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Overview

➢ Well known: performance evolution of very Big Systems

➢ Less known: A close look at 2007 – 2016: performance evolution 
smaller machines running real applications

➢ A few hopes : how to exploit more effiently new systems
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TOP 500

www.top500.org: The TOP500 project ranks and details the 500 most 
powerful “official” computer systems in the world. The project was 
started in 1993 and publishes an updated list of the supercomputers 
twice a year (Wikipedia).

“POWERFUL”: performance is measured on solving a dense linear 
system (N x N) using Linpack package

Microcard Workshop July 6th

http://www.top500.org/
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EVOLUTION OVER THE YEARS
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PLATEAU: the 

same system 
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semesters
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LINPACK JUNE 2023 RESULTS

Microcard Workshop July 6th

Rmax: best performance 

measured on Linpack
Rpeak: Peak (nominal) 

performance 

Rmax/Rpeak

less than 0,8 !! 
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TOP 500 REVISITED

BE MORE REALISTIC: Instead of solving a dense linear system, let us 
solve a sparse linear system (much more frequent problem)

HPCG: High Performance Conjugate Gradient

HPL: High Performance Linpack

Microcard Workshop July 6th
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HPCG JUNE 2023 RESULTS

Microcard Workshop July 6th

Rmax/HPCG 

varies 

between 27 

and 80
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Conclusion on big systems

➢ Essentially show off machines….

➢ Almost never used as a single system on a single task: much too 
expensive.

➢ Large spread between HPL and HPCG

• HPL performance around 75% of Rpeak

• HPCG performance less than 2% of Rpeak

➢ HPL and HPCG are not real applications: they are “toy” programs

➢ Too much focus on FP performance: in fact data access 
performance is as important as FP performance

Microcard Workshop July 6th
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A CLOSE LOOK AT A DECADE (2007 - 2016) 

➢ 10 INTEL reference architectures from 2007 to 2016

➢ AVX then FMA (Fused Multiply Add) introductions

9

System CPU Year Core DP Freq# Cores L3

(Gflops) (GHz) (MB)

Harpertown (45 nm) X5482 2007 12.80 3.20 8 0

Harpertown (45 nm) X5492 2008 13.60 3.40 8 0

Gainestown (45 nm) W5590 2009 13,32 3,33 8 8

Westmere-EP (32 nm) X5680 2010 13,32 3,33 12 12

Westmere-EP (32 nm) X5690 2011 13,88 3,47 12 12

Sandy Bridge-EP (32 nm)E5-2690 2012 23.20 2.90 16 20

Ivy Bridge-EP (22 nm) E5-2690 v2 2013 24.00 3.00 20 25

Haswell-EP (22 nm) E5-2690 v3 2014 41.60 2.60 24 30

Haswell-EP (22 nm) E5-4650 2015 33.60 2.10 48 30

Broadwell-EP (14 nm) E5-2690 v4 2016 41.60 2.60 28 35

AVX introduction

FMA Introduction

Microcard Workshop July 6th
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SPEC

The Standard Performance Evaluation Corporation (SPEC) is an 
American non-profit organization that aims to "produce, establish, 
maintain and endorse a standardized set" of performance 
benchmarks for computers (Wikipedia)

SPEC was founded in 1988. SPEC benchmarks are widely used to 
evaluate the performance of computer systems; the test results are 
published on the SPEC website (www.spec.org). 

Members are hardware/software companies, a few Universities and 
research center

GOAL: provide an unbiased way of comparing systems performance 
using a precise protocol and several reference programs representative 
of “real” workload. Public database available 

REPRESENTATIVE FOR A USER: OK if his favorite program is included 
in the reference list, otherwise representativeness can be argued for 
ever.

Microcard Workshop July 6th

http://www.spec.org/
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➢ Speedup from one 
year to the next one

➢ SPEC FP 2006 : Full 
set of “real” scientific 
applications

➢ Violin: distribution for 
the full set of 
SPECFP

➢ Architecture/compilers 
vary from year to year 
BUT Source code are 
invariant

➢ Unicore
measurements

➢ Baseline compiler 
options but standard –
O3 options

11

Performance Progress from 2007 to 2016 (1)
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➢ Speedup from one 
year to the next

➢ Red Dots: speedup of 
peak FP 
performance: most of 
the time, speedup 
around one.

