|| IENNA
8 CIENTIFIC
HLUSTER

Advanced parallel programming — MPI+X
MPI| + OpenMP + OpenMP offloading

Claudia Blaas-Schenner and Ivan Vialov

VSC Research Center, TU Wien, Vienna, Austria

TREX Workshop: Code Tuning for the Exacale @ Bratislava, June 5, 2023

Abstract

TREX Workshop: Code Tuning for the Exascale
Slovak Academy of Sciences, Bratislava, Slovakia
Day 1 - 05.06.2023

Claudia Blaas-Schenner and lvan Vialov (VSC Research Center, TU Wien, Vienna, Austria)

Advanced parallel programming — MPI+X: Modern HPC systems are clusters of shared-memory nodes and especially the
pre-exascale and exascale systems are accelerated with one to several GPUs per node. While the Message Passing
Interface (MPI) is the dominant model to parallelize across nodes, there is a need to combine MPI with other programming
paradigms such as OpenMP to fully exploit shared-memory within the nodes and to be able to offload heavy compute task to
the GPUs.

In this one day tutorial, we will briefly cover MP1+OpenMP+OpenMP offloading.
We will explain how to properly tackle NUMA (non-uniform memory access) architectures and put a special focus on pinning.

In the hands-on labs we will play around with affinity and the participants will get a good grasp about how pinning influences
performance.

https://trex-coe.eu/events/trex-workshop-code-tuning-exascale

2/110

https://trex-coe.eu/events/trex-workshop-code-tuning-exascale

(e Acknowledgement - subset of:

Hybrid Programming in HPC — MPI+X

Claudia Blaas-Schenner! Georg Hager? Rolf Rabenseifner?

claudia.blaas-schenner@tuwien.ac.at georg.hager@fau.de rabenseifner@hlrs.de

'VSC Research Center, TU Wien, Vienna, Austria (hands-on labs)
2) Erlangen National High Performance Computing Center (NHR@FAU), FAU, Germany
3 High Performance Computing Center (HLRS), University of Stuttgart, Germany

PTC ONLINE COURSE @ VSC Vienna, Dec 12-14, 2022

http://tiny.co/MPIX-VSC |

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

https://doi.org/10.5281/zenodo.7566873
http://tiny.cc/MPIX-VSC

General outline

Introduction

Programming Models

= MPI + OpenMP on multi/many-core + Exercises

MPI + Accelerators + Exercises

Introduction

Hardware and programming models
Hardware Bottlenecks

Questions addressed in this tutorial
B : Cost-B fit Caloulati

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hardware and programming models

“GPGPU/Phi
E

| PCle

Socket 1

| Multi-core
CPU

Socket 2

| Multi-core
CPU

| PCle

Socket 1

| Multi-core
CPU

Socket 2

| Multi-core
CPU

Node Interconnect

MPI + threading
= OpenMP

MPI + accelerator

= OpenMP accelerator support

Pure MPl communication

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

6/110

Options for running code on multicore clusters

Node Node

Socket 1 Socket 1

| _Quad-core_ _ | _Quad-core_ _
CPU CPU

00000

Socket 2 Socket 2

| _Quad-core_ _ | _Quad-core_ _
CPU CPU

Node Interconnect

= Which programming model
is fastest?

MPI everywhere?

Fully hybrid

MPI & OpenMP?

Something between?
(Mixed model)

Often hybrid programming
slower than pure MPI
— Examples, Reasons,

oo
1

4

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

7/110

More Options with accelerators

“GPGPU/Phi
— I
I PCle I PCle
Socket 1 Socket 1
| Multi-core_ oo | Multi-core_
CPU CPU
Socket 2 Socket 2
| Multi-core_ | Multi-core_
CPU CPU

Node Interconnect

Hierarchical hardware
= Many levels

Hierarchical parallel programming

= Many options for MPI+X:
one MPI process per

= node
- CPU %,
: 6, s .
- ccNUMA domain %, i
Yy
L] 260, 7%
4_.3
- core
= hyper-thread

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

8/110

Dual-CPU ccNUMA + accelerator node architecture

Actual topology of a modern compute node

smallest possible
ccNUMA domain

EC e
el BJEl
Halii
ECH

0

accelerator
hyper-thread

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

9/110

Hardware bottlenecks

= Multicore cluster
= Computation

= Memory bandwidth T

= Intra-CPU communication (i.e., core-to-core) | 65

= Intra-node communication (i.e., CPU-to-CPU) .

= Inter-node communication g

= Cluster with CPU+Accelerators TNe— g

= Within the accelerator NG %
- Computation =
. Memory bandwidth 8
- Core-to-Core communication . NIC—

= Within the CPU and between the CPUs J
. See above T e

= Link between CPU and accelerator | B

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
10/110

Example: Hardware bottlenecks in SpMV

= Sparse matrix-vector-multiply with stored matrix entries
> Bottleneck: memory bandwidth of each CPU

= SpMV with calculated matrix entries

(many complex operations
per entry)
> Bottleneck: computational
speed of each core _
= + °
= SpMV with highly scattered

matrix entries

> Bottleneck: Inter-node
communication

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
11/110

Questions addressed in this tutorial

What is the performance impact of system topology?

How do | map my programming model on the system to my advantage?
= How do | do the split into MP1+X?
= Where do my processes/threads run? How do | take control?
= Where is my data?
= How can | minimize communication overhead?

How does hybrid programming help with typical HPC problems?
= Can it reduce communication overhead?
= Can it reduce replicated data?

How can | leverage multiple accelerators?
= What are typical challenges?

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
12/110

Programming models

* MPI + OpenMP on multi/many-core +Exercises

+ MPl+MPI-3.0-shared-memory+Exercise
5 MP] icati :

* MPI + Accelerators

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models

13/110

Programming models
- MPI + OpenMP

General considerations
How to compile, link, and run
Hands-on: Hello hybrid!
System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP 14/110

Programming models
- MPI + OpenMP

General considerations > General considerations

How to compile, link, and run
Hands-on: Hello hybrid!
System topology, ccNUMA, and memory bandwidth

Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - General considerations 15/110

Potential advantages of MPI+OpenMP

Simple level

» Leverage additional levels of parallelism

Scaling to higher number of cores
Adding OpenMP with incremental additional parallelization

= Enable flexible load balancing on OpenMP level

Fewer MPI processes leave room for assigning workload more evenly
MPI processes with higher workload could employ more threads
Cheap OpenMP load balancing (tasking, dynamic/guided loops)

= Lower communication overhead (possibly)
Few “fat” MPI processes vs many “skinny” processes
Fewer messages and smaller amount of data communicated

= Lower memory requirements due to fewer MPI processes

Reduced amount of application halos & replicated data
Reduced size of MPI internal buffer space

Advanced level
= Explicit communication/computation overlap

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - General considerations

16/110

MPI + any threading model

Special MPI init for multi-threaded MPI processes is required:

int MPI_Init thread(int * argc, char ** argv|[],
int thread level required,
int * thread level provided);
int MPI Query thread(int * thread level provided);
int MPI _Is main_thread(int * flag);

may imply higher
latencies due to

* Possible values for thread level required (increasin some internal locks

MPI THREAD SINGLE Only one thread will exe
MPI_THREAD FUNNELED Only main® t will make MPI-calls

MPI THREAD SERIALIZED Multi reads may make MPI-calls, but only one at a time
MPI_ THREAD MULTIPLE Multiple threads may call MPI, with no restrictions

* returned thread level provided may be less or more than thread level required
2> if (thread level provided < thread level required) MPI_Abort(..);

1 Main thread = thread that called MPI_Init_thread. recommended directly
Recommendation: Start MPI_Init_thread from OpenMP master thread > OpenMP master = MPI main thread after MPI_Inlt_thread

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> General considerations 17/110

Hybrid MPI+OpenMP masteronly style

Advantages
£ it ti . . .
23 ety - Simplest possible hybrid model
#pragma omp parallel .
numerical code = Thread-parallel execution and MPI
/*end omp parallel */ communication strictly separate
/* on master only */ = Minimally required MPI thread support level:
MPI_Isend() ; MPI_THREAD FUNNELED
MPI Irecv(); .
MPI_Waitall() ; Major Problems
} /* end fox loop */ - All other threads are sleeping

while master thread communicates!

