Exascale o0

3

The Long and Winding Road Toward
Efficient High-Performance Computing

C. Valensi, E. Oseret, M. Tribalat, S. Ibnamar, K.
Camus, A. Delval, C. Astier, G. Dos Santos, M. Hoffer,
F.-X. Mordant, F. Santoro + M. Popov

W. Jalby
UVSQ/UPSaclay

WJ 2023

Exascale oo Overview @

3

» Well known: performance evolution of very Big Systems

» Less known: A close look at 2007 — 2016: performance evolution
smaller machines running real applications

» A few hopes : how to exploit more effiently new systems

WJ_2023

Exascale o0 TOP 500 @

3

: The TOP500 project ranks and details the 500 most
powerful “official” computer systems in the world. The project was
started in 1993 and publishes an updated list of the supercomputers
twice a year (Wikipedia).

“POWERFUL": performance is measured on solving a dense linear
system (N x N) using Linpack package

Microcard Workshop July 6th

http://www.top500.org/

Exascale o0 EVOLUTION OVER THE YEARS (€)

3

Performance Development
10 EFlop/s

1 EFlop/s
100 PFlop/s
10 PFlop/s

1 PFlop/s

100 TFlop/s f'. : .-" PLATEAU the
10 TFlopls .." - - same system
I ins #1 f
1 TFlopls s Adk ._4- #500 remains or
‘ several

. o semesters
10 GFlop/s =

Performance
%
*

100 GFlop/s

1 GFlop/s y

100 MFlop/s
1990 1995 2000 2005 2010 2015 2020 2025

Lists

® Sum A # = #500

WJ_2023

Exascale o0 LINPACK JUNE 2023 RESULTS (€)

: f'i',"""l,!']i,f'.'f‘g research

Rmax: best performance Rpeak: Peak (nominal)
measured on Linpack performance

\ H«

Rmax Rpeak
Rank System Cores (PFlop/s) (PFlop/s)

1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 1,194.00 1,679.82
Gpjneration EPYC 64C 2GHz, AMD Instinct MI250X, RmaX/Rpeak
Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory less than 0,8 !
United States

2 Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848 442.01 037.21
A6LFX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

3 LUMI - HPE Cray EX235a, AMD Optimized 3rd 2,220,288 309.10 428.70
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE
EuroHPC/CSC
Finland

4 Leonardo - BullSequana XH2000, Xeon Platinum 8358 1,824,768 238.70 304.47
32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA N—/
HDR100 Infiniband, Atos
EuroHPC/CINECA

skl Microcard Workshop July 6th

Exascale oo TOP 500 REVISITED (€©)

3

BE MORE REALISTIC: Instead of solving a dense linear system, let us
solve a sparse linear system (much more frequent problem)

HPCG: High Performance Conjugate Gradient
HPL: High Performance Linpack

Microcard Workshop July 6th

Exascale o0 HPCG JUNE 2023 RESULTS (€)

: Compu h'J"‘g research

TOP500 Rmax HPCG
Rank Rank System Cores (PFlop/s) (TFlop/s)
1 ? Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848 N 442.01 16004.50
AGLFX 48C 2.2GHz, Tofu intelrconneclt D, Fujitsu RmaX/H PCG
RIKEN Center for Computational Science .
Japan varies
between 27
2 1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 § 1,194.00 14054.00
and 80

Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

DOE/SC/0Oak Ridge National Laboratory

United States

3 3 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 2,220,288 . 3408.47
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC
Finland

4 1A Leonardo - BullSequana XH2000, Xeon Platinum 8358 1,824,768 . 3113.94

32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA
HDR100 Infiniband, Atos

EuroHPC/CINECA

[taly

Microcard Workshop July 6th

EXGSCGIEOC Conclusion on big systems @

3

» Essentially show off machines....

» Almost never used as a single system on a single task: much too
expensive.