➢ Blue Dots: geometric 
mean of Speedups

➢ Unicore
measurements

➢ Baseline

12

AVX introduction

FMA Introduction

Performance Progress from 2007 to 2016 (2)
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➢ Blue dots and red 
dots don’t move 
together

➢ Peak FP is not the 
single major factor, 
memory organization 
plays a key tole too

➢ Red Dots: speedup of 
peak FP performance

➢ Blue Dots: geometric 
mean of Speedups

➢ WARNING: Unicore
measurements: only 
one core accessing 
the whole memory 
system

13

AVX introduction

FMA Introduction

Speedup larger 

than FP speedup

Performance Progress from 2007 to 2016

WJ_2023



14

➢ Unicore measurements: only one core accessing the whole memory system: 
unrealistic, in real systems all of the cores will be active and share the memory 
system

➢ Launch multiple copies of the same program, one per core: each core will access 
a fair share of the system and therefore performance measured will be more 
realistic: SPECrate measurements.

14

Unicore versus throughput
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System CPU Year Core DP Freq# Cores L3

(Gflops) (GHz) (MB)

Harpertown (45 nm) X5482 2007 12.80 3.20 8 0

Harpertown (45 nm) X5492 2008 13.60 3.40 8 0

Gainestown (45 nm) W5590 2009 13,32 3,33 8 8

Westmere-EP (32 nm) X5680 2010 13,32 3,33 12 12

Westmere-EP (32 nm) X5690 2011 13,88 3,47 12 12

Sandy Bridge-EP (32 nm)E5-2690 2012 23.20 2.90 16 20

Ivy Bridge-EP (22 nm) E5-2690 v2 2013 24.00 3.00 20 25

Haswell-EP (22 nm) E5-2690 v3 2014 41.60 2.60 24 30

Haswell-EP (22 nm) E5-4650 2015 33.60 2.10 48 30

Broadwell-EP (14 nm) E5-2690 v4 2016 41.60 2.60 28 35
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A more realistic view on performance progress (1)

➢ Baseline numbers (no specific hand tuning but standard –O3)

➢ Performance gains highly dependant upon applications

➢ Red bars much higher than blue bars

➢ Blue bars always under the ratio of peak FP…..

15

Ratio of 2016 performance over 2007

Peak FP 

2016/Peak FP 

2007
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SPEC MPI performance progress over 4 years

16
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A few multinode numbers: red triangles perfect node speedup, 

blue dots SPEC_MPI geom mean

CPU cores per nodepeak (TFlops) SPEC result result / peak

E5-2690 v2 20 19,2 100,26 5,22

E5-2690 v3 24 39,94 111,61 2,79

E5-2690 v4 28 46,59 128,94 2,77
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Peak versus baseline

➢ Baseline: standard flags (typical –O3)

➢ Peak: hand picked flags

➢ Y axis: speedup of peak versus baseline

➢ X axis: sorted first by SPEC FP 2006 codes and second by year (same 
reference architectures)

➢ Profile Guided Optimization (PGO) is the most profitable (rightmost part of the 
digram)

WJ_2023

17
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GORDON BELL AWARD 2007 - 2016

➢ Very impressive results: high efficiency except for the last 2 years

➢ Very different results from SPEC evolution

➢ Codes have been fully customized: using (??) top of the line performance evaluation 
tools ☺

➢ Are these codes more than Proof of Concept ?? Impact on standard apps ??

18

Year Machine Cores
Tflops 

obtained

Tflops 

peak

Obtained over 

Peak (%)
Computations

2007 BlueGene/L 131K
0,11 0,28 39

Micron-Scale Atomistic Simulation of Kelvin-Helmholtz 

Instability

2008 Cray XT4 31K 0,2 0,26 77 Simulations of disorder effects in high-Tc superconductors

2009 Cray XT5 147K 1,03 1,36 76 Ab initio computation of free energies

2010 Cray XT5-HE 200K 0,7 2,3 30 Direct numerical simulation of blood flow

2011 K computer 442K
3,08 7,07 44

First-principles calculations of electron states of a silicon 

nanowire

2012 K computer 663K 4,45 10,6 42 Astrophysical N -Body Simulation

2013 Sequoia 1.6M 11 20,1 55 Cloud Cavitation Collapse

2014 Anton 2 NA NA NA NA Molecular dynamics

2015 Sequoia 1.6M 0,69 20,1 3 Implicit Solver for Complex PDEs

2016 Sunway TaihuLight10.56M
7,85 125 6

Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics

WJ_2023
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A FEW LESSONS

SPEC numbers over 2007 - 2016 are completely depressing.