= Only one thread per process communicating

masteronly style: - possible underutilization of network

MPI onIy outside of bandW|dth
parallel regions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> General considerations 18/110

Masteronly style within large parallel region

#pragma omp parallel = Barrier before MPI required
for (iterations) {) o
#pragma omp for - May be implicit
for(i=0; ...) { = Prevent race conditions on communication
// ... numerics buffer data
} // barrier here _ _
#pragma omp single - Between multi-threaded numerics
{ 0 - and MPI access by master thread
MPI Isend() .
MPI_Irecv(); - Enforce flush of variables

MPI Waitall();
} // Barrier here

} /* end iter loop */ = Barrier after MPI required
= May be implicit

= Numerical loop(s) may need communicated
data

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> General considerations 19/110

Programming models
- MPI + OpenMP

How to compile, link, and run General considerations

> How to compile, link, and run
Hands-on: Hello hybrid!
System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - How to compile, link, and run 20/110

How to compile, link and run

= Use appropriate OpenMP compiler switch (-openmp, -fopenmp,
-mp, -gsmp=openmp, ...) and MPI compiler script (if available)

= Link with MPI library

= Usually wrapped in MPI compiler script

= If required, specify to link against thread-safe MPI library
- Often automatic when OpenMP or auto-parallelization is switched on

= Running the code
= Highly non-portable — consult system docs (if available...)

= Figure out how to start fewer MPI processes than cores per node
= Pinning (who is running where?) is extremely important - see later

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - How to compile, link, and run 21/110

Compiling from a single source

Make use of pre-defined symbols

#ifdef OPENMP # OPENMP defined with -gopenmp
// all that is special for OpenMP
#endif

#ifdef USE MPI # USE MPI defined with -DUSE MPI
// all that is spec1a1 for MPI
#endif

#ifdef USE MPI
MPI Init(...);
MPI Comm rank(..., &rank);

MPI Comm size(..., &size);

#else # recommended for non-MPI
rank = 0;
size = 1;

#endif

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models > MPI + OpenMP - How to compile, link, and run 22/110

Compiling from a single source

Handling compilers

mpiicc -DUSE _MPI -gopenmp
Intel MPI + Intel C —qopenmp

Intel MPI + Intel Fortran ~ ™®*ifort -fpp -DUSE MPI -qopenmp

ifort -fpp —-gopenmp
. OpenMP| + gcCcC mpicc -DUSE_MPI -fopenmp
gcc -fopenmp
= OpenMPI + gfortran mpif90 -cpp -DUSE_MPI -fopenmp
gfortran -cpp -fopenmp

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - How to compile, link, and run 23/110

Examples for compilation and execution

= Cray XC40 (2 NUMA domains w/ 12 cores each), one process (12 threads) per
socket

= ftn -h omp

= OMP_NUM THREADS=12 aprun -n 4 -N 2 \
-d $OMP NUM THREADS ./a.out

= Intel Ice Lake (36-core 2-socket) cluster, Intel MPI/OpenMP, one process
(36 threads) per socket

= mpiifort -gopenmp
= mpirun -ppn 2 -np 4 \
-env OMP_NUM THREADS 36

-~env I_MPI PIN DOMAIN socket \
-env KMP AFFINITY scatter ./a.out

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - How to compile, link, and run 24/110

Examples for compilation and execution

= |ntel Ice Lake (36-core 2-socket) cluster, Intel MPI/OpenMP + likwid-mpirun, one
process (36 threads) per socket
= mpiifort -gopenmp
» likwid-mpirun -np 4 -pin S0:0-35 S1:0-35 ./a.out

= |ntel Skylake (24-core 2-socket) cluster, GCC + OpenMPI 4.1, one process
(24 threads) per socket
= mpif90 -fopenmp
- OMP_NUM THREADS=24 OMP PLACES=cores OMP PROC BIND=close \
mpirun --map-by ppr:1l:socket:PE=24 ./a.out

= Dito, two processes per socket (12 threads each)
OMP NUM THREADS=12 OMP PLACES=cores OMP PROC BIND=close \

mpirun --map-by ppr:2:socket:PE=12 ./a.out

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - How to compile, link, and run 25/110

Learn about node topology

= A collection of tools is available
= numactl --hardware (numatools)
= 1stopo --no-io (part of hwloc)
= cpuinfo -A (part of Intel MPI)

= likwid-topology (part of LIKWID tool suite http://tiny.cc/LIKWID)

$ likwid-topology -c -g

CPU name: Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
CPU type: Intel Xeon IvyBridge EN/EP/EX processor
CPU stepping: 4

dkhkhhkhhdhdhhhdhdhdhhbdhdbhdhdhdbhdhbddbhdrdhdbrdhbdhdbhdhdhdbhdhdhdbrdrdhbdrkdhdhbhkdhrddbhdrddbrdrddbrdrdrrd

Hardware Thread Topology
R R R R SR RS S S SRR SRR SR SRS SRR RS SR SRR SRS SR SRS S S E S E SR SRR E R SRR S SRS EEEEEEEEEEREEEEEEEEEE

Memory

Sockets: 2 VSC-3: 1 node = 2 sockets (Intel Ivy Bridge)
Cores per socket: 8 \ with 8 cores + 2 HCAs /
Threads per core: 2
[... Some output omitted ...]
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
26/110

Hybrid Programming — MPI+X = Programming models - MPI + OpenMP - How to compile, link, and run

http://tiny.cc/LIKWID

Learning about node topology

(...cont...)

R R R R R R R R R SR R R R R R R R R R R R R R R R R R

Graphical Topology

LR R R SR R SR S SRR R SR R SRS R R R RS R RS R RS E RS E R R R EER RS R

Socket O: Caveat:
= N Numbering may differ for
| #-mmmme- oo + b + b MR e i different setups of same CPU!
| |o16 | | 117 | | 218 | | 319 | Vo ——

| +==m—- + e + e + o + o + o + Fmmm——— + Fmmmm—— + |

| +==m—- + e + e + o + o + o + Fmmm———m + Fmmmm—— + |

| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |

| +==m—- + e + e + o + o + o + Fmmm———m + Fmmmm—— + |

| +==m—- + e + e + o + o + o + Fmmm——— + Fmmmm—— + |

| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |

| +==m—- + e + e + o + o + o + Fmmm———m + Fmmmm—— + |

| A e + |

| | 20MB | |

| A e + |
- +

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models - MPI + OpenMP - How to compile, link, and run

27/110

Learning about node topology

(...cont...)

EEE RS R

Graphical Topology

EEE RS R

Socket 1:

R S S S +
| +==mmm—— + e + o + o R R, + Fmmmm———m + e R R, + |
| | 824 || 925 | | 1026 | | 1127 | | 1228 | | 1329 | | 1430 | | 1531 | |
| +==mmm—— + e + o + o R R, + Fmmmm———m + e R R, + |
| +==mm—— + e + o + o R R, + Fmmmm———m + e R R, + |
| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |
| +==mm—— + e + o + o R R, + Fmmmm———m + e R R, + |
| +==mmm—— + e + o + o R R, + Fmmmm———m + e R R, + |
| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |
| +==mmm—— + e + o + o R + Fmmmm———m + e R R, + |
| A + |
|1 20MB |1
| A + |
Sy S S +

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models > MPI + OpenMP > How to compile, link, and run 28/110

Programming models
- MPI + OpenMP

HandS'On #1 General considerations

How to compile, link, and run
> Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth

H e I I O hyb ri d ! Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - Exercise 29/110

Hands-On #1

he-hy - Hello Hybrid! - compiling, starting
1. FIRST THINGS FIRST - PART 1: find out about a (new) cluster - login node

2. FIRST THINGS FIRST - PART 2: find out about a (new) cluster - batch jobs

3. MPI+OpenMP: :TODO: how to compile and start an application
how to do conditional compilation

4. MPI+OpenMP: :TODO: getto know the hardware - needed for pinning

- see: TODO.README

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - Exercise 30/110

Programming models
- MPI + OpenMP

SyStem top()logy, CCNUMA, General considerations

How to compile, link, and run

and memory bandWidth Hands-on: Hello hybrid!

> System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and performance 31/110

What is “topology”?

Where in the machine does core (or hardware thread) #n reside?

— —

Why is this important?

ooepyu| Aowsy

Core #6, HW thread 0 _
= Resource sharing (cache,

data paths)

___________ Core #11. HW thread 1 = Communication efficiency
i | (shared vs. separate caches,
buffer locality)

= Memory access locality
(ccNUMA!)

