L]
universite pARrIS-SACLAY

MAQAO
Hands-on exercises

Profiling bt-mz (incl. scalability)
Optimising a code

uvsQs

[]
universite pARIS-SACLAY

Setup (reminder)

Login to the cluster

Copy handson material to your workspace directory

Load MAQAO environment

[]
universite pARIS-SACLAY

Setup (bt-mz compilation with Intel compiler and MPI &
debug symbols)

Go to the NPB directory provided with MAQAO handsons

Load Intel compiler and environment

Compile and run

Remark: with version 3.4 the generated executable supports any number of
ranks (no need to generate one executable for 6 ranks, another for 8 etc.)

Profiling bt-mz with MAQAO

Setup ONE View for batch mode

[]
universite pARIS-SACLAY

The ONE View configuration file must contain all variables for executing the
application. Retrieve the configuration file prepared for bt-mz in batch mode

from the MAQAO_HANDSON directory

executable = "bt-mz.C.x"

batch script = "bt magao.sbatch"
batch command = "sbatch <batch script>"

number processes = 4
number processes per node = 2
envv_OMP NUM THREADS = 16

mpi command = "mpirun -n <number processes>"

[]
universite pARIS-SACLAY

Review jobscript for use with ONE View

All variables in the jobscript defined in the configuration file must be
replaced with their name from it.

Retrieve jobscript modified for ONE View from the MAQAO_HANDSON
directory.

#SBATCH --ntasks-per-node=2<number processes per node>
#SBATCH --cpus-per-task=16<OMP NUM THREADS>

export OMP NUM THREADS=16<OMP NUM THREADS>

<mpi command> <run command>

[]
universite pARIS-SACLAY

Launch MAQAO ONE View on bt-mz (batch mode)

Launch ONE View

ory has changed
-xp=ov_sbatch

The -xp parameter allows to set the path to the experiment directory, where
ONE View stores the analysis results and where the reports will be
generated.

If -xp is omitted, the experiment directory will be named
magao_<timestamp>.

WARNINGS:

- If the directory specified with -xp already exists, ONE View will reuse its
content but not overwrite it.

a e
= % uvsQe
o

Display MAQAO ONE View results

The HTML files are located in <exp-dir>/RESULTS/<binary> one html,
where <exp-dir> is the path of he experiment directory (set with -xp) and
<binary> the name of the executable.

To read them:
* Mount remote directory locally (requires sshfs installed locally)
* Compress and download the HTML directory to open locally
* Open the file remotely (if display redirect available)
* Open a Jupyter Notebook Interactive App

UVS

o
- X
& A
A -
O universite paris-sacLAY

Display MAQAO ONE View results

‘ q”’%
S

* Mounting $WORK locally:

> mkdir devana work
> sshfs <user>@login.devana.nscc.sk:\

/home/<user> devana work
> firefox devana_work/NPB3.4—MZ—MPI/bin/ov_sbatch\
/RESULTS/bt-mz.C.x one html/index.html

* Compressing and downloading the results:
> tar czf SHOME/bt html.tgz ov sbatch/RESULTS/bt-mz.C.x one html

> scp <user>@login.devana.nscc.sk:bt html.tgz
> tar xf bt html.tgz
> firefox ov sbatch/RESULTS/bt-mz.C.x one html/index.html

* Use the Open OnDemand console to create a Jupyter Notebook
Interactive session and open index.html from the file browser

_

UvsQe
=

o
A
o

sshfs & scp hints

* To install sshfs on Debian-based Linux distributions (like Ubuntu)
> sudo apt install sshfs

* Recommended to close a sshfs directory after use
> fusermount -u /path/to/sshfs/directory

* scp is slow to copy directories (especially when containing many small files),
copy a .tgz archive of the directory

[]
universite pARIS-SACLAY

Display MAQAO ONE View results

Results can also be viewed directly on the console in text mode:

Sample result directories are available in
/home/projects/training-03/MAQAO/MAQAO offline. tgz

Scalability profiling of bt-mz with
MAQAO

[]
universite pARIS-SACLAY

o
m <
R
!lp.
o

Setup ONE View for scalability analysis

Retrieve the configuration file prepared for bt-mz in batch mode from the
MAQAO_HANDSON directory

executable = "./bt-mz.C.x"

run_command = "<executable>"

batch_script = "bt magao.sbatch"
batch _command = “sbatch <batch_script>"
number processes = 4

number processes _per node = 4

omp num_ threads = 1

mpi_ command = “mpirun -n <number processes>"

multiruns params = {
{number processes = 1, envv_OMP NUM THREADS = 8, number nodes = 1, number processes_per node = 1},
{number processes = 4, envv_OMP NUM THREADS = 1, number nodes = 2, number processes per node = 2},
{number processes = 4, envv_OMP NUM THREADS = 8, number nodes = 2, number processes_per node = 2},

}

alability referen = “lowest-threads”

vz
S

I\

= % uvsQe
AR e
!.o

Launch MAQAO ONE View on bt-mz (scalability mode)

Launch ONE View (execution will be longer!)

