
1

The Long and Winding Road Toward

Efficient High-Performance Computing

C. Valensi, E. Oseret, M. Tribalat, S. Ibnamar, K.
Camus, A. Delval, C. Astier, G. Dos Santos, M. Hoffer,

F.-X. Mordant, F. Santoro + M. Popov

W. Jalby

UVSQ/UPSaclay

WJ_2023

2

Overview

➢ Well known: performance evolution of very Big Systems

➢ Less known: A close look at 2007 – 2016: performance evolution
smaller machines running real applications

➢ A few hopes : how to exploit more effiently new systems

WJ_2023

3

TOP 500

www.top500.org: The TOP500 project ranks and details the 500 most
powerful “official” computer systems in the world. The project was
started in 1993 and publishes an updated list of the supercomputers
twice a year (Wikipedia).

“POWERFUL”: performance is measured on solving a dense linear
system (N x N) using Linpack package

Microcard Workshop July 6th

http://www.top500.org/

4

EVOLUTION OVER THE YEARS

WJ_2023

#500

#1
Sum

PLATEAU: the

same system

remains #1 for

several

semesters

5

LINPACK JUNE 2023 RESULTS

Microcard Workshop July 6th

Rmax: best performance

measured on Linpack
Rpeak: Peak (nominal)

performance

Rmax/Rpeak

less than 0,8 !!

6

TOP 500 REVISITED

BE MORE REALISTIC: Instead of solving a dense linear system, let us
solve a sparse linear system (much more frequent problem)

HPCG: High Performance Conjugate Gradient

HPL: High Performance Linpack

Microcard Workshop July 6th

7

HPCG JUNE 2023 RESULTS

Microcard Workshop July 6th

Rmax/HPCG

varies

between 27

and 80

8

Conclusion on big systems

➢ Essentially show off machines….

➢ Almost never used as a single system on a single task: much too
expensive.

➢ Large spread between HPL and HPCG

• HPL performance around 75% of Rpeak

• HPCG performance less than 2% of Rpeak

➢ HPL and HPCG are not real applications: they are “toy” programs

➢ Too much focus on FP performance: in fact data access
performance is as important as FP performance

Microcard Workshop July 6th

9

A CLOSE LOOK AT A DECADE (2007 - 2016)

➢ 10 INTEL reference architectures from 2007 to 2016

➢ AVX then FMA (Fused Multiply Add) introductions

9

System CPU Year Core DP Freq# Cores L3

(Gflops) (GHz) (MB)

Harpertown (45 nm) X5482 2007 12.80 3.20 8 0

Harpertown (45 nm) X5492 2008 13.60 3.40 8 0

Gainestown (45 nm) W5590 2009 13,32 3,33 8 8

Westmere-EP (32 nm) X5680 2010 13,32 3,33 12 12

Westmere-EP (32 nm) X5690 2011 13,88 3,47 12 12

Sandy Bridge-EP (32 nm)E5-2690 2012 23.20 2.90 16 20

Ivy Bridge-EP (22 nm) E5-2690 v2 2013 24.00 3.00 20 25

Haswell-EP (22 nm) E5-2690 v3 2014 41.60 2.60 24 30

Haswell-EP (22 nm) E5-4650 2015 33.60 2.10 48 30

Broadwell-EP (14 nm) E5-2690 v4 2016 41.60 2.60 28 35

AVX introduction

FMA Introduction

Microcard Workshop July 6th

10

SPEC

The Standard Performance Evaluation Corporation (SPEC) is an
American non-profit organization that aims to "produce, establish,
maintain and endorse a standardized set" of performance
benchmarks for computers (Wikipedia)

SPEC was founded in 1988. SPEC benchmarks are widely used to
evaluate the performance of computer systems; the test results are
published on the SPEC website (www.spec.org).

Members are hardware/software companies, a few Universities and
research center

GOAL: provide an unbiased way of comparing systems performance
using a precise protocol and several reference programs representative
of “real” workload. Public database available

REPRESENTATIVE FOR A USER: OK if his favorite program is included
in the reference list, otherwise representativeness can be argued for
ever.

