Exascale o0

3

RECENT ONE VIEW DEVELOPMENTS

C. Valensi, E. Oseret, M. Tribalat, H. Bolloré, S. Ibnamar, K.
Camus, M. Hoffer, A. Delval +

W. Jalby
University of Versailles Saint Quentin/University of Paris Saclay

Scalable Tools Workshop June 2022

EXGSCGIEOC Target audience/usage for performance tools @

3

Performance tools can be used by different people with different goals:

» Application developers to get high performance codes on different
compilers/architectures

« Perform (major) code refactoring to improve performance

« Understand/analyze impact of new compilers/libraries/hardware
and perform corresponding code “adjustments”

* Analyze impact of minor code changes: performance
maintenance every week/every month

» Compiler/Runtime/Library developers
» Hardware designers
» And some more ...(not an exhaustive list)

All of these different audiences need different information and different
formatting

Scalalble Tools Workshop June 2022

EXGSCGIEOC OneView Recent Developments @

3

Five main directions (still in progress):
» Improve analysis of parallel OMP codes : integrate OMPT in MAQAO.

» Support new architectures (AMD, ARM, GPU): the user will have the
same interface and logic across different architectures

» Integrate further Hardware component usage analysis: Saturation/Intensity
method (D. Kuck/INTEL)

» Enhance comparative analysis

» Simplify end user interface: make a synthesis of all of the information to
offer a better guidance through the optimization “maze”

FOCUS IN THIS TALK ON THE LAST TWO POINTS

Scalable Tools Workshop June 2022

ExascalecO priNCIPLES OF COMPARATIVE ANALYSIS ©

3

TRIAL AND ERROR and comparison are fundamental techniques in scientific
approach.

Basic principles: run different “code versions” and compare them on
“appropriate levels”.

» Different “code versions”
« Different runtime settings (on different number of cores, etc..)
« Different compilers
« Different hardware (X86, ARM, ...) with same or different ISA
« Different code versions

» “Appropriate levels”:
« |ISOBINARY: the same binary is compared in different settings
« |SOSOURCE: the same source is compared

« |SOFUNCTION STRUCTURE: the source code can be different but the
function structure is preserved.

« Generic: much harder to compare

NOT VERY SOPHISTICATED AT FIRST BUT VERY USEFULL AND
IMPLEMENTATION IS A BIT SUBTLE

Scalable Tools Workshop June 2022

Exascale o0 EXPERIMENTAL SETUP (€)

3

» Hardware
« SKL: Intel(R) Xeon(R) Platinum 8170 CPU @ 2.10GHz
« KBL: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
« ZEN-2: AMD EPYC 7H12 64-Core Processor
« ZEN-3: AMD EPYC 7763 64-Core Processor
» Compilers:
 INTEL ICC/IFC and ICX/IFX

« GCC11
» Codes
 Lulesh

* MiniQMC: proxyapp for QMCPACK (An Open Source Quantum Monte Carlo
Package for the electronic structure of atoms, molecules and solids)

« CHAMP: The Cornell-Holland Ab-initio Materials Package (CHAMP) is a
guantum Monte Carlo package for electronic structure calculations of molecular

systems
« Jastrow: Quantum Montecarlo Computation (QMCKL library).

« MAHYCO (Arcane): hydrodynamics code

Scalable Tools Workshop June 2022

Exascale oo ISO BINARY: SCALABILITY RUNS (€)

: f'L","TI,!':IL',h'I‘g research

CHAMP: Weak Scalability Analysis
rO:1core rl:2cores r2:4cores r3:8cores r4:16 cores r5: 26 cores

Global Metrics

|

Metric 0 rl 2 r3 4 2
Total Time (s) 21.23 21.61 21.28 21.43 21.91 2294
profiled Time (<) 2086 2080 209 2112 2151 2249
Time in analyzed loops (%) 798 784 785 773 76.8 759
Time in analyzed innermost loops (%) 42 .6 41.6 41.5 41.3 40.6 40.6
Time in user code (%) 8398 388 88.2 87.7 87.4 36.8