> magao oneview -Rl --with-scalability \

-c=bt OV scal.lua -xp=ov_scal

The results can then be accessed similarly to the analysis report.
> firefox devana work/NPB3.4-MZ-MPI/bin/ov_scal/RESULTS/\
bt-mz.C.x one html/index.html

OR

> tar czf SHOME/bt scal.tgz \

ov scal/RESULTS/bt-mz.C.x one html

> scp <user>@login.devana.nscc.sk:ov_scal.tgz

> tar xf ov_scal.tgz

> firefox ov_scal/RESULTS/bt-mz.C.x one html/index.html
OR

Use the Jupyter Notebook Interactive App

_

Optimising a code with MAQAO

[]
universite pARIS-SACLAY

Matrix Multiply code

“Naive” dense matrix multiply
implementation in C

[]
universite pARIS-SACLAY

Compile with GNU compiler

Go to the handson directory

Compile all variants

Load MAQAO environment (if necessary)

[]
universite pARIS-SACLAY

Analysing matrix multiply with MAQAO

Parameters are: <size of matrix> <number of repetitions>

Analyse matrix multiply with ONE View

UvsQe
=

Viewing results (HTML)

Open file MAQAO HANDSON/matmul/ov_orig/RESULTS/\
matmul orig one html/index.html

Global Metrics @

Total Time (s) 39.01
Profiled Time (s) 39.00
Time in analyzed loops (%) 100.0
Time in analyzed innermost loops (%6) 99.9
Time in user code (%) 100
Compilation Options Score (%) 50.0
Perfect Flow Complexity

Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect
Load Distribution

Potential Speedup
MNb Loops to get 80%

. Potential Speedup
FP Vectorised N Liois b Gt BO%6

. Potential Speedup
Fully Vectorised Nb Loops to get 80%

Potential Speedup
Nb Loops to get 80%

Mo Scalar Integer

FP Arithmetic Only

= % uvsQe
%

CQA output for the baseline kernel

Your loop is not vectorized. 8 data elements could be processed at once VeCtO rization (SU mm | ng elementS) :

in vector registers. By vectorizing your loop, you can lower the cosLQf\
an iteration from 3.00 to 0.37 cycles (8.00x speedup). — .
VADDSS +
All SSE/AVX instructions are used in scalar version (process only (Sca |a I")
one data element in vector registers). Since your execution units are

vector units, only a vectorized loop can use their full power.

EEERREEE
VADDPS

= Try another compiler or update/tune your current one:

o recompile with fassociative-math (included in Ofast or + + + + + + 4+ +

ffast-math) to extend loop vectorization to FP reductions. (pa cked)

» Remove inter-iterations dependences from your loop and make

it unit-stride:

o If your arrays have 2 or more dimensions, check whether
elements are accessed contiguously and, otherwise, try

to permute loops accordingly: C storage order is row- —_

major: for(i) for(j) afjlli] = blilli]; (slow, non stride 1) == T H —
for(i) for() afili] = bG]: (fast, stride 1) = Accesses are not co ntiguous =>

o If your loop streams arrays of structures (AoS), try to use ’ .
structures of arrays instead (SoA): for(i) afi].x = b[i].x; Iet S permUte k and J IOOpS
~= No structures here...

(slow, non stride 1) == for(i) a.x[i] = b.x[i]; (fast, stride 1) [

NS

uvsQe

o
m v

R
!la
O

Impact of loop permutation on data access

Logical mapping

j=0,1... Efficient vectorization +
prefetching

Physical mapping

(C stor. order: row-major)

SREI=0; j<n; J++)
for (i1i=0; i<n; i++)
f(alill3])>

for (i=0; i<n; i++)
for (j=0; j<n; j++)
f(ali][J])>

| moommmseRsAssOAMERS

o
7 UVS -
o

Removing inter-iteration dependences and getting stride 1
by permuting loops on j and k

[]
universite pARIS-SACLAY

Analyse matrix multiply with permuted loops

Run permuted loops version of matrix multiply

Analyse matrix multiply with ONE View

UvsQe
=

o
- TR
o

Viewing results (HTML)