» Large spread between HPL and HPCG
 HPL performance around 75% of Rpeak
« HPCG performance less than 2% of Rpeak

» HPL and HPCG are not real applications: they are “toy” programs

» Too much focus on FP performance: in fact data access
performance is as important as FP performance

Microcard Workshop July 6th

ExascalecO , | 0SE LOOK AT A DECADE (2007 - 2016) ©

3

System CPU Year Core DP Freq# Cores L3

(Gflops) (GHz) (MB)
Harpertown (45 nm) X5482 2007 [12.80 3.20 8 0
Harpertown (45 nm) X5492 2008 | 13.60 3.40 8 0
Gainestown (45 nm) W5590 2009 | 13,32 3,33 8 8

Westmere-EP (32 nm) X5680 2010 | 13,32 3,33 12 12
Westmere-EP (32 nm) X5690 2011 >13,88 3.4% 12 12
AV X introduction — Sandy Bridge-EP (32 nm)E5-2690 2012 |23.20 2.90 16 | 20
lvy Bridge-EP (22 nm) E5-2690v2 2013 (24.00 3.00) 20| 25
FMA Introduction > Haswell-EP (22 nm) E5-2690v3 2014 [41.60 2.60 24 30

Haswell-EP (22 nm) E5-4650 2015 |33.60 2.10 48 30

Broadwell-EP (14 nm) E5-2690v4 2016 (41.60 2.60) 28 35

» 10 INTEL reference architectures from 2007 to 2016
» AVX then FMA (Fused Multiply Add) introductions

o Microcard Workshop July 6th

3

10

Exascale o0 speC (©

The Standard Performance Evaluation Corporation (SPEC) is an
American non-profit organization that aims to "produce, establish,
maintain and endorse a standardized set" of performance
benchmarks for computers (Wikipedia)

SPEC was founded in 1988. SPEC benchmarks are widely used to
evaluate the performance of computer systems; the test results are
published on the SPEC website ().

Members are hardware/software companies, a few Universities and
research center

GOAL: provide an unbiased way of comparing systems performance
using a precise protocol and several reference programs representative
of “real” workload. Public database available

REPRESENTATIVE FOR A USER: OK if his favorite program is included

In the reference list, otherwise representativeness can be argued for
ever.

Microcard Workshop July 6th

http://www.spec.org/

EXGSCGIE o0 Performance Progress from 2007 to 2016 (1) @

3

» Speedup from one
year to the next one

» SPEC FP 2006 : Full
set of “real” scientific
applications

> Violin: distribution for
the full set of
SPECFP

n
|

Large
spread

SPECspeed speed-up year per year
w
—_
n
=
=3

» Architecture/compilers Spread
vary from year to year 21
BUT Source code are ®
invariant g

» Unicore 1- ® & (®)
measurements !!

» Baseline compiler

I I I | I I
options but standard — S ¢ o O 0
. % % v 1% 2% v v v 1%
O3 options) & &) & &) @)
O O O O O O O O O
& N D N NG & N> o O
P P P P & ¢ P & P

11 WJ 2023

11

EXGSCGIEOC Performance Progress from 2007 to 2016 (2) @

3

» Speedup from one
year to the next

» Red Dots: speedup of
peak FP
performance: most of
the time, speedup
around one.

n
|

w
|

AV X introduction

» Blue Dots: geometric
mean of Speedups

FMA Introduction

SPECspeed speed-up year per year

> Unicore 27 g
measurements
> Baseline & g
1 - <§> P @

| | I I I |
4 o) *.) Q N &) ™ 2
P Y Y Q) Q"Q’ NS Q Q
\q, \Q/ \Q/ \q’ \Q/ \Q/ \q’ ‘Rq’ ‘KQ/
K\ K\ K\ © @ K\ @ K\ K\
S S S S S S S S S
& S O N N2 D A "o "o
N N N N N N N
D S s D D D D D D

12 WJ 2023

12

EXGSCGIE o0 Performance Progress from 2007 to 2016 @

3

> Blue dots and red
dots don’t move
together

» Peak FP is not the
single major factor,
memory organization
plays a key tole too

