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S1 Text. State-dependent bidirectional BMI 

In this paper we developed a state-dependent bidirectional BMI obtained by including a state-
dependent decoder in the Dynamic Neural Interface  described in (Vato et al., 2012). As in the 
previous work, the dynamical system was represented by a point mass moving over a horizontal 
plane within a viscous medium. The movement of the simulated object, obtained by applying the 
decoded force vector, was computed by integrating the equation of motion of the point mass in a 
viscous medium, Mx + Bx = F , where 𝑥 = [𝑥), 𝑥+]- indicates the position of the point mass on a 
plane. The values of mass M and viscosity B were set to 10 Kg and 15 N•s/m, respectively. We 
simulated this dynamics equation for a period of 1 s using standard numerical integration algorithms. 

S2 Text.  Discretization and time binning of the state variables  

As reported in Materials and Methods, in Sec. 2.3.1, we used different time bin sizes according to the 
distance time from the stimulus using 39 time bins organized as shown in Table S1. 

To check that the pre-stimulus time windows used throughout the experiments and reported in Table 
S1 were optimal, we extended the pre-stimulus window to the maximum possible value, i.e. from the 
end of the evoked response of the previous trial to the stimulus onset. However, in this control 
analysis the decoding algorithm never selected neural activity in a time window starting earlier than 
1.025 seconds before the stimulus onset (See Figure S1 and Table S1). This suggests that all relevant 
state information was contained within the [-1.025, 0] s pre-stimulus window that we used 
throughout the paper. 

For each time bin t, we discretized the value of the state variable 𝜽/(𝑡) in 𝑙 ∈ 1,2,3,4  levels in 
order to have a smaller number of possible states. We optimized the value of l (see S4 Text) to 
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maximize decoding performance. Indeed, if l was too small we lost information about the response 
trial-to-trial variability carried by the state, and the decoding performance decreased. If l was too 
large we introduced noise into the decoder, and its performance decreased. 

The cartoon on the left of Figure 2 shows 𝚯:;<,/ and 𝜽=<,/ (defined below) for a generic trial m. 
For simplicity, in the cartoon we considered 𝚯:;<,/ as a continuous function of time, without 
considering the time binning and neglecting the discretization in l levels. 

S3 Text.  Using ongoing MUA and pre-stimulus spike as state 

MUA was obtained by pooling together the spike trains of all recorded units. For each trial m and for 
each time bin t , we obtained 𝜃?;<,/ 𝑡 ∈ ℝ by summing 𝜽:;<,/ 𝑡 ∈ ℝAB) across the rows. 

We defined MUA state variables vector as,   

𝛉𝐌𝐔𝐀,𝒎 = 𝜽𝐌𝐔𝐀,𝒎 −𝑻𝜽 ,… , 𝜽𝐌𝐔𝐀,𝒎 −𝒕 ,… , 𝜽𝐌𝐔𝐀,𝒎(−𝟏) ∈ ℝ𝑻𝜽 (S 1) 

We built the MUA state variables matrix, replicating 𝛉MNO,/ N times and shaping any replication as 
a row of the matrix 

𝚯𝐌𝐔𝐀,𝒎 =
𝜽𝐌𝐔𝐀,𝒎 −𝑻𝜽 ⋯ 𝜽𝐌𝐔𝐀,𝒎(−𝟏)

⋮ ⋱ ⋮
𝜽𝐌𝐔𝐀,𝒎 −𝑻𝜽 ⋯ 𝜽𝐌𝐔𝐀,𝒎(−𝟏)

∈ ℝ𝑵𝐱𝑻𝜽   (S 2) 

All the rows of this matrix were identical and, thus redundant. In this way 𝚯?;<,/ had N rows, like 
𝚯:;<,/, and this led to the advantage explained below.   