Compilation Options
Perfect Flow Complexity
Array Access Efficiency (%) 70.5 709 713 71.2 71.0 711
Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect Load

Distribution
No Scalar Integer Potential Speedup 1.20 1.20 1.20 1.19 1.19 1.19
9 Nb Loops to get 80% 10 10 10 10 10 10
. Potential Speedup 1.12 1.12 1.11 1.11 1.11 1.11
FP Vectorised Nb Loops o get 80% 5 c 5 5 c 5
Fully Vectorised Potential Speedup 1.81 1.77 1.77 1.76 1.76 1.75
Y Nb Loops to get 80% 26 26 26 26 27 27
)) Potential Speedup 1.65 1.63 1.63 1.62 1.62 1.60
Only FP Arithmetic i o get 80% 25 25 25 25 26 27
Scalability - Gap 1.00 1.02 1.00 1.01 1.03 1.08

Scalable Tools Workshop June 2022

| Exascale oo ISOBINARY: STABILITY RUNS (1) (€©)

Same code is run a large number of times to study measurement stability. Standard
statistics (deciles) are computed. An extra xIsx file is produced.
KBL 4 cores. Lulesh2.0

Total Time

min | med | avg | max |
5.3 5.53 5.93 7.59
Percentile Index 10 20| 30 | 40 | 50 60 | 70 | 80 90 | 100 |
Value 537 54 543 547 552 557 567 7.03 726 7.59

24

22 4

20

18—

16—

14—

12 -

Count

10+

T T T T T T T T T T T 1
530-541 5.53-5.64 576-5.87 5.99-6.10 6.22-6.33 6.45 - 6.56 6.67-6.79 6.90 -7.02 713-7.25 7.36-7.48 759-7.70

7 Scalable Tools Workshop June 2022

Exascale o0 ISOBINARY: STABILITY RUNS (2) (€)

Same code is run a large number to study measurement stability.
Going at the function level allows to quickly identify delinquent function
Min, max, avg, med are computed over the 100 runs.

Name Module min (Max Time Over @ avg (Max Time Over | med (Max Time Over | max (Max Time Over
Threads) (s) Threads) (s) Threads) (s) Threads) (s)

o Oomp_get_num_procs Ilbgloron%.so. 0.71 1.14 0.9 2.24

G std..vector >..operator(j(unsigned fong) M ESIPAY, 0.47 051 0.51 U.6Z

» CalcFBHourglassForceForElems(Domain&, double*, double*, double*, do

uble*, double*, double*, double*, double, int, int) [clone ._omp_fn.7] lulesh2.0 0.34 0.42 0.41 0.55

» EvalEOSForElems(Domain&, double*, int, int*, int) [clone ._omp_fn.17] lulesh2.0 0.28 0.35 0.35 0.46

» CalcElemFBHourglassForce(double®, double®, double*, double (*) [4], do

uble, double, double*, double®) lulesh2.0 0.19 0.25 0.24 0.33

» CalcEnergyForElems(double®, double*, double*, double*, double*, doubl

e* double*, double*, double*, double*, double*, double®, double*, double,

double, double, double, double, double*, double*®, double, double, int, int lulesh2.0 0.15 0.20 0.2 0.27

*) [clone ._omp_fn.20]

» CalcMonotonicQGradientsForElems(Domain&) [clone ._omp_fn.14] lulesh2.0 0.16 0.20 0.2 0.26

Scalable Tools Workshop June 2022

Exascale oo ISO SOURCE: DIFFERENT HARDWARE @

: f'L","T'I,!':IL',f'u"g research

All runs were unicore and used the same compiler GNU 11
Code MAHYCO (Arcane framework)

r0: SKL r1: ZEN_2 r2: ZEN_3

Metric

Total Tim
Profile
Time in analyzed loops (%)