Open file MAQAO HANDSON/matmul/ov_perm/RESULTS/\
matmul perm one html/index.html

Global Metrics (7]

Total Time (s) 5.71
Profiled Time (s) 5.70

Time in analyzed loops (%) 99.8
Time in analyzed innermost loops (%) 98.3
Time in user code (%) 99.8
Compilation Options Score (%) 50.0
Perfect Flow Complexity

Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80%
Potential Speedup

MNo Scalar Integer

FP Vectorised Nb Loops to get 80%
, Potential Speedup

Fully Vectorised Nb Loops to get 80%
, ‘ Potential Speedup

FP Arithmetic Only Nb Loops to get 80%

uvsQme
=
UNIVErsIté PARIS-SACLAY

o
m <
R
!la
o

CQA output after loop permutation

gain | potential | hint | expert

Your loop is vectorized, but using only 128 out of 512 bits (SSE/AVX-128 instructions on AVX-512
processors). By fully vectorizing your loop, you can lower the cost of an iteration from 1.40 to 0.35 cycles
(4.00x speedup).

All SSE/AVX instructions are used in vector version (process two or more data elements in vector
registers). Since your execution units are vector units, only a fully vectorized loop can use their full power.

Workaround

» Recompile with march=icelake-server. CQA taras Let’s try this 2on(R) Icelake SP)
but specialization flags are -march=x86-64
« Use vector aligned instructions:
1. align your arrays on 64 bytes boundaries
2. inform your compiler that your arrays are vector aligned: if array foo' is 64 bytes-aligned, define
a pointer 'p_foo'as _ builtin_assume_aligned (foo, 64) and use it instead of foo’ in the loop.

a e
= % uvsQe
o

Impacts of architecture specialization: vectorization

* \Vectorization
= SSE instructions (SIMD 128
bits) used on a processor
supporting AVX512 ones (SIMD
512 bits)
= => 75% efficiency loss

ADDPS XMM -

(SSE) ++++++++++++++++
<128 bits

VADDPS

zMM (AVX) ++++++++++++++++

[]
universite pARIS-SACLAY

Analyse matrix multiply with microarchitecture-specialization
and array alignment

Run array-aligned version of matrix multiply

Analyse matrix multiply with ONE View

el
%

Multidimensional array alignment

Data organized as a 2D array: n lines of 3 columns IEGEMRCIONNSNEMREEN 2[2]: line 2
Each vector can hold 4 consecutive elements

a[n][3], only 1st

element is aligned i | etc.

g

Notatgned

a[n][4], 1st element of
each line are aligned

k || etc.

_

UvsQe
=

o
A
o

Viewing results (HTML)

Open file MAQAO HANDSON/matmul/ov_align/RESULTS/\
matmul align one html/index.html

Global Metrics @

Time in analyzed loops (%4) 99.7
Time in analyzed innermost loops (%) 98.2
Time in user code (%) 997
Compilation Options Score (%) 75.0
Perfect Flow Complexity

Array Access Efficiency (%0)
Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80%

. Potential Speedup
FP Vectorised Nb Loops to get 80%

) Potential Speedup
Fully Vectorised Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%

MNo Scalar Integer

FP Arithmetic Only

o
= % uvsQe
o

Viewing results (HTML)

gain | potential | hint | expert

Vectorization

Your loop is vectorized, but using only 256 out of 512 hits (AVX/AVX2 instructions on AVX-512
processors).

All SSE/AVX instructions are used in vector version (process two or more data elements in vector
registers).

Read the "512-hits vectorization on Skylake SP" report at "Potential" confidence level.

m potential | hint | expert
512-bits vectorization on Skylake SP and Icelake Server

On Gold 5122, 6xxx and Platinum Skylake processors and Icelake Server processors, performance
can be improved by using 512-bits vectorization if the number of vectorized loops is high and with
high trip count.

Let’s try this

Recompile with -mprefer-vector-width=51

[]
universite pARIS-SACLAY

Analyse matrix multiply with enforcing 512 bits vectorization

Run the 512 bits vectorized version of matrix multiply

Analyse matrix multiply with ONE View

UvsQe
=

o
A
o

Viewing results (HTML)

Open file MAQAO HANDSON/matmul/ov_align 512/RESULTS/\
matmul align 512 one html/index.html

Global Metrics (7]

F’mﬁle_lme S

Time in analyzed loops (%) 100
Time in analyzed innermaost loops (%) 97.1
Time in user code (%) 100
Compilation Options Score (%) 75.0
Perfect Flow Complexity

Array Access Efficiency (%0)
Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80%
. Potential Speedup
FP Vectorised Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%
Potential Speedup :
Nb Loopstoget80% 1

No Scalar Integer

Fully Vectorised

FP Arithmetic Only

UvsQe
=

Viewing results (HTML)

gain | potential | hint

Vectorization

Your loop is fully vectorized, using full register length.

expert

All SSE/AVX instructions are used in vector version (process two or more data elements in vector registers).