» Red Dots: speedup of
peak FP performance

» Blue Dots: geometric
mean of Speedups

» WARNING: Unicore
measurements: only
one core accessing
the whole memory
system

B
|

Speedup larger
than FP speedup

AV X introduction

AN

FMA Introduction

SPECspeed speed-up year per year

O —90—
e

| N —

o e

13 WJ 2023

13

Exascaleco Unicore versus throughput @

3

» Unicore measurements: only one core accessing the whole memory system:
unrealistic, in real systems all of the cores will be active and share the memory
system

» Launch multiple copies of the same program, one per core: each core will access
a fair share of the system and therefore performance measured will be more
realistic: SPECrate measurements.

Samm—
System CPU Year Core DP FreqH Cores L3
(Gflops) (GHz) (MB)
Harpertown (45 nm) X5482 2007 12.80 3.20 8 0
Harpertown (45 nm) X5492 2008 13.60 3.40 8 0
Gainestown (45 nm) W5590 2009 13,32 3,33 8 8

Westmere-EP (32 nm) X5680 2010 13,32 3,33 12 12
Westmere-EP (32 nm) X5690 2011 13,88 3,47 12 12
Sandy Bridge-EP (32 nm)E5-2690 2012 23.20 2.90 16| 20
Ivy Bridge-EP (22 nm) E5-2690v2 2013 24.00 3.00 200 25
Haswell-EP (22 nm) E5-2690v3 2014 41.60 2.60 24] 30
Haswell-EP (22 nm) E5-4650 2015 33.60 2.10 48 30
Broadwell-EP (14 nm) E5-2690v4 2016 41.60 2.60 28] 35

y WJ 2023

14

Exascale A more realistic view on performance progress (1) @

3

Ratio of 2016 performance over 2007

[ormalized SPECrate per cora [Unicore SPECspead

BED.DG—
S Peak FP
g10.007 2016/Peak FP
2 2007
% 325 /
JJJJIJ
! ,_m_JJ'
0.80 -
'5‘ ﬁ" @? 1* é‘“ éh° @“
.ﬁ’j ‘;:; ‘fcai? 'a':gb & (ﬁ’ éh
SPEC FP 2006 Benmmarks

Baseline numbers (no specific hand tuning but standard —O3)
Performance gains highly dependant upon applications
Red bars much higher than blue bars

YV V V V

Blue bars always under the ratio of peak FP.....
15 WJ_2023

15

Exasc

ing resear

cale o0

SPEC MPI performance progress over 4 years @

3

A few multinode numbers: red triangles perfect node speedup,
blue dots SPEC_MPI geom mean

E5-2690 v2 Ivy Hridge

E5-2690 v3 Haswell

E5-2690 v4 Broadgwell

g 8

g 3

SPECmpiM score
4

(5]
1

=

00+
400+

200+

100+

50

25+

10+

H

Lol

I L L)
° e g P

: IR u s 3 v
Number of nodes MNumber of nodes MNumber of nodes
CPU cores per nodepeak (TFlops) SPEC result result / peak
E5-2690 v2 20 19,2 100,26 5,22
E5-2690 v3 24 39,94 111,61 2,79
E5-2690 v4 28 46,59 128,94 2,77
16 WJ 2023

16

o

Exascale o0 Peak versus baseline @

1.6
%3 H 2007m 2008 2009m 2010m 2011 2012m 2013" 2014m 2015= 2016
1.3
il
1'% -1 AR T NN T R | I‘II'III ‘ II I
D a0 . O N 0
é{‘ 2 > A & 2o b‘ib S & \Y{O fa@ 'Q 43
APV S %&P@QDPQ %’bb‘
SISO g & g L % o
e 1:?9
» Baseline: standard flags (typical —O3)
» Peak: hand picked flags
> Y axis: speedup of peak versus baseline
» X axis: sorted first by SPEC FP 2006 codes and second by year (same
reference architectures)
» Profile Guided Optimization (PGO) is the most profitable (rightmost part of the

17

digram)