Microcard Workshop July 6th

http://www.spec.org/

11

➢ Speedup from one
year to the next one

➢ SPEC FP 2006 : Full
set of “real” scientific
applications

➢ Violin: distribution for
the full set of
SPECFP

➢ Architecture/compilers
vary from year to year
BUT Source code are
invariant

➢ Unicore
measurements

➢ Baseline compiler
options but standard –
O3 options

11

Performance Progress from 2007 to 2016 (1)

WJ_2023

Large

spread

Small

Spread

12

➢ Speedup from one
year to the next

➢ Red Dots: speedup of
peak FP
performance: most of
the time, speedup
around one.

➢ Blue Dots: geometric
mean of Speedups

➢ Unicore
measurements

➢ Baseline

12

AVX introduction

FMA Introduction

Performance Progress from 2007 to 2016 (2)

WJ_2023

13

➢ Blue dots and red
dots don’t move
together

➢ Peak FP is not the
single major factor,
memory organization
plays a key tole too

➢ Red Dots: speedup of
peak FP performance

➢ Blue Dots: geometric
mean of Speedups

➢ WARNING: Unicore
measurements: only
one core accessing
the whole memory
system

13

AVX introduction

FMA Introduction

Speedup larger

than FP speedup

Performance Progress from 2007 to 2016

WJ_2023

14

➢ Unicore measurements: only one core accessing the whole memory system:
unrealistic, in real systems all of the cores will be active and share the memory
system

➢ Launch multiple copies of the same program, one per core: each core will access
a fair share of the system and therefore performance measured will be more
realistic: SPECrate measurements.

14

Unicore versus throughput

WJ_2023

System CPU Year Core DP Freq# Cores L3

(Gflops) (GHz) (MB)

Harpertown (45 nm) X5482 2007 12.80 3.20 8 0

Harpertown (45 nm) X5492 2008 13.60 3.40 8 0

Gainestown (45 nm) W5590 2009 13,32 3,33 8 8

Westmere-EP (32 nm) X5680 2010 13,32 3,33 12 12

Westmere-EP (32 nm) X5690 2011 13,88 3,47 12 12

Sandy Bridge-EP (32 nm)E5-2690 2012 23.20 2.90 16 20

Ivy Bridge-EP (22 nm) E5-2690 v2 2013 24.00 3.00 20 25

Haswell-EP (22 nm) E5-2690 v3 2014 41.60 2.60 24 30

Haswell-EP (22 nm) E5-4650 2015 33.60 2.10 48 30

Broadwell-EP (14 nm) E5-2690 v4 2016 41.60 2.60 28 35

15

A more realistic view on performance progress (1)

➢ Baseline numbers (no specific hand tuning but standard –O3)

➢ Performance gains highly dependant upon applications

➢ Red bars much higher than blue bars

➢ Blue bars always under the ratio of peak FP…..

15

Ratio of 2016 performance over 2007

Peak FP

2016/Peak FP

2007

WJ_2023

16

SPEC MPI performance progress over 4 years

16

WJ_2023

A few multinode numbers: red triangles perfect node speedup,

blue dots SPEC_MPI geom mean

CPU cores per nodepeak (TFlops) SPEC result result / peak

E5-2690 v2 20 19,2 100,26 5,22

E5-2690 v3 24 39,94 111,61 2,79

E5-2690 v4 28 46,59 128,94 2,77

17

Peak versus baseline

➢ Baseline: standard flags (typical –O3)

➢ Peak: hand picked flags

➢ Y axis: speedup of peak versus baseline

➢ X axis: sorted first by SPEC FP 2006 codes and second by year (same
reference architectures)

➢ Profile Guided Optimization (PGO) is the most profitable (rightmost part of the
digram)

WJ_2023

17

18

GORDON BELL AWARD 2007 - 2016

➢ Very impressive results: high efficiency except for the last 2 years

➢ Very different results from SPEC evolution

➢ Codes have been fully customized: using (??) top of the line performance evaluation
tools ☺

➢ Are these codes more than Proof of Concept ?? Impact on standard apps ??

