

Biodiversity Digital Twin

GBIF ECA Meeting 17th May 2023

Dag Endresen & Erik Kusch – UiO NHMO MaNa BioDT

Funded by the European Union

1. Background

- Digital twin concept
- DT concept in BioDT

2. Objectives

Project goals and outcomes

3. BioDT Use Cases

- Practical applications
- Data streams through the bioRIs -GBIF, eLTER, DiSSCo, LifeWatch, etc.

4. LUMI

EuroHPC supercomputer

What is a digital twin?

3

Virtual representation(s) of real-world entities and processes, synchronised at a specified frequency and fidelity

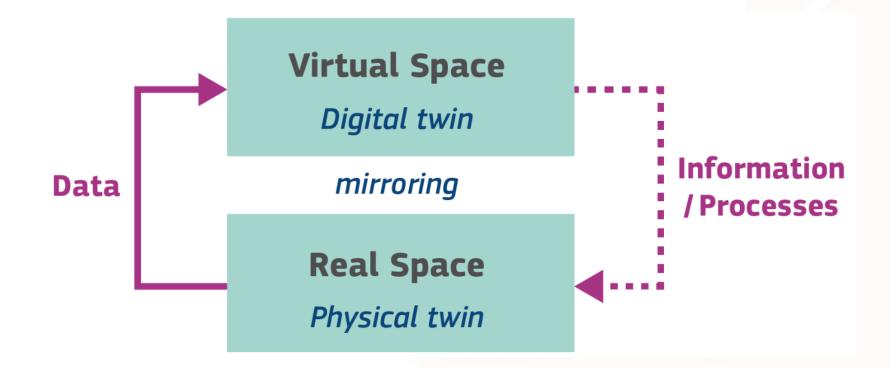
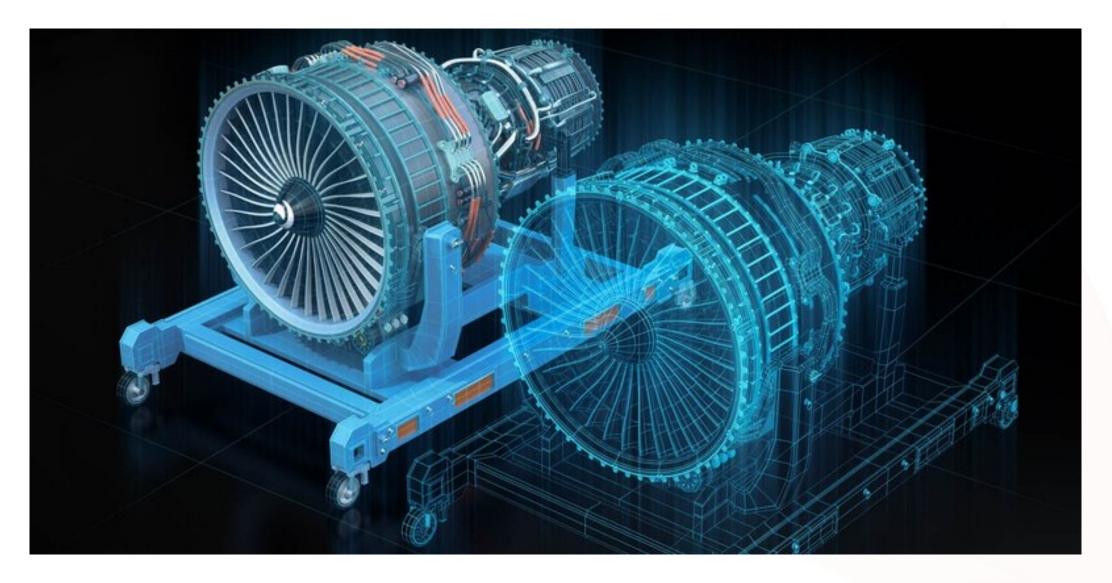



Image: digital-strategy.ec.europa.eu

 Wageningen University is developing digital twins for crop plants.

Sensors provide realtime data streams to a digital twin model.

Simulated experiments can be made with the digital twin.

Industrial DTs typically facilitate:

- Product design
- Operation of machinery
- In BioDT, DTs are used to:
 - Mimic behaviour observed in nature
 - Meet requirements of BioDT Use Cases
 - Contribute toward EC goal of devising a <u>full DT of the Earth</u>

Biodiversity Digital Twin (BioDT)