UvsQe
=

Viewing results (HTML)

Global Metrics @ | Compilation Options =
Total Time (s) 2.77 Source Object Issue

Profiled Time (s) 2.76 v matmul

Time in analyzed loops (%) 100 o kernel.c -funroll-loops is missing.

Time in analyzed innermost loops (%) a7.1

Time in user code (%) 100

Compilation Options Score (%) 75.0 Let’ r hl

Perfect Flow Complexity etst y this

Array Access Efficiency (%)
Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80%
Potential Speedup

No Scalar Integer

FP Vectorised Nib Loops to get 80%

1
1
Fully Vectorised Potential Speedup 1-
1.22
1

NDb Loops to get 80%
Potential Speedup
Nb Loops to get 80%

FP Arithmetic Only

[]
universite pARIS-SACLAY

Analyse matrix multiply with loop unrolling

Run unrolled version of matrix multiply

Analyse matrix multiply with ONE View

UvsQe
=

a
o

[

Viewing results (HTML)

Open file MAQAO HANDSON/matmul/ov_unroll/RESULTS/\
matmul unroll one html/index.html

Global Metrics (7]

Total Time (s)
Profiled Time (s)

Time in analyzed loops (%)

Time in analyzed innermost loops (%)
Time in user code (%)

Compilation Options Score (%)
Perfect Flow Complexity

Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution

Potential Speedup

Mo Scalar Integer

Mb Loops to get 80% 1
FP Vectorised S 1o]
Fuly Veclorised S s & A B0% -
FP Arithmetic Only E‘;‘f’iﬁiﬂ;‘:‘g’ﬂ% 2-

m v
13
4
o

Using comparison mode: global level

[]
universite pARIS-SACLAY

Remark: open ov_matmul cmp/RESULTS/ov matmul cmp/index.html

¥ Compared Reports

10: ov_orig

rl: ov_perm

r2: ov_align

r3: ov_align_512
rd: ov_unroll

Global Metrics (7]

Metric ro rl
Total Time (s) 39.01 5.71 3.02 277 252
Profiled Time (s) 890070301 2.76 252
Time in a.nalyzed loops (%) 100.0 99.8 99.7 100 99.8
Time in analyzed innermost loops (%) 99.9 98.3 98.2 97.1 88.9
Time in user code (%) 100 99.8 99.7 100 99.8
Compilation Options Score (%6) 50.0 50.0
Perfect Flow Complexity
Array Access Efficiency (96)

Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread +
Perfect Load Distribution
Potential Speedup

No Scalar Integer
FP Vectorised Fotential Speedup _1 41

Fully Vectorised £ 0 onua speedup _

Nb Loops to get 80% 1
Only FP Arithmetic .

Application Categorization

Time

Time (s)

45.00

40.00

2
Reports

M| Binary [Memory [l Others

uvsQme
=
UNIVErsIté PARIS-SACLAY

ng comparison mode: experiment summaries

Experiment Summaries 2

r0 ri r2 r3 rd
Application Jmatmul_orig/matmul Jmatmul_perm/matmul Jmatmul_align/matmul Jmatmul_align_512/matmul ./matmul_unroll/matmul
Timestamp 2023-06-01 15:00:28 2023-06-01 15:01:46 2023-06-01 16:29:59 2023-06-01 17:01:43 2023-06-01 16:16:57
Experiment Type MPI; same as r0 same as r0 same as r0 same as r0
Machine n052 n036 same as r0 same as r0 same as r0
Architecture %x86_64 same as r0 same as r0 same as r0 same as r0
Micro Architecture ICELAKE_SP same as r0 same as 0 same as r0 same as r0
Intel(R) Xeon(R) Gold 6338
Model Name CPU @ 2.00GHz same as r0 same as r0 same as r0 same as r0
Cache Size 49152 KB same as r0 same as r0 same as r0 same as r0
Number of Cores 32 same as r0 same as r0 same as r0 same as r0
Maximal Frequency 2.001 GHz same as r0 same as r0 same as r0 same as r0
Linux
g 3.10.0-1160.71.1.el7.x86_6
0OS Version 4 #1 SMP Tue Jun 28 same as r0 same as r0 same as r0 same as r0
15:37:28 UTC 2022
Archltect_ure usad'durmg %x86_64 same as r0 same as ro same as r0 same as r0
static analysis
Micro Bxciiectmns s ICELAKE_SP same as r0 same as r0 same as r0 same as r0