18

Year Machine Cores
Tflops

obtained

Tflops

peak

Obtained over

Peak (%)
Computations

2007 BlueGene/L 131K
0,11 0,28 39

Micron-Scale Atomistic Simulation of Kelvin-Helmholtz

Instability

2008 Cray XT4 31K 0,2 0,26 77 Simulations of disorder effects in high-Tc superconductors

2009 Cray XT5 147K 1,03 1,36 76 Ab initio computation of free energies

2010 Cray XT5-HE 200K 0,7 2,3 30 Direct numerical simulation of blood flow

2011 K computer 442K
3,08 7,07 44

First-principles calculations of electron states of a silicon

nanowire

2012 K computer 663K 4,45 10,6 42 Astrophysical N -Body Simulation

2013 Sequoia 1.6M 11 20,1 55 Cloud Cavitation Collapse

2014 Anton 2 NA NA NA NA Molecular dynamics

2015 Sequoia 1.6M 0,69 20,1 3 Implicit Solver for Complex PDEs

2016 Sunway TaihuLight10.56M
7,85 125 6

Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics

WJ_2023

19

A FEW LESSONS

SPEC numbers over 2007 - 2016 are completely depressing.

REMARK: similar analysis was pursued on real apps and with different
architectures for the period beyond 2017 and similar “depressing”
results were obtained.

On real applications, the gap between peak (nominal) performance and
observed performance is increasing!!

Two possible choices:

1. Improve Compiler Autotuning: OK but will provide at best 10 to 20%
perf improvement

2. Rewrite applications: OK but might be very costly and might be
difficult for most application fields

19

WJ_2023

20

A FEW DIRECTIONS

More powerful approaches

➢ Split performance optimizations into 3 subproblems

• Identify performance issue (diagnostic)

• Identify potential remedies

• Implement code transformations (directives, pragma or
rewriting)

➢ Use performance tools to guide application restructuring but stop
giving detailed diagnostics that a standard user cannot understand or
lead to the wrong path. Instead of pointing to problems, suggest and
evaluate potential solutions. THINK AS A DOCTOR ☺

➢ BEYOND CODE OPTIMIZATION: Use performance tools to conduct
application performance characterization and drive
hardware/software co design

20

WJ_2023

21

THE STAGE

➢ A few basic ingredients: latency, bandwidth, dependencies,

➢ A very large number of possible combinations

• Quantitative nature of Basic ingredients: cache miss ratio can
vary incrementally between 0 and 100%

• Raw values of basic ingredients might be unusable: number of
stalls due to a buffer full)

• Raw values of values are useless only combinations are
meaning full: for example cache miss ratio is not meaningful only
cache miss x average time for miss is meaningful

➢ The user is often lost by hardware counters and to some extent he
does not care because they are not accurate enough: within a loop,
you need to precisely identify the array which are causing trouble
because it is where you will have to focus your efforts.

WJ_2023

22

OUR VIEW ON PERFORMANCE COUNTERS

Hardware performance counters:

➢ Too many of them

➢ Very little documentation if any

➢ Broken counters are not publicized

➢ Needs detailed understanding of micro architecture to exploit them

➢ Hard to distinguish between cause and consequence

➢ When a resource is saturated, does it hurt performance ??

➢ They change with every processor generation.

MAQAO Performance Analysis and

Optimization Tool

23

OUR APPROACH

NOBODY WANTS PROBLEMS EVERYBODY WANTS SOLUTIONS ☺

➢ It is nice to correlate source line numbers with hardware counters
values but this is not enough because the user cannot change
hardware in general ☺

➢ We should concentrate on the knobs that the code developer has at
his disposal:

• Better compiler options

• Code restructuring

• Data restructuring

➢ More precisely, MAQAO (our toolset) will

• Identify well known issues: small trip count, complex control flow,
lack of vectorization, poor vectorization etc…..

• Use what if methods to predict (more or less accurately) the
impact of removing the issue

• Also Use what if methods to predict the impact of standard
transformations: partial of full vectorization etc….

• Use comparison to get a better understanding of code behaviour

GSTS

24

MAQAO “WHAT IF” SCENARIOS: UNICORE

➢ Generate performance estimates for different transformations

➢ Work at the innermost loop level (ASM)

➢ First modify ASM to take into account code transformation:
“Clean” version (only FP operations are kept), “FP Vector” (only
vectorizes FP arithmetic), “Full Vector” (vectorizes all FP operations),
“DL1” (forces all of the operands to come from L1, ……

➢ Second generate performance estimates

• Either using static more or less simplified simulators

• Or embed mofied ASM in the real code and measure it.