REMARK: similar analysis was pursued on real apps and with different 
architectures for the period beyond 2017 and similar “depressing” 
results were obtained.

On real applications, the gap between peak (nominal) performance and 
observed performance is increasing!!

Two possible choices:

1. Improve Compiler Autotuning: OK but will provide at best 10 to 20% 
perf improvement

2. Rewrite applications: OK but might be very costly and might be 
difficult for most application fields

19
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A FEW DIRECTIONS

More powerful approaches

➢ Split performance optimizations into 3 subproblems

• Identify performance issue (diagnostic)

• Identify potential remedies 

• Implement code transformations (directives, pragma or 
rewriting)

➢ Use performance tools to guide application restructuring but stop 
giving detailed diagnostics that a standard user cannot understand or 
lead to the wrong path. Instead of pointing to problems, suggest and 
evaluate potential solutions. THINK AS A DOCTOR ☺

➢ BEYOND CODE OPTIMIZATION: Use performance tools to conduct 
application performance characterization and drive 
hardware/software co design

20
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THE STAGE

➢ A few basic ingredients: latency, bandwidth, dependencies,

➢ A very large number of possible combinations

• Quantitative nature of Basic ingredients: cache miss ratio can 
vary incrementally between 0 and 100%

• Raw values of basic ingredients might be unusable: number of 
stalls due to a buffer full)

• Raw values of values are useless only combinations are 
meaning full: for example cache miss ratio is not meaningful only 
cache miss x average time for miss is meaningful

➢ The user is often lost by hardware counters and to some extent he 
does not care because they are not accurate enough: within a loop, 
you need to precisely identify the array which are causing trouble 
because it is where you will have to focus your efforts.

WJ_2023
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OUR VIEW ON PERFORMANCE COUNTERS

Hardware performance counters: 

➢ Too many of them 

➢ Very little documentation if any

➢ Broken counters are not publicized 

➢ Needs detailed understanding of micro architecture to exploit them

➢ Hard to distinguish between cause and consequence 

➢ When a resource is saturated, does it hurt performance ?? 

➢ They change with every processor generation.

MAQAO Performance Analysis and 

Optimization Tool
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OUR APPROACH

NOBODY WANTS PROBLEMS EVERYBODY WANTS SOLUTIONS ☺

➢ It is nice to correlate source line numbers with hardware counters 
values but this is not enough because the user cannot change 
hardware in general ☺

➢ We should concentrate on the knobs that the code developer has at 
his disposal:

• Better compiler options

• Code restructuring 

• Data restructuring

➢ More precisely, MAQAO (our toolset) will

• Identify well known issues: small trip count, complex control flow, 
lack of vectorization, poor vectorization etc…..

• Use what if methods to predict (more or less accurately) the 
impact of removing the issue

• Also Use what if methods to predict the impact of standard 
transformations: partial of full vectorization etc….

• Use comparison to get a better understanding of code behaviour

GSTS
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MAQAO   “WHAT IF” SCENARIOS: UNICORE

➢ Generate performance estimates for different transformations

➢ Work at the innermost loop level (ASM)

➢ First modify ASM to take into account code transformation: 
“Clean” version (only FP operations are kept), “FP Vector” (only 
vectorizes FP arithmetic), “Full Vector” (vectorizes all FP operations), 
“DL1” (forces all of the operands to come from L1, ……

➢ Second generate performance estimates

• Either using static more or less simplified simulators

• Or embed mofied ASM in the real code and measure it.

➢ Many more what if scenario can be derived: suppressing branches, 
suppressing costly FP operations (Div/SQRT) 

➢ All of thesesv metrics will be reorgniazed and aggregated through 
the Oneview module

WJ_2023
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TYPICAL ONE VIEW GLOBAL TAB

FOCUS: on transformations and 

impact at the application level

MiniQMC (proxy for QMCPACK) 

code running on SKL and ICC 19.