WJ_2023

17

3

Year

2007

2008
2009
2010

2011

2012
2013
2014
2015

2016 Sunway TaihuLight10.56M

>
>

Exascaleco

GORDON BELL AWARD 2007 - 2016 @

Machine Cores

BlueGene/L 131K
Cray XT4 31K
Cray XTS5 147K

Cray XT5-HE 200K
K computer 442K
K computer 663K

Sequoia 1.6M
Anton 2 NA
Sequoia 1.6M

L

r

Tflops
obtained

0,11
0,2
1,03
0,7

3,08
4,45
11
NA
0,69

7,85

L

Tflops
peak

0,28

0,26
1,36
2,3

7,07
10,6
20,1

NA
20,1

125

Obtained over

peak (%) Computations
Micron-Scale Atomistic Simulation of Kelvin-Helmholtz
39 Instability
77 Simulations of disorder effects in high-Tc superconductors
76 Ab initio computation of free energies
30 Direct numerical simulation of blood flow
First-principles calculations of electron states of a silicon
44 nanowire
42 Astrophysical N -Body Simulation
55 Cloud Cavitation Collapse
NA Molecular dynamics
3 Implicit Solver for Complex PDEs
6 Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics

Very impressive results: high efficiency except for the last 2 years

Very different results from SPEC evolution

Codes have been fully customized: using (??) top of the line performance evaluation

tools ©

Are these codes more than Proof of Concept ?? Impact on standard apps ??

18

WJ_2023

18

Exascale o0 A FEW LESSONS (€©)

3

SPEC numbers over 2007 - 2016 are completely depressing.

REMARK: similar analysis was pursued on real apps and with different
architectures for the period beyond 2017 and similar “depressing”
results were obtained.

On real applications, the gap between peak (nominal) performance and
observed performance is increasing!!

Two possible choices:

1. Improve Compiler Autotuning: OK but will provide at best 10 to 20%
perf improvement

2. Rewrite applications: OK but might be very costly and might be
difficult for most application fields

19 WJ 2023

19

Exascale oo A FEW DIRECTIONS (€)

3

More powerful approaches

» Split performance optimizations into 3 subproblems
« Identify performance issue (diagnostic)
« ldentify potential remedies

 Implement code transformations (directives, pragma or
rewriting)

» Use performance tools to guide application restructuring but stop
giving detailed diagnostics that a standard user cannot understand or
lead to the wrong path. Instead of pointing to problems, suggest and
evaluate potential solutions. THINK AS A DOCTOR ©

» BEYOND CODE OPTIMIZATION: Use performance tools to conduct
application performance characterization and drive
hardware/software co design

20 WJ 2023

20

Exascale oo

xascale oo THE STAGE (€©)
0 .

» A few basic ingredients: latency, bandwidth, dependencies,

» A very large number of possible combinations

« Quantitative nature of Basic ingredients: cache miss ratio can
vary incrementally between 0 and 100%

« Raw values of basic ingredients might be unusable: number of
stalls due to a buffer full)

* Raw values of values are useless only combinations are
meaning full: for example cache miss ratio is not meaningful only
cache miss x average time for miss is meaningful

» The user is often lost by hardware counters and to some extent he
does not care because they are not accurate enough: within a loop,
you need to precisely identify the array which are causing trouble
because it is where you will have to focus your efforts.

21 WJ 2023

EXGSCGIE o0 OUR VIEW ON PERFORMANCE COUNTERS @

3

Hardware performance counters:

Too many of them

Very little documentation if any

Broken counters are not publicized

Needs detailed understanding of micro architecture to exploit them
Hard to distinguish between cause and consequence

When a resource is saturated, does it hurt performance ??

They change with every processor generation.

YV V V VYV YV V V

MAQAO Performance Analysis and
22 Optimization Tool

Exascale o0 OUR APPROACH (€

3

NOBODY WANTS PROBLEMS EVERYBODY WANTS SOLUTIONS ©

» It is nice to correlate source line numbers with hardware counters
values but this is not enough because the user cannot change
hardware in general ©

» We should concentrate on the knobs that the code developer has at
his disposal:

« Better compiler options
« Code restructuring
« Data restructuring
» More precisely, MAQAO (our toolset) will

 ldentify well known issues: small trip count, complex control flow,
lack of vectorization, poor vectorization etc.....