Wi
adepiaju) Aows iy

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP = Topology and performance 32/110

Compute nodes — caches

Latency € typical > Bandwidth e I I
v] oo] e] [el ot [2 [[] [] Iri[v [r] oo] e e] ;
1-2 ns L1cache 200 GBI/s -3-5“'““ i ““IE

3-10ns L2/L3cache 50 GB/s e [

\ VSC-3: 1 node = 2 sockets (Intel lvy Bridge) with 8 cores + 2 HCAs J

100 ns memory %10 éi?s

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP -> Topology and performance 33/110

Ping-Pong Benchmark — Latency

Intra-node vs. inter-node on VSC-3

= nodes = 2 sockets (Intel lvy Bridge) with 8 cores + 2 HCAs
= inter-node = IB fabric = dual rail Intel QDR-80 = 3-level fat-tree (BF: 2:1/ 4:1)

myID = get process ID() Latency MPI_Send(...)

if (myID.eq.0) then [us]
targetID = 1 HS
S = get_walltime () OpenMPI Intel MPI
call Send message (buffer,N,targetID) intra-socket 0.3 ys 0.3 ys
call Receive message (buffer, N, targetID) inter-socket 0.6 us 0.7 us
E = get walltime() i i
GBYTES = 2*N/ (E-S)/1.d9 ! Gbyte/s rate IB -1- edge 1.2 us 1.4 us
TIME = (E-S)/2*1.dé6 ! transfer time

else IB -2- leaf 1.6 ys 1.8 s
targetID = 0 IB -3- spine 2.1 s 2.3 ys

call Receive message (buffer, N, targetID)
call Send message (buffer,N, targetID)
endif

=>» Avoiding slow data paths is the key to most performance optimizations!

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP -> Topology and performance 34/110

Ping-Pong 1-on-1 Benchmark — Effective Bandwidth

intra-node vs.
inter-node on VSC-3 8000 1

@ o
inter-node: a 7000 Intel-MPI: solid / dark
B fabric = _ :
Intel QDR-80 —
3-level fat-tree % 5000 |
BF: 2:1/4:1 S 4000 | WM
QDR-80 (2 HCAs) % intra-socket — P
link: 80 Gbit/s Re) 3000 L V
max 8 Gbytes/s o inter-socket
eff. 6.8 Gbytes/s ..3 2000]
- 1 HCA = % (2 HCAs) Q W inter-node -1-
/“61-300’ inter-node -2- |
,/M
" 0 T = ‘4 ‘ 6 | Not tati
10 10 10° 10 10° 10° f° relpresf,’” ?_ N
nodeft= of real applications
o[ez message length [Bytes] > see next slide(s)

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and performance 35/110

Multiple communicating rings

Benchmark halo_irecv_send multiplelinks_toggle.c _
- - - - See HLRS online courses

= Varying message Size, http://www.hlirs.de/training/self-study-materials

e > Practical > MP! tar.
= number of communication cores per CPU, and 3 subdirectory MPllaourse/C/sided!

= four communication schemes (example with 5 communicating cores per CPU)

N)

node | & ——ovorat)
0 I several cores I I CPU I E CPU

_ Intra-CPU: core-to-core) klntra-node: CPU-to-CPU J

I N N

@ J(]) el | 1) @
4| SR] [CPU] (9| SraE!] o 9| ¢/ 9| ol CPU]
YUl Inter-node, only AL l[llll}| Inter-node and
\ JUUUU with one CPU/ \ JUUUL Juuiovu all gPUs communicate -

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models > MPI + OpenMP -> Topology and performance 36/110

OpenMP barrier synchronization cost

Comparison of barrier synchronization cost with increasing
number of threads

Intel 17.0.4 gcc 6.2.0
7000 I | | | | 20000 | | | I |
= 2x Haswell 14-core (CoD mode) conol. " O el -{I’%H |+ OMP parallel for !}@
. T [~ — OMP for — OMP for
= Optimistic measurements L« OMPbarrior "exf? 5000k OMP barier *
(repeated 1000s of times) >000F 1
= No impact from previous 4000
. . . - 10000
activity in cache 3000
))] 2000 5000
—> Barrier sync time highly dependent g
on system topology & OpenMP 1000F _
i i I | ! | ! | | 1 | ! |
runtime implementation oU— oL
cores # cores

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models > MPI + OpenMP -> Topology and performance 37/110

Accumulated bandwidth saturation vs

. # cores

1000 - A(:) = B(:) + C(:) * D(:)
on each core

Scalable BW in L1,
L2, L3 cache

r—
2
~~
a8
O,
e
)
5 —L1
= =2
© A
< 100 L3
O
o -<Memory
= T e,
< R RE e EE RE|
O P IPI[PIIPI[PIIPIPIPL
o a2 e e
(@] | L3 !
(@) Saturation effect in [Memorymnterface l
< memory
1 O [Memory]
T T 1
Sandy Bridge socket (3 GHz
1 2 #cores 4 8 y Bridg (3 GHz)
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and performance 38/110

Programming models
- MPI + OpenMP

Memory placement General considerations

How to compile, link, and run

O n CCN U MA syste ms Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
> Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP -> Topology and performance 39/110

A short introduction to ccNUMA

= ccNUMA:

= whole memory is transparently accessible by all processors

but physically distributed

with varying bandwidth and latency

and potential contention (shared memory paths)

Memory placement occurs with OS page granularity (often 4 KiB)

T o o e T s I
02000 0 A A (PR lfelfr PP 020 0 N A A
[t o i |[1D o |1 |[1D b ||
1 L2 L2 L2 L2 L2 L2 ! 1 L2 L2 L2 L2 L2 L2 ! 1 L2 L2 L2 L2 L2 L2 |
: i : i | i

il Memory terface | e |

|
Memor] hterfac
|

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and performance 40/110

How much bandwidth does non-local access cost?

= Example: AMD “Naples” 2-socket system (8 chips, 2 sockets, 48 cores)Z
STREAM Triad bandwidth measurements [Gbyte/s]

CPU node

Memory node

Socket 0

Highest bandwidth
between memory
and cores of one

NUMA domain

Do you want to run
your application
3 times slower?

(If your appl. is memory
_ bandwidth bound)

2 21.8 | 21.9

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and performance 41/110

Avoiding locality problems

= How can we make sure that memory ends up where it is close
to the CPU that uses it?

= See next slides (first-touch initialization)

= How can we make sure that it stays that way throughout program
execution?

= See later in the tutorial (pinning)

= Taking control is the key strategy!

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and performance 42/110

Solving Memory Locality Problems: First Touch

= "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the
processor that first touches it!

= Consequences
= Process/thread-core affinity is decisive!

= With OpenMP, data initialization code becomes important
even if it takes little time to execute (“parallel first touch”)

= Parallel first touch is automatic for pure MPI

= |f thread team does not span across NUMA domains, memory mapping is not a
problem

= Automatic page migration may help if memory is used long enough

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP -> Topology and performance 43/110

Solving Memory Locality Problems: First Touch

= "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the processor

that first touches it!
= Except if there is not enough local memory available

= Some OSs allow to influence placement in more direct ways
- = libnuma (Linux)

= Caveat: “touch” means “write,” not “allocate” or “read”

= Example:

double *huge = (double*)malloc (N*sizeof (double)) ;
// memory not mapped yet
for (i=0; i<N; i++) // or i+=PAGE SIZE

huge[i] = 0.0; // mapping takes place here!

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and performance 44/110

Most simple case: explicit initialization

integer,parameter :: N=10000000
double precision A(N), B(N)

A=0.d0

ISOMP parallel do
doi=1, N

B(i) = function (A(i))
end do
ISOMP end parallel do

integer,parameter :: N=10000000
double precision A(N) ,B(N)
1SOMP parallel
ISOMP do schedule(static)
do i=1, N
A(i)=0.d0
end do
ISOMP end do

1SOMP do schedule (static)
doi=1, N

B(i) = function (A(i))
end do

1SOMP end do
1SOMP end parallel o

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP = Topology and performance 45/110

Handling ccNUMA in practice

= Solution A
= One (or more) MPI process(es) per ccNUMA domain
= Pro: optimal page placement (perfectly local memory access) for free
= Con: higher number (>1) of MPI processes on each node

= Solution B
= One MPI process per node or one MPI process spans multiple ccNUMA domains
= Pro: Smaller number of MPI processes compared to Solution A

- Cons:

- Explicitly parallel initialization needed to “bind” the data to each ccNUMA domain
- otherwise loss of performance

- Dynamic/guided schedule or tasking = loss of performance
= Thread binding is mandatory for Aand B! — Never trust the defaults! a

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and performance 46/110

Conclusions from the observed topology effects

= Know your hardware characteristics:
= Hardware topology (use tools such as likwid-topology)

= Typical hardware bottlenecks
- These are independent of the programming model!