Time in analyzed innermost loops (%)
Time in user code (%)
Compilation Options

Perfect Flow Complexity

Array Access Efficiency (%)
Perfect OpenMP + MPI + Pthread

(s)

toswinege foA Sty 26
FP Vectorised E%teL ggzlsst%eggtugo% 1.41 1.31 ; 29
s E%ﬂgglsstﬂe;gf S 14 }'488
Only FP Arithmetic E%tiggzlsst%e;grgo% ;-46 ;-42 é.SS

Scalable Tools Workshop June 2022

: computing research

Exascale oo

ISO SOURCE: DIFFERENT COMPILERS @

TARGET CODE/PROC: QMCKL Jastrow on SKL

10

Compilers: rl: Intel 2021.5.0 r2: Intel 22.0-1069
Global Metrics o
Matoic el r2
Total Time (s) 3.03 7.98
Time in analyz\;:rd loops (%) 26.1 26.0
Time in analyzed innermost loops (%) 241 25.5
Time in user code (%) 262 26.0

Compilation Options

ooy
Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread + Perfect Load
Distribution

Potential Speedup
Nb Loops to get 80%
) Potential Speedup
FP Vectorised Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%

No Scalar Integer

Fully Vectorised

Qnly FP Arithmetic

Scalable Tools Workshop June 2022

Exascale ISO FUNCTION STRUCTURE: @

: computing research

Global Metrics

5 successive code
versions of CHAMP

!

Metric r0 rl r2 r3 r4
Total Time (s) 29.12 2253 2132 1963 21.80
. f 27 H
Time in analyzed loops (%) 87.3 81.1 79.7 79.8 78.7 Unicore runs SKL
{T%i;;ne in analyzed innermost loops 378 471 438 514 517 |
Time in user code (%) 946 907 900 888 835 Regular gains except

Compilation Options
Perfect Flow Complexity
Iterations Count

for the last one!!

Array Access Efficiency (%) 713
Perfect OpenMP + MPI + Pthread
Perfect OpenMP + MPI + Pthread +
Perfect Load Distribution
Potential Speedup 1.23 1.20 1.19 1.17 1.16
No Scalar Integer NbOLoops toget 5 13 10 12 1
Potential Speedup 1.18 1.27 1.27 1.29 1.27
FP Vectorised ~ Nb Loops to get , 14 14 17 18

80%

Potential Speedup BIBOIIIII2:86 273 2063 258 1

Nb Loops to get
80% 41 41 41 41 41

Potential Speedup 2:01°7111.65 1.65 1.59 1.69
Nb Loops to get 26 29)8 35 37

80%
Potential Speedup [IHOSERTE06N 07 ST ON o8
Data In L1 Cache rglg%Loops to get 5 4 5 6 6

1 Scalable Tools Workshop June 2022

12

Exascaleco

vk

ISO FUNCTION STRUCTURE: FUNCTION LEVEL @

CHAMP Unicore on SKL

Name

multideterminante
basis_fns
compute_ymat

orbitals

nonloc
multideterminante_grad
multideterminant_hpsi
orbitalse

matinv

__powr8i4

idiff

splfit

detsav
__intel_avx_rep_memset
__intel_avx_rep_memcpy
determinante_psit
update_ymat
__libm_log_I9

psinl

sim
multideterminants_define
__libm_exp_I9

’jastrowxle

compute_determinante_grad

S|

Module

vme.movl
vme.movl
vme.movl
vme.movl
vme.movl
vmc.movl
vmc.movl
vmc.movl
vmc.movl
vmc.movl
vmc.movl
vmc.mov]
vmc.movl
vmc.mov]
vmc.movl
vmc.mov]
vmc.movl
vmc.movl
vmc.movl
vme.movl
vme.movl
vme.movl
vme.movl
vme.movl