For each trial m we defined as MUA state activity matrix,  

𝐀𝐌𝐔𝐀,𝒎 = 𝚯𝐌𝐔𝐀,𝒎 𝐑𝒎 =
𝜽𝐌𝐔𝐀,𝒎 −𝑻𝜽 ⋯ 𝜽𝐌𝐔𝐀,𝒎(−𝟏)

⋮ ⋱ ⋮
𝜽𝐌𝐔𝐀,𝒎 −𝑻𝜽 ⋯ 𝜽𝐌𝐔𝐀,𝒎(−𝟏)

𝒓𝒎 𝟏 , … , 𝒓𝒎 𝒕 , … , 𝒓𝒎(𝑻𝒓) ∈ ℝ𝑵𝐱(𝑻𝜽W𝑻𝒓)  (S 3) 

concatenating MUA state variable matrix and response matrix. This concatenation was possible 
because 𝚯?;<,/ had the same number of rows as 𝐑/. We could apply the dimensionality reduction 
on the state variables matrix or vector (left part of the activity matrix) and on the response matrix 
(right part of the activity matrix), separately. However, we decided to apply PCA on the joint state-
response matrix (activity matrix) in order to obtain a compact information rich description of both the 
state and the evoked activity.  

We also described the network states by means of the Time Averaged pre-stimulus activity 
(shortened to TA). For each trial m, we defined the TA state variables vector as: 
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𝜽𝐓𝐀,𝒎 = 𝟏
∆𝑻𝒑𝒓𝒆_𝒔𝒕𝒊𝒎	

𝜽𝒎(𝒕)𝒕∈𝑻𝜽 ∈ ℝ𝑵      (S 4) 

We defined the TA state activity matrix as 

𝐀𝐓𝐀,𝒎 = 𝜽𝐓𝐀,𝒎 𝐑𝒎 = 𝜽𝐓𝐀,𝒎 𝒓𝒎 𝟏 ,… , 𝒓𝒎 𝒕 , … , 𝒓𝒎(𝑻𝒓) ∈ ℝ𝐍𝐱(𝟏W𝑻𝒓) (S 5) 

We denoted as 𝐀a,/ the generic state activity matrix: 

𝐀𝝑,𝒎 =
𝐀𝐒𝐔𝐀,𝒎						𝐢𝐟	𝝑 = 𝐒𝐔𝐀		
𝐀𝐌𝐔𝐀,𝒎					𝐢𝐟	𝝑 = 𝐌𝐔𝐀	
𝐀𝐓𝐀,𝒎								𝐢𝐟	𝝑 = 𝐓𝐀					

     (S 6) 

We denoted as 𝜗 = 𝑆𝐼 the state-independent case 

𝐀𝝑,𝒎 = 𝐑𝒎		𝐢𝐟	𝝑 = 𝑺𝑰	     (S 7) 

S4 Text.  SD-TD decoding algorithm  

The decoder used the information in the confusion matrix 𝐼 𝑆; 𝐷  to optimize the following 
parameters: 

Ø Neural response time window duration ∆Tnopq_pqrs ∈ 100, 200, 255, 300, 400, 500, 600 	ms 
(measured as number of pre-stimulus time bins 𝑇z ∈ 20, 40, 51, 60, 80, 100, 120 ) 

Ø Pre-stimulus time window duration ∆Tn|}_pqrs ∈ −1050,−5 	ms (measured as number of 
pre-stimulus time bins 𝑇~ ∈ −39,−1  ) 

Ø State Variable  𝜗 ∈ MUA, SUA, TA  
Ø Number of discretization level l of the state variable, 𝑙 ∈ 1,2,3,4    
Ø Number of principal components 𝑘 ∈ 1,100  
Ø Threshold value for the WTA strategy 𝑃��z ∈ 0.1,0.5  

Note that in the SD-TD decoding algorithm 𝜗 could be one of MUA, SUA, TA.  The algorithm could 
also choose the TA as state variable in order to include all aspects of the time dependence of pre-
stimulus activity, including both the vector with the activity at any given time and the time averaged 
pre-stimulus activity.  

Here we describe step-by-step the state-dependent decoding algorithm that we used: 

1. We considered the state-independent case (	𝜗 = 𝑆𝐼, 𝐀a,/ = 𝐑/) and we calculated the 
information in the confusion matrix 𝐼 𝑆; 𝐷 , without considering any state information, for all 
𝑇z ∈ 20, 40, 51, 60, 80, 100, 120  . We selected the value of 𝑇z that maximized 𝐼 𝑆; 𝐷  and 
we used this value for all of the following steps. 