= Hardware bandwidths, latencies, peak performance numbers
= Know your software characteristics

= Typical numbers for communication latencies, bandwidths

= Typical OpenMP overheads
= Learn how to take control

= See next chapter on affinity control
» Leveraging topology effects is a part of code optimization!

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MP1+X - Programming models - MPI + OpenMP - Topology and performance

47/110

Programming models
- MPI + OpenMP

Topology and affinity on multicore ceneral consigerations

How to compile, link, and run
Hands-on: Hello hybrid!
System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
> Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - Topology and affinity on multicore 48/110

Thread/Process Affinity (“Pinning”)

Highly OS-dependent system calls
= But available on all OSs
= Non-portable
Support for user-defined pinning for OpenMP threads in all compilers
= Compiler specific
= Standardized in OpenMP (places)
= Generic Linux: taskset, numactl, likwid-pin

Affinity awareness in all MPI libraries
= Not defined by the MPI standard (as of 4.0)

= Necessarily non-portable feature of the startup mechanism (mpirun, ...)

Affinity awareness in batch scheduler
= Batch scheduler must work with MPI + OpenMP affinity
= Difficult, non-portable, every combination is different

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MP1+X > Programming models - MPI + OpenMP - Topology and affinity on multicore

49/110

Anarchy vs. affinity with OpenMP STREAM

600 ' | ' T ' 1 ' T
OpenMP-parallel T
00 A (:)=A(:)+s*B(:)_ - 7
- T . |) | Core-
_ B __"_’_ _ "_ l Memory Interface | Il Memory Interface | memory
é 400 . -7 (Memory) I\[Memory l (%I(\)/IUCF;))
£ 300 THI T -
%
2 200} LT s
R --F_“_--“'"__—- § l Memoallnterface | [Memogllnterface]
100~ No pinning Mean-max-min | FUjitSU [Memory] [Memory]
. | | | | 1 | 2(? runs Iper pollnt AB4EX CPU T | . | . ‘ | .
0 10 20 30 40 50 L
cores 700 _
There are several reasons for caring about affinity: < 0r]
3 s00[-]
Eliminating performance variation St]
& 3001 y o -
Making use of architectural features 200 (]fﬁmsfgtM%”f?r'snt?
T . 100; .
Avoiding resource contention S
0() 10 20 4 con 30 40 50 @

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Topology and affinity on multicore 50/110

OMP_PLACES and Thread Affinity (see OpenMP-4.0 page 7 lines 29-32, p. 241-243)

A place consists of one or more processors. Drocessor is the smallest
Pinning on the level of places. unit to run a thread or task
Free migration of the threads on a place between the processors of that place.

= OMP PLACES=threads
- Each place corresponds to the single processor of a single hardware thread (hyper-thread)
"= OMP_PLACES=cores
- Each place corresponds to the processors (one or more hardware threads) of a single core
"= OMP_ PLACES=sockets
- Each place corresponds to the processors of a single socket (consisting of all hardware threads of one or more cores)
" OMP_PLACES=abstract_name(num_places)
- In general, the number of places may be explicitly defined

< <lower-bound>:<number of entries>[:<stride>] >
= Or with epriCit numbering, e.g. 8 places, each cgg#fsting of%essors:

CAUTION:
= setenv OMP_PLACES "{0,1,2,3},{4,5,677},{8,9,)0,11}, .. {28,29,] The numbers highly depend on hardware
. " " and operating system, e.g.,
setenv OMP_PLACES "{0:4},{4:4},{8:4}, .. {28:4} (0.1} = hyper-threads of 1% core of 1% socket, or
= setenv OMP_PLACES "{0:4}:8:4" {0,1} = 15t hyper-thread of 1st core

of 1stand 2nd socket, or ...

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and affinity on multicore 51/110

OMP_PROC_BIND variable / proc_bind() clause

Determines how places are used for pinning:

FALSE Affinity disabled
TRUE Affinity enabled, implementation defined
strategy
CLOSE Threads bind to consecutive places
SPREAD Threads are evenly scattered among
places
MASTER Threads bind to the same place as the

master thread that was running before the

Used for parallel region was entered

nested
OpenMP

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and affinity on multicore 52/110

Some simple OMP_PLACES examples

= |ntel Xeon w/ SMT, 2x36 cores, 1 thread per physical core, fill 1 socket

OMP_NUM_THREADS=36
OMP_PLACES=cores
OMP_PROC_BIND=close

= |ntel Xeon Phi with 72 cores,
32 cores to be used, 2 threads per physical core

OMP_NUM_THREADS=64
OMP_PLACES=cores (32)
OMP_PROC_BIND=close # spread will also do

= [ntel Xeon, 2 sockets, 4 threads per socket (no binding within socket!)
OMP_NUM_THREADS=8
OMP_PLACES=sockets
OMP_PROC_BIND=close # spread will also do

= Intel Xeon, 2 sockets, 4 threads per socket, binding to cores

OMP_NUM THREADS=8
- .= Always prefer abstract places

OMP PLACES= .
- cores instead of HW thread IDs! -
OMP_PROC_BIND=spread

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Topology and affinity on multicore 53/110

Pinning of MPI processes

= Highly system dependent!

= Intel MPI: env variable I_MPI PIN DOMAIN

= OpenMPI: choose between several mpirun options, e.g.,
-bind-to-core, -bind-to-socket, -bycore, -byslot ...

= Cray’s aprun: pinning by default

= Platform-independent tools: likwid-mpirun
(likwid-pin, numactl)

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Topology and affinity on multicore 54/110

Anarchy vs. affinity with a heat equation solver

2000

I I I
P P P P
1500 - i 3 B el i = il |
2 | @ | I p— e ‘,5
: 1] il
510007 & — { Memory } { Memory }
fg @ 1 2x 10-core Intel Ivy Bridge, OpenMPI
) so0l- No affinity settings
E - high variation 2000
0 I L I 110 I 1|5 I ‘;0
MPI processes 1500 — —
Reasons for caring about affinity: tooo| :

Performance [MLUP/s]

= Eliminating performance variation

With affinity, physical cores, |
= Making use of architectural features filling left socket first:

mpirun -bind-to-core -byslot ..

500 —

= Avoiding resource contention

0 . | 1 | . | . |
5 10 15 20
MPI processes

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Topology and affinity on multicore 55/110

likwid-mpirun: 7 MPI process per node

likwid-mpirun -np 2 -pin N:0-11 ./a.out

Intel MPI+compiler:

KEEEEEE\

[32B | [32xB | [32kB | [32«B | [32¢B | [32kB |

[256kB | [256kB | [256KB | [256KkB | [256KB | [256KB |

| 12 MB |

(& J

KEEEEEE\

[32kB | [32«B | [32kB | [32«B | [32¢B | [32kB |

[256kB | [256KB | [256KkB | [256KB | [256kB | [256KB |

| 12 MB |

(& J

Network

(EEEEEE\

[32k | [32k | [32«B | [32«8 | [32kB | [32kB |

[256kB | [256kB | [256KB | [256KB | [256KB | [256KB |

| 12 MB |
N J

KEEEEEE\

[32«8 | [32xB | [32«8 | [32kB | [32kB | [32B |

[256kB | [256KB | [256KB | [256KB | [256KB | [256KB |

| 12 MB |

& J

OMP_NUM THREADS=12 mpirun -ppn 1 -np 2 -env KMP AFFINITY scatter ./a.out

Node

Node

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MP1+X > Programming models - MPI + OpenMP - Topology and affinity on multicore

56/110

likwid-mpirun: 7 MPI process per socket

likwid-mpirun -np 4 -pin S0:0-5 S1:0-5 ./a.out

Rank O

Rank 2

Intel MPI+compiler:

[e

[32kB | [32kB | | 32kB | | 32kB | [32kB | | 32kB |

[256kB | [256kB | [256KkB | [256KB | [256KB | [256KB |

| 12 MB |

J

N

2l il il il

32kB 32kB 32kB 32kB 32kB 32kB

[256kB | [256KB | [256KB | [256kB | [256KB | [256KB |

| 12 MB |

J

| e e

[32kB | [32kB | [32kB | [32kB | [32kB | [32kB |

[256KB | [256kB | [256kB | [256KB | [256KB | [256KB |

| 12 MB |

BT e e e

J

-

[32kB | [32kB | [32kB | [32kB | [32kB | | 32kB |

[256KB | [256KB | [256KB | [256KB | [256KB | [256KB |

| 12 MB |

J

OMP_NUM THREADS=6 mpirun -ppn 2 -np 4 \
—env I _MPI PIN DOMAIN socket —env KMP AFFINITY scatter . /a.out

Rank 1

Rank 3

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MP1+X > Programming models - MPI + OpenMP - Topology and affinity on multicore

MPI1/OpenMP affinity: Take-home messages

Learn how to take control of hybrid execution!