S

champ_01apr_ov3_energy_15k
7.37
2.19
6.01
1.49
1.37
1.09
129
0.79
0.85
0.62
0.65
0.56
1.31
0.12
0.25
0.49
0.54
0.24
0.13
0.15
0.11
0.13
0.14
0.07

champ_26apr_ov3_energy_15k

46

1.85
0.13
1.56
1.28
1.09
09

087
094
0.76
0.65
0.55
0.56
0.57
0.14
03

03

0.31
0.16
0.16
0.13
0.1

0.06
0.04

AAr

A A

Time (s)
champ_27apr_ov3_energy_15k
4.07
2.09
0.13
1.47
1.38
1.11
076
08
093
0.71
0.7
0.51
05
0.47
0.42
0.36
0.24
0.25
0.14
0.15
0.07
0.09
0.07
0.07

NS

Scalable Tools Workshop June 2022

champ_29apr_ov3_energy_15k

3.45
196
008
143
1.32
1.11
0.7

0.81
0.56
0.68
0.66
0.58
0.2

0.53
0.46
0.32
0.23
0.23
0.14
0.12
0.11
0.11
0.05
0.05

LWV

champ_11may_ov3_energy_15k

3.55
1.93
36

1.48
1.44
1.19
0.82
0.86
0.7

0.7

0.66
0.61
0.21
0.5

0.82
0.55
0.31
0.23
0.17
0.13
0.12
0.09
0.07
0.07

n Al

13

EXUSCUIEOC Simplify user interface (3) @

Sort out performance issues:

LEVEL O (Stylizer): Is your run worth analysing ? Lack of important flags, too
short execution times, ... all of such issues deeply the interest of performing
detailed analysis.

LEVEL 1 (Strategizer): Globally how difficult the optimization process will be ?
We analyse the main profile characteristics in particular identifying importance
of main types of codes: loops, innermost, outermost, in between, library use,
efc....

LEVEL 2 (Optimizer): at loop level (innermost/inbetween/outermost) detect
performance issues (in a predefined list) and then display only the ones which
are present.

Scalable Tools Workshop June 2022

Exascale oo HIGH LEVEL VIEW OF SUMMARY TAB (€©)

https://datafront.magao.exascale-

computing.eu/public html/oneview2020/minigmc/OMPoffload-
bfbl1b0/base/skl/ov3/minigmc OMPoffload-

bfblb0 base skl o1 ml cl ov3 g422-n5-N1-b icc-avx512/summary.html

MiniQMC Unicore on SKL (ICC)

MA@AO Summary Global Application Functions Topology

minigmc - 2022-06-07 14:48:04 - MAQAO 2.155

elp is available by moving the cursor above any [’)] symbol or by checking MAQAQ website.

> Stylizer . e
¥ Optimizer .

Loop ID | Module Analysis Score| Coverage (%)

» 1675 | minigmc [The loop is fully and efficiently vectorized. 0 25.17

» 1688 | minigmc |Inefficient vectorization. 28 12.25

» 2634 | minigmc |Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 4 8.47

» 2633 | minigmc |Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 4 3.02

» 1587 | minigmc |Inefficient vectorization. 28 2.33

o 1710 | minigmc |Partial or unexisting vectorization - No issue detected 0 0.78

» 2692 | minigmc |Inefficient vectorization. 70 0.74

» 887 minigmc |Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 6 0.63

o 2108 | minigmc |Partial or unexisting vectorization - No issue detected 0 0.62

» 2632 | minigmc |Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 4 0.54

14 Scalable Tools Workshop June 2022

https://datafront.maqao.exascale-computing.eu/public_html/oneview2020/miniqmc/OMPoffload-bfb1b0/base/skl/ov3/miniqmc_OMPoffload-bfb1b0_base_skl_o1_m1_c1_ov3_g422-n5-N1-b_icc-avx512/summary.html

Exascale o0 STYLIZER: DETAILS (1) (€

: computing research

QMCPACK Unicore on SKL (ICC)

V¥ Stylizer

Scalable Tools Workshop June 2022

15

Exascale o0 STYLIZER: DETAILS (2) (€

: computing research

QMCPACK Unicore on SKL (ICC)