2. We considered the state-dependent case and we built the state-dependent activity matrix 𝔸a, 
as we described in Sec. 2.3.2.  
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3. We built the test set by taking one out of M trials, following a leave-one-out cross-validation 
procedure. 

4. On the training set, composed of M-1 remaining trials we used a further leave-one-out cross-
validation calculating the values of the parameters (𝑃��z, 𝑘, 𝜗, 𝑙, 𝑇~) that maximized the 
information 	𝐼 𝑆; 𝐷 �z������_��� in the confusion matrix 𝐐�z������_��� ∈ 0,1 �B� computed on 
training set (see details on this point below).  

5. We used the parameters found in step 4 to decode the test trial m that we set aside in point 3.  
6. We repeated the procedure from point 3 selecting the second trial and so on. 
7. For all trials m we built the confusion matrix 𝐐 ∈ 0,1 �B� and the information 𝐼 𝑆; 𝐷  in the 

confusion matrix. 

We computed both the confusion matrices 𝐐�z������_��� and 𝐐 from the posterior probabilities, 
eventually applying a WTA strategy, as explained in Sec. 2.3.2 and 2.3.3. 

Here we explain more extensively point 4 of the parameters’ optimization procedure: 

a. We set 𝜗 = 𝑀𝑈𝐴	and	𝑙 = 2	. 
b. For each of the following values of  𝑇~ = 1,… ,39 we calculated the couple (𝑃��z, 𝑘) that 

maximized 𝐼 𝑆; 𝐷 �z������_���. We varied 𝑘 in the range 1,100  and 𝑃��z in the range 
0.1,0.5 . We recorded the best combination (𝑇~, 𝑃��z, 𝑘). 

c. We repeated step b and c for each of the following couples of parameters: 
d1. 𝜗 = MUA	and		𝑙 = 2 
d2. 𝜗 = MUA	and		𝑙 = 3 
d3. 𝜗 = MUA	and		𝑙 = 4 
d4. 𝜗 = SUA	and	𝑙 = 2 
d5. 𝜗 = TA	and	𝑙 = 4 
d6. 𝜗 = SI 

d. We chose the values of 𝑃��z, 𝑘, 𝜗, 𝑙	and	𝑇~ which maximize 𝐼 𝑆; 𝐷 �z������_���. 
 
For 𝜗 = 𝑆𝑈𝐴, we used two discretization levels (𝑙 = 2) because we did not gain information 
by using more levels. Indeed by using 𝑙 > 2 we introduced noise, decreasing decoding 
performance. We applied an analogous procedure for the MUA and for the TA. We did 
analogous considerations also for the parameters 𝑘, 𝑇~	and	𝑇z. If their values were too small, 
we lose information, if they were too large we introduced noise. Our algorithm found the best 
compromise. As shown in Figure S1A we had 𝜗 = SUA, 𝜗 = MUA, 𝜗 = 𝑇𝐴 in 47%, 10.5% 
and 42.5% of the trials, respectively. Figure S1B shows the cumulative distribution of 𝑇~, 
measured in number of time bins (See Table 1), averaged across all trials and all experimental 
sessions. 

Using the temporal structure of the pre-stimulus ongoing activity we approximatively doubled the 
decoding performance with respect to the SC case. On the other hand a state-dependent algorithm 
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that considers only the spike count of the pre-stimulus activity is simpler and faster (2-3 times faster) 
because it skips steps d1, d2, d3 and d4.  
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Supplementay Figures and Tables 
 

 

Figure S1: (A) The graph shows the percentage of instances when the algorithm selected the 
different signals (MUA, SUA and TA) to compute the state variable(s) across all experimental 
sessions (B) Cumulative distribution of the number of the pre-stimulus time bins selected for 
inclusion by the algorithm across the whole dataset. 

 

 
Table S1. Pre-stimulus time bins labels, durations and correspondent pre-stimulus time intervals (0 
corresponds to the stimulus onset). 

 

 

  

 

bin label(s) bin duration time interval (ms) 
[-1 ÷ -30] 5 ms [-150 ms, 0 ms] 
-31 25 ms [-175 ms , -150 ms]       
-32 50 ms [-225 ms,  -175 ms]     
[-33 ÷ -35] 100 ms [-525 ms, -225 ms]      
[-35 ÷ -39] 200 ms [-1025 ms, -225 ms] 