« Use what if methods to predict (more or less accurately) the
Impact of removing the issue

« Also Use what if methods to predict the impact of standard
transformations: partial of full vectorization etc....

« Use comparison to get a better understanding of code behaviour
23 GSTS

ExascalecO yaQAO “WHAT IF” SCENARIOS: UNICORE @

3

24

» Generate performance estimates for different transformations
» Work at the innermost loop level (ASM)

» First modify ASM to take into account code transformation:
“Clean” version (only FP operations are kept), “FP Vector” (only
vectorizes FP arithmetic), “Full Vector” (vectorizes all FP operations),
“DL1” (forces all of the operands to come from L1,

» Second generate performance estimates
« Either using static more or less simplified simulators
* Or embed mofied ASM in the real code and measure it.

» Many more what if scenario can be derived: suppressing branches,
suppressing costly FP operations (Div/SQRT)

> All of thesesv metrics will be reorgniazed and aggregated through
the Oneview module

WJ_2023

Exascale o0 TYPICAL ONE VIEW GLOBAL TAB (€)

_ FOCUS: on transformations and
impact at the application level
. RER MiniQMC (proxy for QMCPACK)
code running on SKL and ICC 19.

)

co

Time in analyzed loops (%)
Time in analyzed innermost loops (%)
Time in user code (%)

Cnmnilatinn Nntinne

oo o,
o >

Perfect Flow Complexity

evaluate
el Ll performance gain if innermost
Array Access Efficiency (%)

Nk
Pertect OpenMP + MPI + Pthread I IOOpS had nNo branCheS

Perfect OpenMP + MPI + Pthread + Perfect Load Distribution
evaluate the

Potential Speedup
Nb Loops to get 80% impact of having all loop iteration
count over 100

No Scalar Integer

i Potential Speedup
FP Vectorised Nb Loops to get 80%

Potential Speedup
Nb Loops to get 80%

Fully Vectorised

Potential Speedup 1.59 ; ;
Data In L1 Cache N Looos e B0 ; Percentage of Unit Stride access
Potential Speedup 1.16

FP Arithmetic Only

Nb Loops to get 80% 11

25 WJ 2023

Exascale oo TYPICAL ONE VIEW GLOBAL TAB (€

_ FOCUS: on transformations and
impact at the application level

. °3.80 MiniQMC (proxy for QMCPACK)
code running on SKL and ICC 19.

Time in analyzed loops (%)

Time in analyzed innermost loops (%)
Time in user code (%)

Compilation Options

Perfect Flow Complexity FP vectorized: Performance gain if

Iterations Count all the FP arithmetic operations
Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread were VeCtorized
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution

Potential Speedup

[sxRNerRNe)]

1
1.
1

o >

No Scalar Integer

. Fully vectorized: Performance gain
Potential Speedup ;) . .
Nb Loops to get 80% if all the FP arithmetic operations+

Potential Speedup

Fully Vectorised Nb Loons to cet 80% Load/Store instructions were

FP Vectorised

Potential Speedup . i
Data In L1 Cache Nb Loops to get 80% 5 VeCtOI‘Ized
. . Potential Speedup 1.16
FP Arithmetic Only Nb Loops to get 80% 1

26 WJ 2023

Exascale oo TYPICAL ONE VIEW GLOBAL TAB (€

_ FOCUS: on transformations and
impact at the application level
. RER MiniQMC (proxy for QMCPACK)
code running on SKL and ICC 19.

