
1

RECENT ONE VIEW DEVELOPMENTS

C. Valensi, E. Oseret, M. Tribalat, H. Bolloré, S. Ibnamar, K.
Camus, M. Hoffer, A. Delval +

W. Jalby

University of Versailles Saint Quentin/University of Paris Saclay

Scalable Tools Workshop June 2022

2

Target audience/usage for performance tools

Performance tools can be used by different people with different goals:

➢ Application developers to get high performance codes on different
compilers/architectures

• Perform (major) code refactoring to improve performance

• Understand/analyze impact of new compilers/libraries/hardware
and perform corresponding code “adjustments”

• Analyze impact of minor code changes: performance
maintenance every week/every month

➢ Compiler/Runtime/Library developers

➢ Hardware designers

➢ And some more …(not an exhaustive list)

All of these different audiences need different information and different
formatting

Scalalble Tools Workshop June 2022

3

OneView Recent Developments

Five main directions (still in progress):

➢ Improve analysis of parallel OMP codes : integrate OMPT in MAQAO.

➢ Support new architectures (AMD, ARM, ……..GPU): the user will have the
same interface and logic across different architectures

➢ Integrate further Hardware component usage analysis: Saturation/Intensity
method (D. Kuck/INTEL)

➢ Enhance comparative analysis

➢ Simplify end user interface: make a synthesis of all of the information to
offer a better guidance through the optimization “maze”

FOCUS IN THIS TALK ON THE LAST TWO POINTS

Scalable Tools Workshop June 2022

4

PRINCIPLES OF COMPARATIVE ANALYSIS

Basic principles: run different “code versions” and compare them on
“appropriate levels”.

TRIAL AND ERROR and comparison are fundamental techniques in scientific
approach.

➢ Different “code versions”

• Different runtime settings (on different number of cores, etc..)

• Different compilers

• Different hardware (X86, ARM, …) with same or different ISA

• Different code versions

➢ “Appropriate levels”:

• ISOBINARY: the same binary is compared in different settings

• ISOSOURCE: the same source is compared

• ISOFUNCTION STRUCTURE: the source code can be different but the
function structure is preserved.

• Generic: much harder to compare

NOT VERY SOPHISTICATED AT FIRST BUT VERY USEFULL AND
IMPLEMENTATION IS A BIT SUBTLE

Scalable Tools Workshop June 2022

5

EXPERIMENTAL SETUP

➢ Hardware

• SKL: Intel(R) Xeon(R) Platinum 8170 CPU @ 2.10GHz

• KBL: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz

• ZEN-2: AMD EPYC 7H12 64-Core Processor

• ZEN-3: AMD EPYC 7763 64-Core Processor

➢ Compilers:

• INTEL ICC/IFC and ICX/IFX

• GCC 11

➢ Codes

• Lulesh

• MiniQMC: proxyapp for QMCPACK (An Open Source Quantum Monte Carlo
Package for the electronic structure of atoms, molecules and solids)

• CHAMP: The Cornell-Holland Ab-initio Materials Package (CHAMP) is a
quantum Monte Carlo package for electronic structure calculations of molecular
systems

• Jastrow: Quantum Montecarlo Computation (QMCKL library).

• MAHYCO (Arcane): hydrodynamics code

Scalable Tools Workshop June 2022

6

ISO BINARY: SCALABILITY RUNS

Scalable Tools Workshop June 2022

CHAMP: Weak Scalability Analysis

r0 : 1 core r1: 2 cores r2: 4 cores r3: 8 cores r4: 16 cores r5: 26 cores

7

ISOBINARY: STABILITY RUNS (1)

Scalable Tools Workshop June 2022

Same code is run a large number of times to study measurement stability. Standard

statistics (deciles) are computed. An extra xlsx file is produced.

KBL 4 cores. Lulesh2.0

8

ISOBINARY: STABILITY RUNS (2)

Scalable Tools Workshop June 2022

Same code is run a large number to study measurement stability.

Going at the function level allows to quickly identify delinquent function

Min, max, avg, med are computed over the 100 runs.

9

ISO SOURCE: DIFFERENT HARDWARE

Scalable Tools Workshop June 2022

All runs were unicore and used the same compiler GNU 11

Code MAHYCO (Arcane framework)

r0: SKL r1: ZEN_2 r2: ZEN_3

10

ISO SOURCE: DIFFERENT COMPILERS

Scalable Tools Workshop June 2022

TARGET CODE/PROC: QMCKL Jastrow on SKL

Compilers: r1: Intel 2021.5.0 r2: Intel 22.0-1069

11

ISO FUNCTION STRUCTURE:

Scalable Tools Workshop June 2022

5 successive code

versions of CHAMP

Unicore runs SKL

Regular gains except

for the last one!!

12

ISO FUNCTION STRUCTURE: FUNCTION LEVEL

CHAMP Unicore on SKL

Scalable Tools Workshop June 2022

13

Simplify user interface (3)

Sort out performance issues:

LEVEL 0 (Stylizer): Is your run worth analysing ? Lack of important flags, too
short execution times, … all of such issues deeply the interest of performing
detailed analysis.