Scalable Tools Workshop June 2022

16

Exascale oo STRATEGIZER: DETAILED VIEW (1) @

: computing research

V¥ Strategizer

INTEL Meeting: JUNE 2022

17

Exascale oo STRATEGIZER: DETAILED VIEW (2) @

: computing research

INTEL Meeting: JUNE 2022

18

EXGSCGIEOC The Optimizer @

3

LEVEL 2 (Optimizer): at loop level (innermost/inbetween/outermost) detect
performance issues (in a predefined list) and then display only the ones which
are present: standard automobile dashboard

» For each performance issue associate a penalty score (higher is worse) and
an estimate of performance gain (Work in Progress).

» For each issue list one or several potential roadblock
» 4 major categories

1. Vectorization roadblocks including data access (no dependence
analysis)

2. Inefficient vectorization
3. Advanced optimizations
4. Parallelism
» Based on static analysis and also on dynamic analysis

Scalable Tools Workshop June 2022
19

Exascale oo OPTIMIZER @

: computing researcn

SCORE is a penalty score: lower is better

QMCPACK (using icx) https://datafront.magao.exascale-
computing.eu/public_html/oneview2020/minigmc/OMPoffload-
bfb1b0/base/skl/ov3/minigmc_OMPoffload-

bfblb0 base skl 01 ml cl ov3 g422-n5-N1-b icx-avx512/summary.htm
I

Y Optimizer

Loop ID | Module Analysis Score Coverage (%)
» 824 | minigmc Inefficient vectorization. 33 14.36
» 1156 | minigmc Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 4 12.27
» 815 | minigmc Inefficient vectorization. 13 6.94
» 809 | minigmc Inefficient vectorization. 12 0.54
» 811 | minigmc |Inefficient vectorization. 13 6.18
» 813 | minigme Inefficient vectorization. 12 6.15
» 292 | minigmc Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 85 1.3
» 817 | minigmc Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 6 1.25
» 1472 | minigme Inefficient vectorization. 2 0.98
» 315 | minigmc Inefficient vectorization. 10 0.68

Scalable Tools Workshop June 2022
20

Exascql_e o0 OPTIMIZER DETAILS @

3

I‘TSP Module Analysis Score Cm.;;r)age
¥ 824 minigmc|Inefficient vectorization. 33| 1436
. Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 2
12 issues (= arrays) costing 2 points each
. Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2)
' points.
The ratio FP/LS (floating point / memory accesses) is smaller than 0.8 (0.17) - Focus on optimizing data accesses. 0
. Ratio time (ORIG)/time (DL1) is greater than 3 - Perform blocking. Perform array restructuring. There are 1 issues (= non unit stride or indirect memory. 7
access) costing 2 point each, with an additional malus of 5 points due to the ORIG/DLI ratio.
¥ 1156 minigmc|Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 4 12.27
. Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues (= indirect data accesses) costing 4 s
point each.
¥ 815 minigmc|Inefficient vectorization. 13 6.94
0 The ratio FP/LS (floating point / memory accesses) is smaller than 0.8 (0.06) - Focus on optimizing data accesses. 0
. Ratio time (ORIG)/time (DL1) is greater than 3 - Perform blocking. Perform array restructuring. There are 0 issues (= non unit stride or indirect memaory 13
access) costing 2 point each, with an additional malus of 13 points due to the ORIG/DL1 ratio.
¥ 809 minigmc|Inefficient vectorization. 12 6.54
The ratio FP/LS (floating point / memory accesses) is smaller than 0.8 (0.06) - Focus on optimizing data accesses. 0
. Ratio time (ORIG)/time (DL1) is greater than 3 - Perform blocking. Perform array restructuring. There are 0 issues (= non unit stride or indirect memary 1
' access) costing 2 point each, with an additional malus of 12 points due to the ORIG/DLI ratio.
» 811 minigmc|inefficient vectorization. 13 6.18
» 813 minigmc|Inefficient vectorization. 12 6.15
» 292 minigmc|Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. 85 1.3

21 INTEL Meeting: JUNE 2022

Exascale oo CONCLUSION AND FUTURE DIRECTIONS (€)

3

» The compare mode with its different flavors (ISO BINARY, ISO
SOURCE, ISO FUNCTION STRUCTURE) is very efficient for the
code developer to track progress and to detect quickly problems.