Time in analyzed loops (%)

Time in analyzed innermost loops (%)

Time in user code (%)

Compilation Options

Perfect Flow Complexity

Iterations Count

Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect Load Distribution

Potential Speedup

Nb Loops to get 80%
. Potential Speedu

FP Vectorised Nb Loops tF()} get 30%

Potential Speedup

6
6
6

1
1.
1

o >

No Scalar Integer

Fully Vectorised

: Data in L1 cache: Performance
Potential Speedup 1.59 A
Nb Looms 1o et 80% ; gain if all of the operands are

otential Speedup : coming from L1
Nb Loops to get 80% 11

Data In L1 Cache

FP Arithmetic Only

27 WJ 2023

Exas

Compu h'J"‘g

caleco

research

ONE VIEW: LOOP TAB (2) (€©)

MINIQMC: ARM Clang + ARM PL

| Loop
1295

OE

966
964
969

970
1321

396

28

minigmc - BsplineFu

Source Location ‘

minigmc - ParticleBC
onds.h:177-217[...]

minigmc - MultiBspli
neRef.hpp:242-262

minigmc - MultiBspli
neRef.hpp:68-71
minigmc - MultiBspli
neRef.hpp:68-71
minigmc - MultiBspli
neRef.hpp:68-71
minigmec - MultiBspli
neRef.hpp:68-71

minigmc - ParticleBC

nctor.h:236-241

mininme - innar nra

Source Function Level
void gmcplusplus::DTD_BConds<double, 3u, 39>::computeDistances<gmcplusplus::Tiny
Vector<double, 3u>, gmcplusplus::VectorSoAContainer<double, 3u, 32ul, gmeplusplus:: Single
Mallocator<double, 32ul> >, gmcplusplus::VectorSoAContainer<dou...
void minigmcreference::MultiBsplineEvalRef::evaluate_vgh<double>(gmcplusplus::bsplin
e_traits<double, 3u>::SplineType const*, double, double, double, double*, double*, dou Single
ble*, unsigned long)
void minigmcreference::MultiBsplineEvalRef::evaluate_v<double>(gmcplusplus::bspline_t Innermost
raits<double, 3u>::SplineType const*, double, double, double, double*, unsigned long)
void minigmcreference::MultiBsplineEvalRef::evaluate_v<double>(gmcplusplus::bspline_t IR
raits<double, 3u>::SplineType const*, double, double, double, double*, unsigned long)
void minigmcreference::MultiBsplineEvalRef:.evaluate_v<double>(gmcplusplus::bspline_t Innermost
raits<double, 3u>::SplineType const*, double, double, double, double*, unsigned long)
void minigmcreference::MultiBsplineEvalRef::evaluate_v<double>(gmcplusplus::bspline_t s
raits<double, 3u>::SplineType const*, double, double, double, double*, unsigned long)
void gmcplusplus::DTD_BConds<double, 3u, 39>::computeDistances<gmcplusplus::Tiny
Vector<double, 3u>, gmcplusplus::VectorSoAContainer<double, 3u, 32ul, gmcplusplus::| Single

- Mallocator<double, 32ul> >, gmcplusplus::VectorSoAContainer<dou...
gmeplusplus::BsplineFunctor<double>::evaluateV(int, int, int, double const*, double*) co Single

nst

WJ_ 2023

Vectorization
Efficiency (%)

Vectorization
Ratio (%)

Coverage

run_0 (%)

Speedup If No
Scalar Integer

Speedup If FP
Vectorized

1.01 1

Exascale oo “WHAT IF” SCENARIOS MULTICORE (1) (€)

3

» Evaluate the performance impact of code transformation.

» Rely on performance measurement (either profiling or tracing
(OMPT))

» Generate performance estimate:

= Perfect OpenMP + MPI + Pthread: for each thread, get rid of
time spent in OpenMP, MPI, Thread libraries and then takes max

= Perfect OpenMP + MPI + Pthread + Perfect Load Distribution:
for each thread, get rid of time spent in OpenMP, MPI, Thread

libraries and then takes average

» Performance estimate generates either globally or at the loop level

2 WJ_ 2023

Exascale oo

computin g researcn

WHAT IF MUTICORE SCENARIO @

Global Metrics

Metric r0 rl r2 3 r4 r5 6 r7

241 E3 1.26 E3 64852 355.62 203.22 110.41 7851 94.06

Total Time (s)
Profiled Time (s5)