= Almost all performance features depend on topology and thread placement! (especially if
SMT/Hyperthreading is on)

Always observe the topology dependence of
= Intranode MPI performance
= OpenMP overheads
= Saturation effects / scalability behavior with bandwidth-bound code
Enforce proper thread/process to core binding, using appropriate tools
(- whatever you use, but use SOMETHING)
Memory page placement on ccNUMA nodes

= Automatic optimal page placement for one (or more) MPI processes per ccNUMA domain
(solution A)

= Explicitly parallel first-touch initialization only required for multi-domain MPI processes
(solution B) m

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP -> Topology and affinity on multicore 58/110

Programming models
- MPI + OpenMP

HandS'On #2 General considerations

How to compile, link, and run
Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth

P i n n i n g Memory placement on ccNUMA systems

Topology and affinity on multicore
> Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - Exercise 59/110

Hands-On #1

he-hy - Hello Hybrid! - pinning

5. MPI-pure MPI. compile and run the MPI "Hello world!" program (pinning)

6. MPI+OpenMP:: :TODO: compile and run the Hybrid "Hello world!" program

7. MPI+OpenMP: :TODO: how to do pinning

- see: TODO.README

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - Exercise 60/110

Programming models
- MPI + OpenMP

HandS'On #3 General considerations

How to compile, link, and run
Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth

M aSte ro n Iy hyb ri d J aCO b i Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning
> Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - Exercise 61/110

Example: MPI+OpenMP-Hybrid Jacobi solver

= Source code: See http://tiny.cc/MPIX-VSC

= This is a Jacobi solver (2D stencil code) with domain decomposition and halo exchange
= The given code is MPI-only. You can build it with make (take a look at the Makefile) and run it with something like this (adapt to local
requirements):

$ <mpirun-or-whatever> -np <numprocs> ./jacobi.exe < input

Task: parallelize it with OpenMP to get a hybrid MPI+OpenMP code, and run it effectively on the given hardware.

= Notes:
= The code is strongly memory bound at the problem size set in the input file
= Learn how to take control of affinity with MPI and especially with MPI+OpenMP
= Always run multiple times and observe performance variations
= If you know how, try to calculate the maximum possible performance and use it as a “light speed” baseline

| http://tiny.cc/MPIX-VSC]

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Exercise 62/110

http://tiny.cc/MPIX-VSC
http://tiny.cc/MPIX-VSC

Example cont'd

= Tasks (we assume N, cores per CPU socket):

Run the MPIl-only code on one node with 1,...,N,,...,2*N; processes (1 full node) and observe the
achieved performance behavior

Parallelize appropriate loops with OpenMP INIT
Run with OpenMP and 1 MPI process (“OpenMP-only”) on 1,...,N,,...,2*N, cores, -t
compare with MPI-only run \ 4

halo exchange
Run hybrid variants with different MPI vs. OpenMP ratios

Y

= Things to observe update
subdomain

Run-to-run performance variations

Does the OpenMP/hybrid code perform as well as the MPI code? If it doesn't, fix it!

convergence
or max iter?

| http://tiny.cc/MPIX-VSC]

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP -> Exercise 63/110

http://tiny.cc/MPIX-VSC

Programming models
- MPI + OpenMP

Ove rlappi ng General considerations

. . . How to compile, link, and run
Communication and Computation rendson Heionyria |
System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi
> Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Overlapping comm. & comp. 64/110

Sleeping threads with masteronly style

for (iteration ...)
{

#fpragma omp parallel
numerical code
/* end parallel */

/* on master only */
MPI Send(halos) ;
MPI_Recv (halos) ;

} /*end for loop*/

Node

Socket 1

, aster
thread

.\QQ (X XXX]

Node Interconnect

Node oo
Socket 1

) aster
thread

. \(9
0°Q
P

Problem:
= Sleeping threads are wasting CPU time

Solution:

= Overlapping of computation and
communication

Limited benefit:

= Best case: reduces communication
overhead from 50% to 0%

- speedup of 2x

= Usual case of 20% to 0%
- speedup of 1.25x

= Requires significant work - later

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Overlapping comm. & comp. 65/110

Nonblocking vs. threading for overlapped comm.

= Why not use nonblocking calls?
= Asynchronous progress not guaranteed

= Options (implementation dependent):
- Communication offload to NIC
- Additional internal progress thread (MP1_ASYNC... with MPICH)

= Intranode and internode communication may be handled very differently

= Using threading for communication overlap
= One or more threads/tasks handles communication, rest of team “do the work”
= How to organize the work sharing among all threads?

- Non-communicating threads
- Communicating threads after communication is over

= Not all of the work can usually be overlapped - see next slide

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Overlapping comm. & comp. 66/110

Using threading/tasking for comm. overlap

MPI_nit

—

MPI process MPI process MPI process

l l l

OpenMP
threads
\4 vV VvV Vv \ 4 vV VvV Vv \4 vV VvV VY
| | |
: : 1 MPI
|
{ * *Comm
\ A 2 A / vV VY vV Vv v Y vV VY
\ 4 VL v
MPI_Finalize

MPI_Init

—

MPI process MPI process MPI process

l l l

1 1 1
1 1 1
1 1 1
v VY ‘ \ A A 4 ‘ vV Vv ‘
v V. VY v Vv v VY v VY. VvV Y
\ 4 \ 4 \4
MPI1_Finalize

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Overlapping comm. & comp. 67/110

Explicit overlapping of communication and computation

The basic principle appears simple:

#pragma omp parallel

:‘/
{ y/
// ... do other parallel work %
if (thread ID < 1) { /
MPI Send/Recv ... // comm. halo data /;/
} else {
// Work on data that is independent .

// of halo data

}
} // end omp parallel

// Now work on data that needs the =

// halo data (all threads)

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Overlapping comm. & comp. 68/110

Overlapping communication with computation

Three problems:

= Application problem: separate application into
- code that can run before the halo data is received
- code that needs halo data

- May be hard to do A2y el 1D <)
. . } MPI_Send/Recv
» Thread-rank problem: distinguish } else {

comm. / comp. via thread ID

= Work sharing and
load balancing is ha

rder
- Options /
- Fully manual work distribution
- Nested parallelism }
- Tasking & taskloops
- Partitioned comm (MPI-4.0)

= Optimal memory placement on ccNUMA may be difficult

my thread range=(high-low-1)/(num_threads-1)+1;
my thread low=low+(my thread ID-1)*my thread range;
my thread high=low+ (my thread ID-1+1)
*my thread range;
my thread high=min(high, my thread high) ;
for (i=my_ thread low; i<my thread high; i++) {

error-prone & clumsy

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Overlapping comm. & comp. 69/110

Programming models
- MPI + OpenMP

Com mun ication ove rlap General considerations

How to compile, link, and run
'th O M P t kI Hands-on: Hello hybrid!
WI pe n aS OO pS System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
> Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Overlapping comm. & comp. 70/110

OpenMP taskloop Directive — Syntax

= |Immediately following loop executed in several tasks

= Nota Work-sharing directive! A task can be run by any thread, across NUMA nodes
= Should be executed only by one thread! > ® perfect first touch impossible!

= Fortran:
1SOMP taskloop [clause[[,]clause]...] | Loop iterations must be

independent, i.e., they
do _loop can be executed in

['SOMP end taskloop [nowait]] | parallel
= If used, the end do directive must appear immediately after the end of the loop

= C/C++;
#pragma omp taskloop [clause||[,]clause]...]| new-line
for-loop
= The corresponding for-loop must have canonical shape - next slide

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Overlapping comm. & comp. 71110

OpenMP taskloop Directive — Detalls

= clause can be one of the following:

if ([taskloop:] scalar-expr) [a task clause]
shared (list) [a task clause]
private (list), firstprivate (/ist) [adoffor clause] [a task clause]
lastprivate (/ist) [a doffor clause]
default (shared | none| ..) [a task clause]
collapse(n) [a doffor clause]

grainsize (grain-size) P| Mutually

num_tasks (num-tasks) exclusive

untied, mergeable [a task clause]
final (scalar-expr), priority (priority-value) [a task clause]
nogroup

reduction (operator:list) [a doffor clause]

= do/ for clauses that are not valid on a taskloop:

schedule (type [, chunk]), nowait
linear (list|: linear-step]), ordered [(n)]

Since
OpenMP 5.0!