» The “summary” approach provides another way of interacting with
code developer: more direct and focused, and efficient guidance
through optimization maze

» Extensions: support for more complex performance issues, improve
detection

» Perform automatic or semi automatic “issues” repair: improve
automatically style and perform some optimizations

> Build a database of issues

Scalable Tools Workshop June 2022
22

Exascale oo

: f'L"."'l"I,!':I.',f'.'J"g researcn

BACKUP SLIDES

23 INTEL Meeting: JUNE 2022

Exascale 0O MAQAO ONE View (€

3

» MAQAO is a performance analyzis and optimisation framework
operating at binary level developed at UVSQ since 2004

« Complementary modules, each of them focusing on one aspect
of performance analysis: profiler, static analyzer, value profiler,
simplified simulators, decremental analyzer, ...

« Support for Intel/AMD x86-64, Xeon Phi and ARM (ongoing)

» ONE View: Performance View Aggregator module

« Goal: Guiding the user through the analysis & optimization
process. Synthesizes information provided by different MAQAO
modules

« Automatizes execution of experiments invoking other MAQAQO
modules and aggregates their results to produce high-level
reports in HTML or XLSX format

. oot (l 1‘0 Tiyororonog
‘ k(10110943
LY AL X7 A\ /

Scalable Tools Workshop June 2022
24

http://maqao.exascale-computing.eu/

EXGSCGIE o0 OneView Target objectives @

Our primary target is code developers (not performance experts) so we need to
simplify their code optimization process

» No interest in overwhelming them with low level performance data such as
raw performance counter measurements or more generally with hardware
centric metrics..

3

» Their main knobs are at code source level:
« Change compiler flags and runtime settings

« Change loop/parallel construct body (remove dependencies, simplify
control flow, ...), insert pragmas ...

* Restructure arrays

» Guide code developer through optimization process (insert pragmas, to
restructure loop/parallel constructs....):

« Provide them with potential performance gain associated with a
transformation or more generally with a bad code characteristic

« Give an estimate of effort required.

« Perform comparative analysis between different code
versions/compilers/hardware

o5 Scalable Tools Workshop June 2022

Exascale oo ROADBLOCK ISSUES (1) (€©)

: computing research
e e
issue

ROADBLOCK FOR VECTORIZATION

Presence of calls (SA) +1 per call Inline either by compiler or by hand.
For libm calls use SVML

Presence of 2 to 4 paths (SA) +1 per path Simplify control structure (might be difficult).
Force the compiler to use masked instructions

HCEENNI NI CRGERR N EIGENCTVIN +4 + 1 per path Simplify control structure (might be very difficult)

Presence of reductions dependency REsNEI@(=le[Meilely] Use appropriate compiler flags or directives (for
cycles (SA) example OMP SIMD reduction) for vectorization
reductions

S eelgsiEtelph tpliesiiglels8 +2 per non unit stride data Use array restructuring.
data access (SA) access Perform loop interchange
Using gather instructions will lower a bit the cost.

Presence of indirect access (SA) +4per indirect access Use array restructuring.
Using gather instructions will lower the cost.

Non innermost loop (SA) +2 Collapse loop with innermost one

26 INTEL Meeting: JUNE 2022

Exascale oo

ROADBLOCK ISSUES @

: computing research

VECTORIZATION

27

Partial or U=ndsiiglss Sum of the roadblocks Get rid of the roadblocks (see above)

vectorization (SA)

Inefficient vectorization: use
of shorter than available
vector length (SA)

Inefficient vectorization:use
of masked instructions (SA)

Inefficient vectorization: more
than 10% of the vector loads
instructions are unaligned
(SA)

INTEL Meeting: JUNE 2022

above

+2

+2

+2 per array

Use pragma to force vectorization
Check potential dependenciesbetween
array access

Force compiler to use proper vector
length

CAUTION: use of 512 bits vectors could
be more expensive than 256 bits on
some processors

Use intrinsics (costly and not portable)

Simplify control structure

Align array access.
When allocating arrays, don’t forget to
align them.