➢ Many more what if scenario can be derived: suppressing branches,
suppressing costly FP operations (Div/SQRT)

➢ All of thesesv metrics will be reorgniazed and aggregated through
the Oneview module

WJ_2023

25

TYPICAL ONE VIEW GLOBAL TAB

FOCUS: on transformations and

impact at the application level

MiniQMC (proxy for QMCPACK)

code running on SKL and ICC 19.

Perfect flow complexity: evaluate

performance gain if innermost

loops had no branches

Iteration count: evaluate the

impact of having all loop iteration

count over 100

Array Access Efficiency:

Percentage of Unit Stride access

WJ_2023

26

TYPICAL ONE VIEW GLOBAL TAB

FOCUS: on transformations and

impact at the application level

MiniQMC (proxy for QMCPACK)

code running on SKL and ICC 19.

FP vectorized: Performance gain if

all the FP arithmetic operations

were vectorized

Fully vectorized: Performance gain

if all the FP arithmetic operations+

Load/Store instructions were

vectorized

WJ_2023

27

TYPICAL ONE VIEW GLOBAL TAB

FOCUS: on transformations and

impact at the application level

MiniQMC (proxy for QMCPACK)

code running on SKL and ICC 19.

Data in L1 cache: Performance

gain if all of the operands are

coming from L1

WJ_2023

28

ONE VIEW: LOOP TAB (2)

MINIQMC: ARM Clang + ARM PL

WJ_2023

29

“WHAT IF” SCENARIOS MULTICORE (1)

➢ Evaluate the performance impact of code transformation.

➢ Rely on performance measurement (either profiling or tracing
(OMPT))

➢ Generate performance estimate:

▪ Perfect OpenMP + MPI + Pthread: for each thread, get rid of
time spent in OpenMP, MPI, Thread libraries and then takes max

▪ Perfect OpenMP + MPI + Pthread + Perfect Load Distribution:
for each thread, get rid of time spent in OpenMP, MPI, Thread
libraries and then takes average

➢ Performance estimate generates either globally or at the loop level

WJ_2023

30

WHAT IF MUTICORE SCENARIO

WJ_2023

GROMACS running on a 2x 64 cores AMD EPYC7H12:. The dataset was chosen small
enough to show scaling issues with more than 16 cores .

r0 (resp. r1 ,
r2, etc…)
denotes
runs on 1
(resp. 2, 4
etc…) cores

31

MAQAO is used for optimizing industrial and academic HPC applications:

➢ QMC=CHEM (IRSAMC)

• Quantum chemistry

• Speedup: > 3x

▪ Optimization: moved invocations of functions with identical parameters out of the loop
body

➢ Yales2 (CORIA)

• Computational fluid dynamics

• Speedup: up to 2.8x

▪ Optimization: removing double structure indirections

➢ Polaris (CEA)

• Molecular dynamics

• Speedup: 1.5x – 1.7x

▪ Optimization: enforcing loop vectorization through compiler directives

➢ AVBP (CERFACS)

• Computational fluid dynamics

• Speedup: 1.08x – 1.17x

▪ Replaced divisions by reciprocal multiplications

▪ Complete unrolling of loops with a small number of iterations

A few Success stories

32

FIRST WRAP UP ON MAQAO/OV

➢ Optimizing (complex) for complex recent architectures is becoming
more and more difficult

➢ We need a new generation of performance tools to guide the
code/developer through that task

MAQAO/ONE VIEW provides a new approach

➢ Provides an application centric view

➢ Provides synthetic/aggregated view meaningful for the user

➢ Provides performance estimates of potential gains (what if

scenarios)

➢ + Other goodies: wait for the next talks….

33

ENERGY: New and mandatory challenges

C: Capacity: performance metric (Flops per cycle, Transactions per
cycle, etc….)

E: Energy consumed by a computation

➢ Only maximizing C is no longer a correct objective because it might
lead to unacceptable power/energy costs

➢ Only minimizing E is not a correct objective either because it leads to
low capacities.

➢ Race to Halt strategies are also too short minded because they
essentially assume constant power

33

WJ_2023

34

Performance and energy models are needed

Real Objectives

➢ Maximising a Quality metric (C, C/E) under constraints (Constant
Power, Constant Capacity)

➢ To be correctly addressed, such objectives needs performance
models which will use as an essential component “measurements”

➢ Performance tools needs to add predictive power to predict power
behavior and performance behavior.

There is still a long way to go……

A better title for this talk: “What a Long Strange Trip It’s Been”

34

WJ_2023