8

Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction Capabilities

Horizon Europe

BioDT – Biodiversity Digital Twin

22 partner institutions from 13 countries

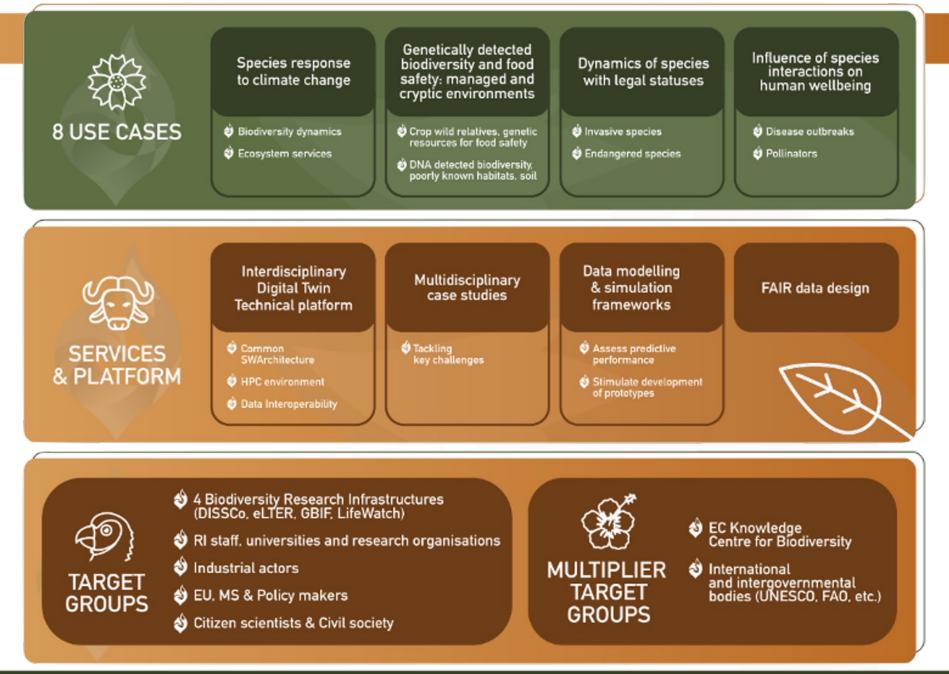
The total project budget is 12M Euro

♦ 1265 PM (105 PY FTE)

GBIF Secretariat 143 PM (11.9 PY FTE) – 11% of BioDT
 GBIF NO (UiO) 81.5 PM (6.79 PY FTE) – 8% of BioDT

Project Information BioDT Grant agreement ID: 101057437 in 🖸 DOI 10.3030/101057437 🔀 Start date End date 1 June 2022 31 May 2025 Funded under Research infrastructures Total cost € 11 059 061 EU contribution € 11 059 061 Coordinated by CSC-TIETEEN TIETOTEKNIIKAN KESKUS OY + Finland

1	CSC - IT Center for Science Ltd	Finland
2	Trust-IT Srl	Italy
3	AE - Commpla Srl	Italy
4	VSB - Technical University of Ostrava, IT4I	Czech Republic
5	TNO - Netherlands Organisation for Applied Scientific Research	Netherlands
6	JYV - University of Jyvaskyla	Finland
7	University of Tartu	Estonia
8	KTH - Kungliga Tekniska Hoegskolan	Sweden
9	Swansea University	United Kingdom
10	University of Manchester	United Kingdom
11	ECMWF - European centre for medium-range weather forecasts	United Kingdom
12	UFZ - Helmholtz-Zentrum fur umweltforschung gmbh	Germany
13	UK Centre for Ecology & Hydrology	United Kingdom
14	EAA - Umweltbundesamt gesellschaft mit beschrankter haftung	Austria
15	University of Helsinki	Finland
	GBIF - Global Biodiversity Information Facility, secretariat	Denmark
	University of Oslo (GBIF Norway)	Norway
18	Naturalis - Stichting Naturalis Biodiversity Center	Netherlands
19	Senckenberg gesellschaft fur naturforschung	Germany
20	E-Science European Infrastr. for Biodiv. and Ecosys. Research	Spain
21	Bayer aktiengesellschaft	Germany
22	MLU - Martin-Luther Universitat Halle-Wittenberg	Germany


22 partners from 12 countries

EU DestinE
EU Digital strategy
EU Green Deal

4 use case groups8 use case studies

4 bio RIs
GBIF
eLTER
DiSSCo
LifeWatch

WP	WP title	WP Lead	PMs
1	Project management	CSC, Finland	72
2	Communication, Dissemination, Sustainability, and Impact	TRUST-IT, Italy	106
3	Digital Twin Advanced Technical Platform	CSC, Finland	153
4	Data and Use Cases	GBIFS, Denmark UiO, Norway	301
5	Improving Quality of Data, Workflows, and Models through FAIR Principles	Naturalis, NL	99
6	Simulation, Modelling and Data Analytics	JYU, Finland UFZ, Germany	300
7	Integration & Service Uptake with Research Infrastructure Environments	IT4I@VSB, Czech Republic	148
8	Collaboration and Integration with Strategic Initiatives and Programmes	TNO, Netherlands	86
			1265