LEVEL 1 (Strategizer): Globally how difficult the optimization process will be ?
We analyse the main profile characteristics in particular identifying importance
of main types of codes: loops, innermost, outermost, in between, library use,
etc….

LEVEL 2 (Optimizer): at loop level (innermost/inbetween/outermost) detect
performance issues (in a predefined list) and then display only the ones which
are present.

Scalable Tools Workshop June 2022

14

HIGH LEVEL VIEW OF SUMMARY TAB

Scalable Tools Workshop June 2022

https://datafront.maqao.exascale-

computing.eu/public_html/oneview2020/miniqmc/OMPoffload-

bfb1b0/base/skl/ov3/miniqmc_OMPoffload-

bfb1b0_base_skl_o1_m1_c1_ov3_g422-n5-N1-b_icc-avx512/summary.html

MiniQMC Unicore on SKL (ICC)

https://datafront.maqao.exascale-computing.eu/public_html/oneview2020/miniqmc/OMPoffload-bfb1b0/base/skl/ov3/miniqmc_OMPoffload-bfb1b0_base_skl_o1_m1_c1_ov3_g422-n5-N1-b_icc-avx512/summary.html

15

STYLIZER: DETAILS (1)

Scalable Tools Workshop June 2022

QMCPACK Unicore on SKL (ICC)

16

STYLIZER: DETAILS (2)

Scalable Tools Workshop June 2022

QMCPACK Unicore on SKL (ICC)

17

STRATEGIZER: DETAILED VIEW (1)

INTEL Meeting: JUNE 2022

18

STRATEGIZER: DETAILED VIEW (2)

INTEL Meeting: JUNE 2022

19

The Optimizer

LEVEL 2 (Optimizer): at loop level (innermost/inbetween/outermost) detect
performance issues (in a predefined list) and then display only the ones which
are present: standard automobile dashboard

➢ For each performance issue associate a penalty score (higher is worse) and
an estimate of performance gain (Work in Progress).

➢ For each issue list one or several potential roadblock

➢ 4 major categories

1. Vectorization roadblocks including data access (no dependence
analysis)

2. Inefficient vectorization

3. Advanced optimizations

4. Parallelism

➢ Based on static analysis and also on dynamic analysis

Scalable Tools Workshop June 2022

20

OPTIMIZER

Scalable Tools Workshop June 2022

SCORE is a penalty score: lower is better

QMCPACK (using icx) https://datafront.maqao.exascale-

computing.eu/public_html/oneview2020/miniqmc/OMPoffload-

bfb1b0/base/skl/ov3/miniqmc_OMPoffload-

bfb1b0_base_skl_o1_m1_c1_ov3_g422-n5-N1-b_icx-avx512/summary.htm

l

21

OPTIMIZER DETAILS

INTEL Meeting: JUNE 2022

22

CONCLUSION AND FUTURE DIRECTIONS

➢ The compare mode with its different flavors (ISO BINARY, ISO
SOURCE, ISO FUNCTION STRUCTURE) is very efficient for the
code developer to track progress and to detect quickly problems.

➢ The “summary” approach provides another way of interacting with
code developer: more direct and focused, and efficient guidance
through optimization maze

➢ Extensions: support for more complex performance issues, improve
detection

➢ Perform automatic or semi automatic “issues” repair: improve
automatically style and perform some optimizations

➢ Build a database of issues

Scalable Tools Workshop June 2022

23

BACKUP SLIDES

INTEL Meeting: JUNE 2022

24

MAQAO ONE View

➢ MAQAO is a performance analyzis and optimisation framework
operating at binary level developed at UVSQ since 2004

• Complementary modules, each of them focusing on one aspect
of performance analysis: profiler, static analyzer, value profiler,
simplified simulators, decremental analyzer, …

• Support for Intel/AMD x86-64, Xeon Phi and ARM (ongoing)

• http://maqao.exascale-computing.eu

➢ ONE View: Performance View Aggregator module

• Goal: Guiding the user through the analysis & optimization
process. Synthesizes information provided by different MAQAO
modules

• Automatizes execution of experiments invoking other MAQAO
modules and aggregates their results to produce high-level
reports in HTML or XLSX format

Scalable Tools Workshop June 2022

http://maqao.exascale-computing.eu/

25

OneView Target objectives

Our primary target is code developers (not performance experts) so we need to
simplify their code optimization process

➢ No interest in overwhelming them with low level performance data such as
raw performance counter measurements or more generally with hardware
centric metrics..

➢ Their main knobs are at code source level:

• Change compiler flags and runtime settings

• Change loop/parallel construct body (remove dependencies, simplify
control flow, …), insert pragmas …

• Restructure arrays

➢ Guide code developer through optimization process (insert pragmas, to
restructure loop/parallel constructs….):

• Provide them with potential performance gain associated with a
transformation or more generally with a bad code characteristic

• Give an estimate of effort required.

• Perform comparative analysis between different code
versions/compilers/hardware

Scalable Tools Workshop June 2022

26

ROADBLOCK ISSUES (1)

INTEL Meeting: JUNE 2022

Performance Issue Cost for removing perf

issue

Optimization

ROADBLOCK FOR VECTORIZATION

Presence of calls (SA) +1 per call Inline either by compiler or by hand.