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models - MPI + OpenMP - Overlapping comm. & comp.

72/110

OpenMP single & taskloop Directives

@D cic+

#pragma omp parallel
{
#pragma omp single

e {
than threads may . . .
be produced to for (i=0; i<30; i++)
achieve a good af[i] = b[i] + £ * (i+1);
load balancing

- }
} /*omp end single*/
} /*omp end parallel*/

[

|ﬂ19le

;-E=:§ﬂ====::

2

Tasks are queued and then
serviced by team of threads

J

/

b(i)+...

i= i= i= Vi:
0,4 59 1014 15,19
a(i)= a()= a(i)= a(i)=
b(i)+. b(i)+... b(i)+:.. b(i)+...
| |
i= i=
20,24 25,29
a()= a()=
B+

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models - MPI + OpenMP - Overlapping comm. & comp.

73/110

Comm. overlap with task & taskloop Directives — C/C++

D

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task~_

{ // MPI halo communication: Single
MPI_Send/Recv... P2l
Number of // numerical loop using halo data: l” N
tasks may —— #pragma omp taskloop Ny Loop loop Loop
be for (i=0; i<100; i++) PN~ portio] PRriior] portion
influenced a[i] = b[i] +b[i-1]+b[i+1]+b[i-2]..; haild vithout ~ withost Withou
with } /*omp end of halo task */ Condnt{ | halo halo halo
grainsize or - A
num_tasks // numerical loop without halo data: '-.COP QP L_oop Loop
clauses #pragma omp taskloop U N L Wit | portion
for (i=100; i<10000; i++) _ oon] ol [ecp] |pitheu
a[i] = b[i] +b[i-1]+b[i+1l]+b[i-2]..; it . With In! Kt halo
.o T I I]
} /*omp end single */ |
} /*omp end parallel*/
=]
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
74/110

Hybrid Programming — MPI+X = Programming models - MPI + OpenMP - Overlapping comm. & comp.

Partitioned Point-to-Point Communication

= New in MPI-4.0:
Partitioned communication is “partitioned” because it allows for multiple

contributions of data to be made, potentially, from multiple actors (e.q.,
threads or tasks) in an MPI process to a single communication operation.

= A point-to-point operation (i.e., send or receive)
= can be split into partitions,
= and each partition is filled and then “sent” with MPT Pready by a thread;

= same for receiving

= Technically provided as a new form of persistent communication.

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Overlapping comm. & comp. 75/110

Programming models
- MPI + OpenMP

H a n d S -O n #4 General considerations

How to compile, link, and run
Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth

Taskloop-based hybrid Jacobi Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

: GCase-study—TFhe-Multi-Zore-NASParallel Benchmarks
9 o ptl O n a I Hands-on: Masteronly hybrid Jacobi
EEE

Overlapping communication and computation
Communication overlap with OpenMP taskloops
> Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + OpenMP - Exercise 76/110

Programming models
- MPI + OpenMP

M al N advantag eS, General considerations

How to compile, link, and run
Hands-on: Hello hybrid!

d I Sad Va n tag eS y System topology, ccNUMA, and memory bandwidth

Memory placement on ccNUMA systems

CO n CI u S i O n S Topology and affinity on multicore

Hands-on: Pinning
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

> Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Conclusions 77/110

Load Balancing with hybrid programming

On same or different level of parallelism
OpenMP enables

= cheap dynamic and guided load-balancing
= via a parallelization option (clause on omp for / do directive)

= without additional software effort #pragma omp parallel for schedule (dynamic)
= without explicit data movement for (i=0; i<n; i++) {
/* poorly balanced iterations */ ..
= On MPI level }

= Dynamic load balancing requires moving of parts of the data structure through the network
= Significant runtime overhead
= Complicated software -> rarely implemented

MPI & OpenMP

= Simple static load balancing on MPI level, medium-quality,
dynamic or guided on OpenMP level cheap implementation

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Conclusions 78/110

MPI1+OpenMP: Main advantages

Increase parallelism
= Scaling to higher number of cores
= Adding OpenMP with incremental additional parallelization
Lower memory requirements due to smaller number of MPI processes
= Reduced amount of application halos & replicated data
= Reduced size of MPI internal buffer space
= Very important on systems with many cores per node
Lower communication overhead (possibly)
= Few multithreaded MPI processes vs many single-threaded processes
= Fewer number of calls and smaller amount of data communicated
= Topology problems from pure MPI are solved
(was application topology versus multilevel hardware topology)
Provide for flexible load-balancing on coarse and fine levels

= Smaller #of MPI processes leave room for assigning workload more evenly
= MPI processes with higher workload could employ more threads

Additional advantages when overlapping communication and computation:

= No sleeping threads

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Conclusions

791110

MPI1+OpenMP: Main disadvantages & challenges

Non-Uniform Memory Access:
= Not all memory access is equal: ccNUMA locality effects
= Penalties for access across NUMA domain boundaries
= First touch is needed for more than one NUMA domain per MPI process
= Alternative solution:
One MPI process on each NUMA domain (i.e., chip)
Multicore / multisocket anisotropy effects
= Bandwidth bottlenecks, shared caches
= Intra-node MPI performance: Core < core vs. socket < socket
= OpenMP loop overhead

Amdahl’s law on both, MPIl and OpenMP level
Complex thread and process pinning

Masteronly style (i.e., MPI outside of parallel regions)

= Sleeping threads

Additional disadvantages when overlapping communication and computation:

= High programming overhead

= OpenMP is only partially prepared for this programming style - taskloop directive

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Conclusions

80/110

Questions addressed in this tutorial

It's massive
How do | map my programming model on the system to my advantage?

- How do | do the split into MPI+X? i Problem
- Where do my processes/threads run? How do | take control? SLEREMSA

. i ?
Where is my data’ | CONUMA first- Process/thread
= How can | minimize communication overhead? ‘ touch placement affinity

How does hybrid programming help with typical HPC problems?
= Can it reduce communication overhead?
= Can it reduce replicated data?

What is the performance impact of system topology? \‘

How can | leverage multiple accelerators?
= What are typical challenges?

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + OpenMP > Conclusions 81/110

Conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Conclusions 82/110

Major advantages of hybrid MPI+OpenMP

In principle, none of the programming models perfectly fits to
clusters of SMP nodes

Major advantages of MPI+OpenMP:
= Only one level of sub-domain “surface-optimization”:
= SMP nodes, or
= Sockets or NUMA domains
» Second level of parallelization
= Application may scale to more cores
= Smaller number of MPI processes implies: ~
= Reduced size of MPI internal buffer space
= Reduced space for replicated user-data _

Most important arguments
on many-core systems

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Conclusions 83/110

Major advantages of hybrid MPI+OpenMP,; continues

= Reduced communication overhead
= No intra-node communication

= Longer messages between nodes and fewer parallel links may imply better
bandwidth

= “Cheap” load-balancing methods on OpenMP level

= Application developer can split the load-balancing issues between course-
grained MPI and fine-grained OpenMP

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Conclusions 84/110

Disadvantages of MP|+OpenMP

Using OpenMP
—> may prohibit compiler optimization
- may cause significant loss of computational performance

= Thread fork / join overhead
= On ccNUMA SMP nodes:

= Loss of performance due to missing memory page locality or missing first touch strategy

= E.g., with the MASTERONLY scheme:

- One thread produces data
- Master thread sends the data with MPI
- data may be internally communicated from one NUMA domain to the other one

= Amdahl’s law for each level of parallelism

= Using MPI-parallel application libraries? -> Are they prepared for hybrid?
= Using thread-local application libraries? -> Are they thread-safe?

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Conclusions

85/110

MPI+OpenMP versus MPI+MPI-3.0 shared memory

MPI+3.0 shared memory

Pro: Thread-safety is not needed for libraries.
Con: No work-sharing support as with OpenMP directives.