Objective 1

Build and deploy pre-operational BioDT platform

Objective 2

Integration with RI platforms and workflows

Objective 3

 Interoperability with European DT initiatives (including <u>DestinE</u>) and <u>European Data Infrastructure</u>

Specific objectives and outcomes

Objective 1: Pre-operational BioDT platform

- Platform established on LUMI
- Prototype DTs focusing on four Use Case groups
- Model development and validation
- Including upscaling for HPC, features for interactive use
- Iatform generalized to serve user needs beyond consortium

Outcomes

Prototype platform available as service
 Four use case groups, Eight case studies
 Improved model predictive performance
 Increased model accuracy and precision

Species interactions with each other and with humans

Specific objectives and outcomes

Objective 2: Integration with biodiversity RIs

Interfaces, user authentication and access
Interoperability: data, software, practices
Uptake, new user communities, training

Including Bring-Your-Own-Data hackathons

Outcomes

APIs for feeding data to & from BioDT platform
 FAIR datasets using cross-RI standards and FDOs
 Quality indicators (e.g. FAIRness, geographic accuracy)
 Training materials and interoperability workshops

Objective 3: Interoperability with DestinE and European DT initiatives

- Cross-DT synchronisation and showcases
- Integration with <u>EOSC</u> and <u>ELIXIR</u> (openly available results)
- Harmonised data and data governance (<u>EU Data Spaces</u>)
- Contributing to EU ability to adapt actions & policies

Outcomes

Ingestion of DestinE by BioDT (and data outputs to DestinE)
 Provision of agglomerated, analysis-ready data by BioDT
 Shared service catalogue, BioDTs available to EOSC users
 Synchronisation with other DT initiatives (e.g. Ocean DT)
 Leveraging ELIXIR infrastructure (e.g. Tools platform)

<u> </u>	Biodiversity RIs, RI nodes, data providers and researchers
᠕ᡔᡶᡥ	RIs, universities, research organisations; the end-users that will contribute to developing the DT, enhancing its use cases, and testing its functionalities
	Policy makers
	EU, Member States, Local governments, intergovernmental organisations (UNESCO, FAO, etc.)
E	Industrial actors incl. SMEs
	Sectors related to biodiversity, such as agri-food, tourism, healthcare.
	Civil society and citizen scientists

scientific use case studies

Species response to environmental change

Biodiversity dynamics

Ecosystem services

Genetically detected biodiversity

- Crop wild relatives and genetic resources for food security
- DNA detected biodiversity, poorly known habitats

Dynamics and threats from and for species of policy concern

Species interactions with each other and with humans

Scientific use cases	Prediction tasks			
Group 1: Species response to	1. Changes in species diversity, distribution, and abundance across			
environmental change	scales.			
1. Biodiversity dynamics	2. Changes in species diversity, distribution, and abundance across			
2. Ecosystem services	scales due to anthropogenic effects.			
Group 2: Genetically detected biodiversity	1. DNA sequence to taxon/genotype identification.			
3. Crop wild relatives, genetic resources for	2. DNA sequence to phenotype, trait, or property of taxon, and genotype			
food security	of an organism.			
4. DNA detected biodiversity, poorly known	3. Modelling patterns and processes in arable lands and cryptic			
habitats, and soil	environments.			
	4. Modeling changes in soil, degrading organic matter, water, and air.			
Group 3: Use cases on the dynamics of	1. Changes in species richness and abundance of invasive species.			
species of policy concern	2. Changes in species richness and abundance of red list species.			
5. Invasive species				
6. Endangered species				
Group 4: Species interactions with each	1. Modelling emerging diseases and their potential locations in Europe.			
other and with humans	2. Impact of changes in pollinator populations, distribution, and/or types			
7. Disease outbreaks	on the dependent plant communities, both wild and cultivated.			
8. Pollinators				