Exascale oo

ADDITIONAL OPTIMIZATIONS (1) (€)

: rﬂmm,.nr.g research

28

Presence of expensive FP
instructions : div/sqgrt, sin/cos,
exp/log, etc...(SA + DT)

Presence of expensive instructions
: scatter/gather (SA)

Presence of special instructions
executing on a single port (SA):

typically all data restructuring
instructions, expand, pack, unpack,
etc...

Less than 10% of the FP
ADD/SUB/MUL arithmetic
operations are performed using
FMA (SA)

+4

ADDITIONAL OPTIMIZATIONS
per expensive Perform hoisting

operations Change algorithm

Use SVML or proper numerical library.
Perform value profiling (count the number of
distinct input values).

+4 per scatter gather Use array restructuring

+1 per special instruction Simplify data access: try to get stride 1 access

+4

Reorganize arithmetic expressions to exhibit
potential for FMA.

INTEL Meeting: JUNE 2022

Exascale oo

rﬂmm,.nr.g research

ADDITIONAL OPTIMIZATIONS (2) (€)

3

29

Large loop body: over microp

cache size

More than 20% of the loads are
accessing the stack (SA).

Presence of a large number of
scalar integer instructions:
more than 1.1 x speedup when
suppressing scalar integer
instructions (SA

Bottleneck in the front end
(SA)

Low iteration count (DT)

Ratio ORIG/DL1 greater than
3x (DT

Highly variable Cycle per
Iteration across loop instances
(DT)

High secondary DTLB miss
rate (DT)

+2 per chunk of 50
instructions beyond
the first chunk of 50
+2

+2

+2

+1

+2 per non unit stride or
indirect access
+4

+4

INTEL Meeting: JUNE 2022

Perform loop splitting
Reduce unrolling.

Perform loop splitting

Simplify loop structure
Perform loop splitting
Perform unroll and jam

If loop size is very small (rare
occurrences), perform unroll and jam
If loop size is large, perform loop splitting

Perform full unroll

Use compiler pragmas

Use PGO/FDO compiler options

Force compiler to use masked instructions

Perform blocking

Perform array restructuring

Loop execution is sensitive to different
contexts or/and call chain: try to determine
such contexts and use loop specialization
Try FDO/PGO compiler options

Perform array restructuring
Perform blocking
Activate huge pages.

Exascale oo

PARALLELIZATION ISSUES @

: rﬂmm,.nr.g research

30

Performance Issue

More than 10% of the total execution
time is spent in serial execution (DP).

For a parallel loop/region construct,
more than 10% of the execution time is
spent in waiting (DT).

For a parallel loop construct, more
than 10% of the spent in pure
synchronization primitives (barrier,
locks) (DT)

For a parallel loop, highly variable
behavior (synchronization time,
waiting time etc...) across loop
instances (DT)

For a parallel loop, ratio of ORIG over
S2L is greater than 1,2x .

For a parallel throughput execution of
the code, performance loss with
respect to ideal speedup is greater
than 1,2X: high contention on shared
resources (L3, RAM)

Cost for removing perf

issue

+6

+2 per loop/region

+2 per
instruction
+4

+4

+8

special

Optimization

Increase parallelism: parallelize more loops
Change algorithm

Change scheduling using: in particular Test
Guided.

Try to improve load balancing at the algorithm
level

Change synchronization operations

Loop execution is sensitive to different contexts
or/and call chain: try to determine such contexts
and use loop specialization

Try to reduce write on shared structures.
Changes variable layout.
Check for false sharing

Reorganize algorithm to decrease use of shared
resources.

INTEL Meeting: JUNE 2022