Pro: Replicated data can be reduced to one copy per node:
May be helpful to save memory, if pure MPI scales in time, but not in memory

Substituting intra-node communication by shared memory loads or stores has only limited
benefit (and only on some systems),
especially if the communication time is dominated by inter-node communication

Con: No reduction of MPI ranks
- no reduction of MPI internal buffer space

Con: Virtual addresses of a shared memory window may be different in each MPI process
-> no binary pointers
- i.e., linked lists must be stored with offsets rather than pointers

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Conclusions 86/110

Conclusions

* Future hardware will be more complicated
= Heterogeneous > GPU, FPGA, ...
= Node-level ccNUMA is here to stay, but will only be one of your problems

- Higlﬁ-end programming = more complex = many pitfalls
= Medium number of cores = more simple (#cores / SMP-node still grows)
= MPI + OpenMP - workhorse on large systems

= Major pros: reduced memory needs and second level of parallelism

= MPI + MPI shared memory - only for special cases and medium #processes
= Pure MPI communication - still viable if it does the job
= OpenMP only - on large ccNUMA nodes (almost gone in HPC)

Thank you for your interest O o o '

Q&A

Please fill out the feedback sheet — Thank you |

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Conclusions 87/110

Programming models
- MPI + Accelerator

General considerations

OpenMP offloading

Advantages & main challenges

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models - MPI + Accelerator 88/110

Accelerator programming: Bottlenecks reloaded

Example: 2-socket Intel “Ice Lake” (2x36 cores) node
with two NVIDIAA100 GPGPUs (PCle 4)

_ per GPGPU per CPU

DP peak 9.7 Tflop/s &&= 2.3 Tflop/s

performance g
Machine balance 0.11 BIF 0.10 B/F g
eff. memory (HBM) 1300 Gbyte/s &&= 170 Gbyte/s
bandwidth y Y
inter-device ~ 30 Gbyte/s
bandwidth (PCle)

inter-device > 500 Gbyte/s °
bandwidth (NVIink) ’

] B
- Speedups can only be attained if communication overheads §&
are under control

- Basic estimates help m

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models > MPI + Accelerator - General considerations 89/110

Accelerator + MPI: How does the data get from A to B?

dild|id|d]dfidiid]|

dilid|(d/[ddlidild]
I |

diialfd|[dal[alalldl

diid||d|d]|idfid|d
|

did|idijld|fd|d]|d
[

djd|djld|d|d]|d
I

dild|dijld|d|d]|d
1

djld|dijldlfd|d]|d
1

Communication network

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models > MPI + Accelerator - General considerations 90/110

DEVANA's Multi-GPU nodes: nvidia-smi tool

et e e e +
| NVIDIA-SMI 525.85.05 Driver Version: 525.85.05 CUDA Version: 12.0 |
e e e E e e e e e e e e e +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
[I | MIG M. |
I ; ; I
0 NVIDIA A100-SXM... On	00000000:17:00.0 Off	0
N/A 29C PO 48W / 400W	OMiB / 40960MiB	0% Default
		Disabled
e e e e T e e e e e +		
1 NVIDIA A100-SXM... On	00000000:31:00.0 Off	0
N/A 30C PO 54W / 400W	OMiB / 40960MiB	0% Default
		Disabled
e e e e T e e e e e +		
2 NVIDIA A100-SXM... On	00000000:B1:00.0 Off	0
N/A 28C PO 52W / 400W	OMiB / 40960MiB	0% Default
		Disabled
e e e e T e e e e e +		
3 NVIDIA A100-SXM... On	00000000:CA:00.0 Off	0
N/A 29C PO 50W / 400W	OMiB / 40960MiB	0% Default
		Disabled
e e e e T e e e e e +		
et e e e +		
Processes:		
GPU GI CI PID Type Process name GPU Memory		
ID ID Usage		
I I		
No running processes found		
et e e e + =]

Hybrid Programming — MPI+X = Programming models - MPI + Accelerator - General considerations 91/110

DEVANA's Multi-GPU nodes: topology and i/connect

trainer2@nl4l ~ > nvidia-smi topo -m
GPUO GPUl GPU2 GPU3 NICO NIC1l NIC2 CPU Affinity NUMA Affinity

GPUO
GPU1
GPU2
GPU3
NICO
NIC1
NIC2

Legend:

X
SYS

NODE

PHB
PXB

PIX
NV#

X NV4 NV4 NV4 NODE NODE NODE 0-31 0
NV4 X NV4 NV4 NODE NODE NODE 0-31 0
NV4 NV4 X NV4 SYS SYS S¥S 32-63 1
NV4 NV4 NV4 X SYS SYS S¥YS 32-63 1

NODE NODE SYS SYS

X NODE NODE

NODE NODE SYS SYS NODE X PIX
NODE NODE SYS SYS NODE PIX X

= Self

Connection traversing

(e.g., QPI/UPI)

= Connection traversing
Bridges within a NUMA

= Connection traversing

= Connection traversing
Bridge)

= Connection traversing

= Connection traversing

PCIe as well as the SMP interconnect between NUMA nodes

PCIe as well as the interconnect between PCIe Host

node

PCIe as well as a PCIe Host Bridge (typically the CPU)
multiple PCIe bridges (without traversing the PCIe Host

at most a single PCIe bridge
a bonded set of # NVLinks o

Hybrid Programming — MPI+X - Programming models > MPI + Accelerator - General considerations 92/110

Questions to ask

Is the MPI implementation CUDA aware?

= Yes: Can use device pointers in MPI calls

= No: Explicit DtoH/HtoD buffer transfers required

= Copying to consecutive halo buffers may still be necessary
Is NVLink available?

= Yes: Direct GPU-GPU MPI communication with MPI
- Supported by: P100, V100, A100, H100

= No: copies via host (even with NVIDIA GPUDirect)
Unified Memory or explicit DtoH/HtoD transfers?

= UM: Transparent sharing of host and device memory
Actual bandwidths and latencies?

= Highly system and implementation dependent! o

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + Accelerator - General considerations 93/110

https://www.fz-juelich.de/en/ias/jsc/news/events/seminars/msa-seminar/2020-01-21-cuda-aware-mpi
https://www.fz-juelich.de/en/ias/jsc/news/events/seminars/msa-seminar/2020-01-21-cuda-aware-mpi
https://www.fz-juelich.de/en/ias/jsc/news/events/seminars/msa-seminar/2020-01-21-cuda-aware-mpi

Options for hybrid accelerator programming

multicore host accelerator

MPI CUDA, HIP
MPI+MPI3 shmem ext. OpenCL
MPI+threading OpenACC

(OpenMP, pthreads, TBB,...)
threading only
PGAS (CAF, UPC,...)

OpenMP 4.0++

special purpose

Which model/combination is the best?
- the one that allows you to address the relevant hardware bottleneck(s)

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + Accelerator - General considerations 94/110

Programming models
- MPI + Accelerator

General considerations

OpenMP offloading

Advantages & main challenges

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X = Programming models = MPI + Accelerator - OpenMP 95/110

What is OpenMP offloading?

= “Everybody knows OpenMP”

= API that supports offloading of loops and regions of code (e.g. loops) from a
host CPU to an attached accelerator in C, C++, and Fortran

= Set of compiler directives, run-time routines, and environment variables
= Simple programming model for using accelerators (focus on GPGPUSs)

= Memory model:

= Host CPU + Device may have completely separate memory; Data movement between host and device
performed by host via runtime calls; Memory on device may not support memory coherence between
execution units or need to be supported by explicit barrier

= Execution model:

= Compute intensive code regions offloaded to the device, executed as kernels ; Host orchestrates data

movement, initiates computation, waits for completion; Support for multiple levels of parallelism,
including SIMD

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) Courtesy of Gabriele Jost
Hybrid Programming — MPI+X - Programming models - MPI + Accelerator > OpenMP 96/110

A very simple OpenMP example (nvc 23.1-0): Vector Triad

data
mgmt

execution

int main ()

{

double* restrict a
double* restrict b
double* restrict c
double* restrict d

.
14

#pragma omp target enter data map(to:

malloc(nsize
malloc(nsize
malloc(nsize
= malloc (nsize

compute(a ,b , ¢ ,d ,N);