Time in analyzed loops (%) 286 299 303 32.1 35.1 33.1 30.7 304 ro (resp ri
Time in analyzed innermost loops (%) 216 225 226 239 26.7 263 25.0 25.0 ' ,
Time in user cade (%) 9% 6 965 90 953 935 947 944 949 r2, etC...)
Compilation Options Score (%) 663 661 657 654 647 653 648 644

Perfect Flow Complexty 100 100 100 100 101 101 100 100 denotes
Array Access Efficiency (%) 724 713 716 /16 706 697 694 714

Perfect OpenMP + MPI + Pthread runs on 1
Perfect OpenMP + MPI + Pthread + Perfect Load

Distribution (resp. 2,4

No Scalar Integer

FP Vectorised

Potential Speedup

Nb Loops to get
80%
Potential Speedup

Nb Loops to get

1.17 1.16 1.16

80% 6 7 7 7 8 9 8 9

Potential Speedup [IHOENNTOEIGE110 114 113 114 118
Fully Vectorised gg%Loons t0get g 21 25 5 21 19 17 10

Potential Speedup 126 126 126 127 128 125 122 115
Only FP Arithmetic gg%Loops to get 17 21 22 53 26 26 57 29
OpenMP perfectly E%ti"tia' Stpeedfp 100 1.03 102 104 106 108 1.14 139
balanced bt 2 5 6 9 10 10 9
Scalability - Gap 1.00 105 108 1.8 135 146 208 4.99

etc...) cores

GROMACS running on a 2x 64 cores AMD EPYC7H12:. The dataset was chosen small
enough to show scaling issues with more than 16 cores .

30

WJ_ 2023

EXGSCﬂ’EOO A few Success stories @

: Z'L"."'ﬂ,!'].'.f.':"i]‘ resegagrcn

MAQAO is used for optimizing industrial and academic HPC applications: e
» QMC=CHEM (IRSAMC) ’
* Quantum chemistry

* Speedup: > 3x

= Optimization: moved invocations of functions with identical parameters out of the loop
body .

» Yales2 (CORIA)
« Computational fluid dynamics
* Speedup: up to 2.8x
= Optimization: removing double structure indirections
» Polaris (CEA)
* Molecular dynamics

 Speedup: 1.5x — 1.7x
= Optimization: enforcing loop vectorization through compiler directives
» AVBP (CERFACS)
* Computational fluid dynamics
 Speedup: 1.08x — 1.17x
» Replaced divisions by reciprocal multiplications
= Complete unrolling of loops with a small number of iterations

31

3

32

Exascale o0 FIRST WRAP UP ON MAQAO/OV (€

» Optimizing (complex) for complex recent architectures is becoming
more and more difficult

» We need a new generation of performance tools to guide the
code/developer through that task

MAQAO/ONE VIEW provides a new approach

» Provides an application centric view

» Provides synthetic/aggregated view meaningful for the user

» Provides performance estimates of potential gains (what if
scenarios)

» + Other goodies: wait for the next talks....

EanCGIEOC ENERGY: New and mandatory challenges @

C: Capacity: performance metric (Flops per cycle, Transactions per
cycle, etc....)

E: Energy consumed by a computation

» Only maximizing C is no longer a correct objective because it might
lead to unacceptable power/energy costs

» Only minimizing E is not a correct objective either because it leads to
low capacities.

» Race to Halt strategies are also too short minded because they
essentially assume constant power

33 WJ 2023

33

EanCGIEOC Performance and energy models are needed @

Real Objectives

» Maximising a Quality metric (C, C/E) under constraints (Constant
Power, Constant Capacity)

» To be correctly addressed, such objectives needs performance
models which will use as an essential component “measurements”

» Performance tools needs to add predictive power to predict power
behavior and performance behavior.

There is still a long way to go......

A better title for this talk: “What a Long Strange Trip It's Been”

34 WJ 2023

34