Perfect flow complexity: evaluate

performance gain if innermost

loops had no branches

Iteration count: evaluate the 

impact of having all loop iteration

count over 100

Array Access Efficiency: 

Percentage of Unit Stride access

WJ_2023
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TYPICAL ONE VIEW GLOBAL TAB

FOCUS: on transformations and 

impact at the application level

MiniQMC (proxy for QMCPACK) 

code running on SKL and ICC 19.

FP vectorized: Performance gain if 

all the FP arithmetic operations

were vectorized

Fully vectorized: Performance gain 

if all the FP arithmetic operations+ 

Load/Store instructions  were

vectorized

WJ_2023
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TYPICAL ONE VIEW GLOBAL TAB

FOCUS: on transformations and 

impact at the application level

MiniQMC (proxy for QMCPACK) 

code running on SKL and ICC 19.

Data in L1 cache: Performance 

gain if all of the operands are 

coming from L1

WJ_2023



28

ONE VIEW: LOOP TAB (2)

MINIQMC: ARM Clang + ARM PL

WJ_2023
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“WHAT IF” SCENARIOS MULTICORE (1) 

➢ Evaluate the performance impact of code transformation.

➢ Rely on performance measurement (either profiling or tracing
(OMPT))

➢ Generate performance estimate:

▪ Perfect OpenMP + MPI + Pthread: for each thread, get rid of
time spent in OpenMP, MPI, Thread libraries and then takes max 

▪ Perfect OpenMP + MPI + Pthread + Perfect Load Distribution: 
for each thread, get rid of time spent in OpenMP, MPI, Thread 
libraries and then takes average

➢ Performance estimate generates either globally or at the loop level

WJ_2023
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WHAT IF MUTICORE SCENARIO

WJ_2023

GROMACS running on a 2x 64 cores AMD EPYC7H12:. The dataset was chosen small 
enough to show scaling issues with more than 16 cores . 

r0 (resp. r1 , 
r2, etc…) 
denotes 
runs on 1 
(resp. 2, 4 
etc…) cores
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MAQAO is used for optimizing industrial and academic HPC applications:

➢ QMC=CHEM (IRSAMC)

• Quantum chemistry

• Speedup: > 3x

▪ Optimization: moved invocations of functions with identical parameters out of the loop 
body 

➢ Yales2 (CORIA)

• Computational fluid dynamics

• Speedup: up to 2.8x

▪ Optimization: removing double structure indirections 

➢ Polaris (CEA)

• Molecular dynamics

• Speedup: 1.5x – 1.7x

▪ Optimization: enforcing loop vectorization through compiler directives

➢ AVBP (CERFACS)

• Computational fluid dynamics 

• Speedup: 1.08x – 1.17x

▪ Replaced divisions by reciprocal multiplications

▪ Complete unrolling of loops with a small number of iterations

A few Success stories
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FIRST WRAP UP ON MAQAO/OV

➢ Optimizing (complex) for complex recent architectures is becoming 
more and more difficult

➢ We need a new generation of performance tools to guide the 
code/developer through that task

MAQAO/ONE VIEW provides a new approach

➢ Provides an application centric view

➢ Provides synthetic/aggregated view meaningful for the user

➢ Provides performance estimates of potential gains (what if 

scenarios)

➢ + Other goodies: wait for the next talks….
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ENERGY: New and mandatory challenges

C: Capacity: performance metric (Flops per cycle, Transactions per 
cycle, etc….)

E: Energy consumed by a computation

➢ Only maximizing C is no longer a correct objective because it might 
lead to unacceptable power/energy costs

➢ Only minimizing E is not a correct objective either because it leads to 
low capacities.

➢ Race to Halt strategies are also too short minded because they 
essentially assume constant power

33
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Performance and energy models are needed

Real Objectives

➢ Maximising a Quality metric (C, C/E) under constraints (Constant 
Power, Constant Capacity)

➢ To be correctly addressed, such objectives needs performance 
models which will use as an essential component “measurements”

➢ Performance tools needs to add predictive power to predict power 
behavior and performance behavior. 

There is still a long way to go……

A better title for this talk:  “What a Long Strange Trip It’s Been”

34
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