}

* sizeof (double)) ;
* sizeof (double)) ;
* sizeof (double)) ;
* sizeof (double)) ;

a[0:nsize], b[0O:nsize], c[0:nsize])

void compute (double *restrict a , double *b,...) {
#pragma omp target teams distribute)\

for (int i=0;

i<N

14

parallel for simd

++i) {

a[i] = b[i] + ¢ [i] * d[i];

nvc -g -03 -mp=gpu -gpu=managed -Minfo -c triad.F90
17, #omp target teams distribute parallel for simd
17, Generating "nvkernel main F1L17 2" GPU kernel
19, Loop parallelized across teams and threads(128),
schedule (static)
17, Generating target enter data map(to:
c[:nsize] ,b[:nsize],a[:nsize])
25, #omp target teams distribute parallel for simd
25, Generating "nvkernel main F1L25 4" GPU kernel
28, Loop parallelized across teams and threads(128),
schedule (static) o

38, Generating target exit data map (from:
c[:nsize] ,b[:nsize],a[:nsize])

Hybrid Programming — MPI+X = Programming models > MPI + Accelerator - OpenMP 97/110

Example: 2D Laplace equation

We want to solve this:
Oy u(x,y) + dyyulx,y) =0,
u(x,y) € 10,1]1x[0,1] \ 92

Converged solution:

subject to the boundary conditions:
ulx,0) =u(lx,1) =x
u0,y) =0

u(l,y)=1
numerically, using finite differences:

Uiyrj = 2U5 + Uj_q
Ax? '

(axxu(xr y))ij ~

Hybrid Programming — MPI+X = Programming models = MPI + Accelerator - OpenMP 98/110

Example: Fortran 2D Jacobi solver offloading

Basic step:

allocate(a(0:ni+1,0:nj+1l), b(0:ni+1,0:nj+1))
!Somp target enter data map(to:a(0:ni+l1,0:nj+1), b(0:ni+l1,0:nj+1))
!Somp target teams distribute parallel do
do j =1, nj
do i =1, ni
b(i,j) = (a(i,j-1) + a(i,j+1) + a(i-1,3) + a(i+l,3j)) / 4do
end do
end do

call swap(b,a)

And check for the convergence:

error = 0dO

!Somp target teams distribute parallel do simd reduction (max:error)
do j =1, nj

do i =1, ni
error = max(error, abs(a(i,j)-b(i,3j)))
end do
end do

Hybrid Programming — MPI+X - Programming models > MPI + Accelerator - OpenMP 99/110

Example: multi-GPU offloading with MPI; one node

Typical MPI 1D domain decomposition: distribute a and b over MPI ranks

allocate(a(0:ni+l,s-1:e+l1l), b(0:ni+l,s-1:e+l))
!Somp target enter data map(to:a(0:ni+l,s-1l:e+l), b(0:ni+l,s-1:e+l))
!Somp target teams distribute parallel do

do j =s, e
do i =1, ni
b(i,j) = (a(i,j-1) + a(i,j+1) + a(i-1,3) + a(i+l,3j)) / 4do
end do
end do

call swap(b,a)

Hybrid Programming — MPI+X - Programming models > MPI + Accelerator - OpenMP 100/110

Example: multi-GPU offloading with MPI; one node

Typical MPI 1D domain decomposition: distribute a and b over MPI ranks

and send the rank’s portion of the data to the corresponding GPU
gpuid = mpirank
allocate(a(0:ni+l,s-1:e+l1l), b(0:ni+l,s-1:e+l))
!Somp target enter data map(to:a(0:ni+l,s-1l:e+l), b(0:ni+l,s-1:e+l)) device (gpuid)
!Somp target teams distribute parallel do device (gpuid)

do j =s, e
do i =1, ni
b(i,j) = (a(i,j-1) + a(i,j+1) + a(i-1,3) + a(i+l,3j)) / 4do
end do
end do

Hybrid Programming — MPI+X - Programming models > MPI + Accelerator - OpenMP 101/110

Example: multi-GPU offloading with MPI; one node

Exchange halos (MPI_SENDRECV or whatever you like):

call MPI CART CREATE(MPI COMM WORLD, 1, [mpisize], [.false.], .true.,
commld, mpierr)

call MPI COMM RANK (commld, mpirank, mpierr)

call MPI_CART SHIFT(commld, 0, 1, left, right, mpierr)

call MPI SENDRECV (&
- a(l,e), nx, MPI DOUBLE PRECISION, right, 0, &
a(l,s-1), nx, MPI DOUBLE PRECISION, left, 0, &

commld, MPI_STATUS IGNORE, ierr)
call MPI_SENDRECV (&
a(l,s), nx, MPI DOUBLE PRECISION, left, 1, &
a(l,e+l), nx, MPI DOUBLE PRECISION, right, 1,&

commld, MPI_STATUS IGNORE, ierr)

Hybrid Programming — MPI+X = Programming models > MPI + Accelerator - OpenMP 102/110

Example: multi-GPU offloading with MPI; multi-node

Each compute node sees only its own GPUs (4 on DEVANA). We split the

communicator further to get node’s local ranks:
call MPI COMM SPLIT TYPE (commld, MPI COMM TYPE SHARED, mpirank, &
- — - MPI:INFo:NULL7 commlocal, mpierr)
call MPI_COMM RANK (commlocal, lrank, mpierr)
gpuid = lrank

Hybrid Programming — MPI+X - Programming models > MPI + Accelerator - OpenMP 103/110

Job submission on multi-GPU clusters

trainer2@login02 ~ > cat onenode.sh trainer2@login02 ~ > cat twonodes.sh
#!/bin/bash #!/bin/bash

#BATCH --time=00:05:00 #SBATCH --time=00:05:00

#SBATCH --nodes=1 #SBATCH --nodes=2

#SBATCH --ntasks-per-node=4 #SBATCH --ntasks-per-node=4

#SBATCH --cpus-per-task=1 #SBATCH --cpus-per-task=1

#SBATCH --partition=ngpu #SBATCH --partition=ngpu

#SBATCH --job-name=mpiompgpu_onenode #SBATCH --job-name=mpiompgpu_twonodes
#SBATCH --err=mpiompgpu_onenode.err #SBATCH --err=mpiompgpu_twonodes.err
#SBATCH --out=mpiompgpu_onenode.out #SBATCH --out=mpiompgpu_twonodes.out
#SBATCH --gres=gpu:4 #SBATCH --gres=gpu:4

module load nvhpc/23.1 GCC/11.3.0 module load nvhpc/23.1 GCC/11.3.0
mpirun -np 4 ./jacobi_mpi gpu mpirun -np 8 ./jacobi mpi gpu

Hybrid Programming — MPI+X - Programming models > MPI + Accelerator - OpenMP 104/110

Example: multi-GPU multi-node benchmarking

A word of caution: sometimes we have to run the benchmark for some
time, discarding timings of the first half of iterations.

Benchmarking 2D Laplace, 96002 points on DEVANA (4 A100 per node):

N GPUs

Execution

1

time, s
12.81

6.78

4.01

ol ~DN

2.71

Hybrid Programming — MPI+X - Programming models - MPI + Accelerator - OpenMP

105/110

Programming models
- MPI + Accelerator

General considerations

OpenMP offloading

Advantages & main challenges

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models > MPI + Accelerator > Conclusions

106/110

MPI+Accelerators: Main advantages

= Hybrid MP1/OpenMP can leverage accelerators and yield performance
increase over pure MP| on multicore

= Compiler/pragma-based API provides relatively easy way to use co-
processors

= OpenMP 4.0/4.5/5.1 extensions provide flexibility to use a wide range of
heterogeneous co-processors (GPU, APU, heterogeneous many-core

types)

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + Accelerator - Conclusions 107/110

MPI+Accelerators: Main challenges

= Considerable implementation effort for basic usage,
depending on complexity of the application

= Efficient usage of pragmas requires good understanding of
performance issues

Performance is not only about code; data structures can be
decisive as well

= Support for accelerator pragmas still restricted to certain
environments
NVIDIA GPUs have best support

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X = Programming models = MPI + Accelerator - Conclusions 108/110

Questions addressed in this tutorial

What is the performance impact of system topology?

How do | map my programming model on the system to my advantage?
= How do | do the split into MPI+X?
= Where do my processes/threads run? How do | take control?

= Where is my data?
= How can | minimize communication overhead?

How does hybrid programming help with typical HPC problems?
= Can it reduce communication overhead?
= Can it reduce replicated data?

' ?
How can | leverage multiple accelerators” Data structures are decisive.
= What are typical challenges? inter-device communication
support varies

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
109/110

|| IENNA
8 CIENTIFIC
HLUSTER

Thank you for your interest!

TREX Workshop: Code Tuning for the Exacale @ Bratislava, June 5, 2023

110/110