GBIF BioDT team – GBIFS & GBIF Norway

2023.03.10

Four full time (FTE) project positions

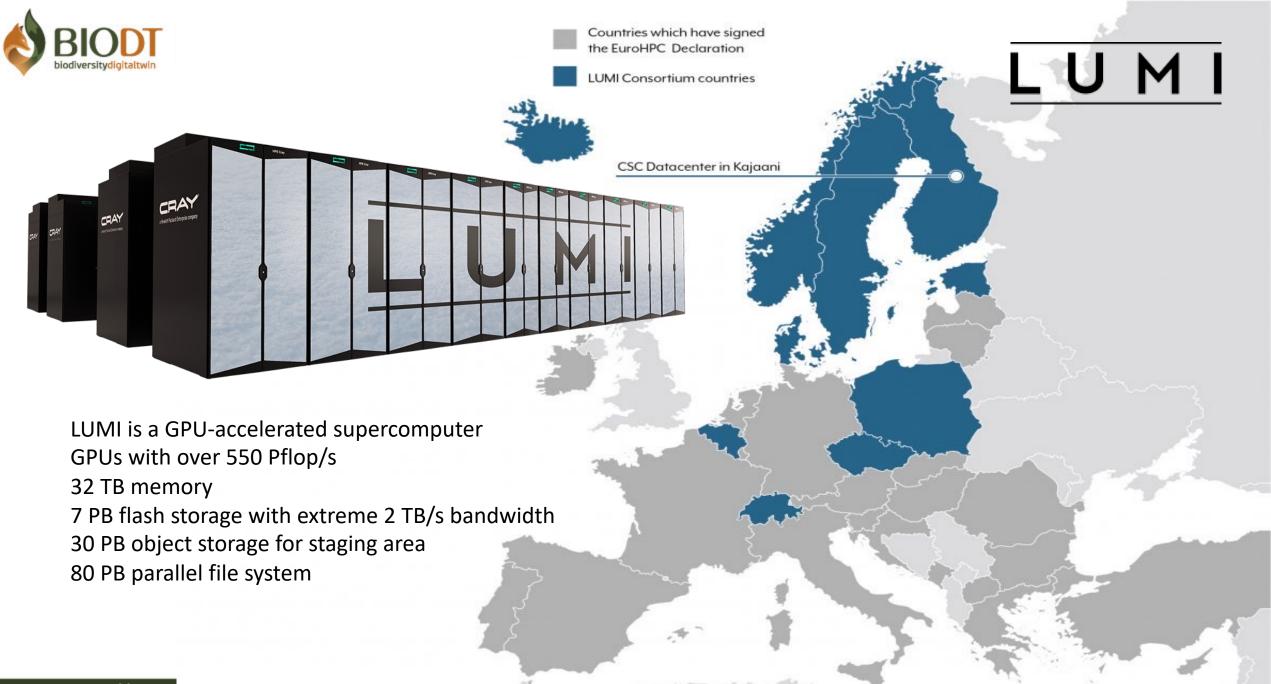
- Tobias Frøslev Task 4.1.2.2 lead Use case: DNA detected biodiversity, soil
- Kate Ingenloff– Task 4.1.4.1 lead Use case: Disease outbreaks (interactons)
- GBIF informatics Task 4.2 data streams
- Sanja Novakovikj project support

Imitry Schigel – project leader at GBIFS

Three full time (FTE) project positions

- Desalegn Chala Gelete Task 4.1.2.1 lead Use case: Crop wild relative digital twin
- Erik Kusch Task 4.3.1 lead biodiversity research data infrastructure
- Open Task 4.3.2 data standards and data quality indicators
- Marcella Rydmark Orwick liasion WP2, WP7, WP8

Dag Endresen – project leader at UiO Tøyen



- Computing laint lindentaking (EurolipC III) is no sling
- The European High-Performance Computing Joint Undertaking (EuroHPC JU) is pooling European resources to develop top-of-the-range exascale supercomputers for processing big data, based on competitive European technology.
- One of the pan-European pre-exascale supercomputers, <u>LUMI</u>, is located in CSC's data center in <u>Kajaani</u>, Finland.
- The supercomputer is hosted by the LUMI consortium. The LUMI (Large Unified Modern Infrastructure) consortium countries are Finland, Belgium, Czech Republic, Denmark, Estonia, Iceland, Norway, Poland, Sweden, and Switzerland.
- LUMI will be one of the world's best known scientific instruments for the lifespan of 2021–2026.

EuroHPC

Top500 most powerful HPC

Top500 ranks the 500 most powerful nondistributed computer systems in the world.

LUMI ranks as #3 (!)

Rank	System	Cores	Rmax (Pflop/s)	Rpeak (TFlop/s)	Power (kW)
1	Frontier, Oak Ridge, USA	8 730 112	1 102	1 686	21 100
2	Fugaku, Fujitsu, Japan	7 630 848	442	537	29 899
<mark>3</mark>	LUMI, EuroHPC/CSC, Finland	<mark>2 220 288</mark>	<mark>309</mark>	<mark>429</mark>	<mark>6 016</mark>
4	Leonardo, EuroHPC/CINECA, Italy	1 463 616	175	256	5 610
68	Dardel GPU, KTH, <mark>Sweden</mark>	52 864	8	10	146
91	LUMI-C, EuroHPC/CSC, Finland	194 560	6	8	1 216
119	Betzy, UNINETT Sigma2 AS, Norway	172 032	5	6	

BioDT will provide infrastructure to:

- Orive long-term biodiversity research
- Maintain commitments to protect biodiversity
- Safeguard societal resilience

BioDT will be used to:

- Better observe spatiotemporal changes in biodiversity
- Develop an improved mechanistic understanding of these changes
- Push limits of predictive biodiversity modelling

Allow A

@BiodiversityDT
in BioDT

Funded by the European Union