Poland)	Liquid	2			
Kadozan	Lytone Enterprise, Inc. (Shanghai	Liquid	2			
	Branch, China)		2			
Kendal Cops	Valagro (Atessa, CH, Italy)	Liquid	4			
Mastgrape	Enocea (Vegrar, VR, Italy)	Liquid	5			
Prevatect	Ascenza (Saronno, VA, Italy)	Liquid	5			
Chitosano Serbios	Serbios (Badia Polesine, RO, Italy)	Liquid	5			
Chitosano	Bioplanet Srl (Cesena, Italy)	Liquid	1.9			
Chitosano DC	Dal Cin Gildo Spa (Concorezzo, MB,	Liquid	2			
	Italy)		-			
Ibisco ²	Gowan Italia s.r.l. (Faenza, RA, Italy)	Liquid	15			
¹ Contains 6% yucca extract						

² The formulation is based on an average of 12.5% of COS (chito-oligosaccharides)-OGA (oligo-galacturonides), with a chitosan concentration of 15%

UNIVERSITY OF BARI ALDO MORO

Prof. Antonio Ippolito, Dr. Annamaria Mincuzzi

Sweet cherry cultivars: Lapins and Sweet Heart 4 treatments: 3 blooming stage + 1 preharvest Basic substances: 1. Chitosan

2. Sodium bicarbonate 21 days of cold storage $(1\pm 1 \text{ °C})$ and 4 days of shelf life $(20\pm 1 \text{ °C})$ in microperforated plastic

bags

Alternaria spp. E

Botrytis cinerea

Effects of chitosan treatment, alone – combined with copper and alternated – on grapevine downy mildew on leaves and clusters of cv. Verdicchio

Lecithins

Ask question at slido.com with #PlantHealth_GW2023

Fungicide against grapevine powdery mildew in vineyard

Marchand P.A., 2016. Basic substances under EC 1107/2009 phytochemical regulation: experience with non-biocide and food products as biorationals. *Journal of Plant Protection Research* 56, 312-318

Fungicide activity of milk and whey powders towards *Erysiphe necator*, the causal agent of powdery mildew of grapevine

Bugiani¹, R., Cavazza²*, F., Landi², M., Preti², M.

¹ Servizio Fitosanitario – Regione Emilia-Romagna - Via A. da Formigine, 3, 40129 Bologna, Italy
 ² Astra Innovazione e Sviluppo Test Facility – Via Tebano, 45, 48018 Faenza, Italy

100 - 100 90 90 а 80 80 Abbott degree of action (%) 70 70 Disease incidence (%) 60 60 50 50 40 40 30 30 20 20 10 10 ь 0 0 Untreated Sulphur 5 g/L Whey powder 30 g/LWhey powder 45 g/L Milk powder 30 g/L --- Efficacy (%) on June 28th ---- Efficacy (%) on July 19th June 28th July 19th

Figure 3: Disease incidence on grape bunches (histograms) and tested products efficacy (lines) recorded in 2019.

Induced resistance in harvested fresh fruits

Prusky and Romanazzi, 2023 ARP https://doi.org/10.1146/annurev-phyto-021722-035135

OVERALL EUPHRESCO BASICS IN PROGRESS RESULTS

- Six webinars on the application of basic substances and potential basic substances (available on YouTube Project channel)
- One joint publication
- At least 20 scientific papers acknowledging the project
- At least 6 Special Issues on the topics of the project
- Mobility of young researchers working on the topic (Yann Davillerd from ITAB to UNIVPM, Eva Perez Alvarez from CSIC to UNIVPM, Nicola Santori from UNIVPM to CSIC)
- Extended International thematic cooperative network including expertise in basic substance evaluation and approval and International bodies (e.g. EPPO)

Ask question at slido.com with #PlantHealth_GW2023

Euphresco BasicS

EuphrescoBasicS

YouTube <u>Euphresco BasicS</u>

IMPACT OF EUPHRESCO BASICS ON POLICY

The Euphresco BasicS project aims to:

- provide information to growers, phytosanitary consultants (plant doctors), researchers, consumers and policy makers for faster and appropriate registration and use of basic substances

- raise attention in different Countries on the use of basic substances for sustainable management of plant diseases and pests to reduce the application of synthetic pesticides and at the same time keep a proper quality and quantity of the production and farmer income (discussion on Sustainable Use Regulation)

BENEFITS FROM INTERNATIONAL COLLABORATION

The Euphresco network provided the opportunity of interaction of researchers from different areas to merge expertise and contribute to test basic substances and potential basic substances and promote sustainable approaches for IPM and organic agriculture This network can interact with other policy makers

(e.g. EPPO, ETP Plants, PRIMA, COST) to promote sustainability of agriculture and effective pest and disease management

Title: Sustainable Network for agrofood loss and waste prevention, management, quantification and valorisation

cronym: FoodWaStop

Ask question at slido.com with #PlantHealth_GW2023

Final meeting of the Project "Basic substances as an environmentally friendly alternative to synthetic pesticides for plant protection (BasicS)"

EPPO, Paris, 26 August 2023

Thanks you for your attention

For further info g.romanazzi@univpm.it

Voulube Euphresco BasicS