For libm calls use SVML

Presence of 2 to 4 paths (SA) +1 per path Simplify control structure (might be difficult).

Force the compiler to use masked instructions

Presence of more than 4 paths (SA) +4 + 1 per path Simplify control structure (might be very difficult)

Presence of reductions dependency

cycles (SA)

+1 per reduction Use appropriate compiler flags or directives (for

example OMP SIMD reduction) for vectorization

reductions

Presence of constant non unit stride

data access (SA)

+2 per non unit stride data

access

Use array restructuring.

Perform loop interchange

Using gather instructions will lower a bit the cost.

Presence of indirect access (SA) +4per indirect access Use array restructuring.

Using gather instructions will lower the cost.

Non innermost loop (SA) +2 Collapse loop with innermost one

27

ROADBLOCK ISSUES

INTEL Meeting: JUNE 2022

VECTORIZATION

Partial or unexisting

vectorization (SA)

Sum of the roadblocks

above

Get rid of the roadblocks (see above)

Use pragma to force vectorization

Check potential dependenciesbetween

array access

Inefficient vectorization: use

of shorter than available

vector length (SA)

+2 Force compiler to use proper vector

length

CAUTION: use of 512 bits vectors could

be more expensive than 256 bits on

some processors

Use intrinsics (costly and not portable)

Inefficient vectorization:use

of masked instructions (SA)

+2 Simplify control structure

Inefficient vectorization: more

than 10% of the vector loads

instructions are unaligned

(SA)

+2 per array Align array access.

When allocating arrays, don’t forget to

align them.

28

ADDITIONAL OPTIMIZATIONS (1)

INTEL Meeting: JUNE 2022

ADDITIONAL OPTIMIZATIONS

Presence of expensive FP

instructions : div/sqrt, sin/cos,

exp/log, etc…(SA + DT)

+4 per expensive

operations

Perform hoisting

Change algorithm

Use SVML or proper numerical library.

Perform value profiling (count the number of

distinct input values).

Presence of expensive instructions

: scatter/gather (SA)

+4 per scatter gather Use array restructuring

Presence of special instructions

executing on a single port (SA):

typically all data restructuring

instructions, expand, pack, unpack,

etc…

+1 per special instruction Simplify data access: try to get stride 1 access

Less than 10% of the FP

ADD/SUB/MUL arithmetic

operations are performed using

FMA (SA)

+4 Reorganize arithmetic expressions to exhibit

potential for FMA.

29

ADDITIONAL OPTIMIZATIONS (2)

INTEL Meeting: JUNE 2022

Large loop body: over microp

cache size

+2 per chunk of 50

instructions beyond

the first chunk of 50

Perform loop splitting

Reduce unrolling.

More than 20% of the loads are

accessing the stack (SA).

+2 Perform loop splitting

Presence of a large number of

scalar integer instructions:

more than 1.1 x speedup when

suppressing scalar integer

instructions (SA)

+2 Simplify loop structure

Perform loop splitting

Perform unroll and jam

Bottleneck in the front end

(SA)

+2 If loop size is very small (rare

occurrences), perform unroll and jam

If loop size is large, perform loop splitting

Low iteration count (DT) +1 Perform full unroll

Use compiler pragmas

Use PGO/FDO compiler options

Force compiler to use masked instructions

Ratio ORIG/DL1 greater than

3x (DT)

+2 per non unit stride or

indirect access

Perform blocking

Perform array restructuring

Highly variable Cycle per

Iteration across loop instances

(DT)

+4 Loop execution is sensitive to different

contexts or/and call chain: try to determine

such contexts and use loop specialization

Try FDO/PGO compiler options

High secondary DTLB miss

rate (DT)

+4 Perform array restructuring

Perform blocking

Activate huge pages.

30

PARALLELIZATION ISSUES

INTEL Meeting: JUNE 2022

Performance Issue Cost for removing perf

issue

Optimization

More than 10% of the total execution

time is spent in serial execution (DP).

+6 Increase parallelism: parallelize more loops

Change algorithm

For a parallel loop/region construct,

more than 10% of the execution time is

spent in waiting (DT).

+2 per loop/region Change scheduling using: in particular Test

Guided.

Try to improve load balancing at the algorithm

level

For a parallel loop construct, more

than 10% of the spent in pure

synchronization primitives (barrier,

locks) (DT)

+2 per special

instruction

Change synchronization operations

For a parallel loop, highly variable

behavior (synchronization time,

waiting time etc…) across loop

instances (DT)

+4 Loop execution is sensitive to different contexts

or/and call chain: try to determine such contexts

and use loop specialization

For a parallel loop, ratio of ORIG over

S2L is greater than 1,2x .

+4 Try to reduce write on shared structures.

Changes variable layout.

Check for false sharing

For a parallel throughput execution of

the code, performance loss with

respect to ideal speedup is greater

than 1,2X: high contention on shared

resources (L3, RAM)

+8 Reorganize algorithm to decrease use of shared

resources.