during static analysis

matmul: GNU C17 12.2.0 matmul: GNU C17 12.2.0

matmul: GNU C17 12.2.0

i : _ : matmul: GNU C17 12.2.0 -march=icelake-server -march=icelake-server
Compilation Options mlaﬂr;ﬁ;ggg_eéf -03 -fno- same as 10 -march=icelake-server -y -mprefer-vector-width=512 -mprefer-vector-width=512
ik frae- int_gr -03 -fno-omit-frame-pointer -g -03 -fno-omit-frame- -g -03 -funroll-loops -fno-
P pointer omit-frame-pointer
Numbgrbg‘fa::vr::esses 1 same as r0 same as r0 same as r0 same as rd
Numgtl;;::::éeads 1 same as r0 same as r0 same as r0 same as 0

UVS

[]
universite paris-sacLAY

%

Using comparison mode: function & loop level

Coverage Time (s
Name Module . . ag [%). . . () .
ov_origov_perm|ov_alignov_align_512ov_unroll ov_origov_perm|ov_alignov_align_512/av_unroll ¢
kernel matmul 99.99 | 99.82 | 99.67 99.82 99.6 39 5.69 3.01 2.75 251
_ Gl_memset libc-2.17.s0f NA 0.18 0.17 NA 0.2 NA 0.01 0 NA 0
init_mat matmul NA NA NA 0.18 0.2 NA NA NA 0 0
__random_r libc-2.17.s0f NA NA 0.17 NA NA NA NA 0 NA NA
Unknown function matmul 0.01 NA NA NA NA 0 NA NA NA NA
Loops
¥ kernel.c: 24 - 482.04%
Run ov_orig Run ov_perm Run ov_align
Loop « fhome/trainer? Loop « /homeftrainer? Loop « [homeftrainer7
Source MAQAO_HANDSON/matmul | Source IMAQAO_HANDSON/matmul |Source IMAQAO_HANDSON/matmul
Regions fmatmul_orig/kernel.c: 24-25 Regions Imatmul_perm/kernel.c: 24-25 |Regions Imatmul_align/kernel.c: 24-25
Max |Time Max Time Max |Time
Time |w.r.t. I‘_’:d?;‘ A bl Time w.r.t. I_fac‘lorr] A bl Time |w.rt.
Over | Wall g Assem? Y| over wall Thgih | AssembY | over | wall
Threads| Time | '/ | (%) (‘;‘? Bon Threads Time| (;: oop Threads Time| "
(s) (s) (s) (s) (s) | (s)
1 38.98 |3B8.98|99.94|0 6.25 |4 5.61 5.61 25 4 2.96 2.96 |98.18/100 |50
Run ov_align_512 Run ov_unroll
Loop » /home/trainer? Loop « /home/trainer?
Source /IMAQAO_HANDSON/matmul |Source IMAQAO_HANDSON/matmul
Regions I/matmul_align/kernel.c: 24-25 |Regions /matmul_align/kernel.c: 24-25
Max |Time Max |Time
Time |w.r.t. Vect. EET Time |W.rt. Vect. LEHED
Assembly Wall | €9 |gatip Length|Assembly| o wall | €9 |gaiio| Length
Loop ID ver ©) |"a° use | LoopID er (%) 0" use
(s) (s) (s) (s)
4 2.67 2.67 |96.92|100 |100 4 2.23 2.23 |88.67|100 |100

| moommmseMsAssOAGAMERS

o __ S
m <
R

!-
o

[]
universite pARIS-SACLAY

Summary of optimizations and gains

13,85x speedup

Prev + align + spe : 0.23 cycles/FMA
Prev + 512b vectors : 0.22 cycles/FMA

Action: loop permutation
Result: 128b vectorization

Action: uarch-specialization + alignment
Result: 256b vectorization + more
efficient array accesses

Action: 512b vectorization
Result: 512b vectorization

Action: unrolling
Result: unrolling, small gain

uUuvsQE

[]
universite pARIS-SACLAY

Hydro code

Iterative linear system solver
using the Gauss-Siedel
relaxation technique.

« Stencil » code

—

[]
universite pARIS-SACLAY

Compile and run with Intel compiler

Switch to the hydro handson folder

Load MAQAO (if necessary)

Load latest Intel Compiler (icx 22.)

Compile

[]
universite pARIS-SACLAY

Running and analyzing original kernel

The ONE View configuration file must contain all variables for executing the
application.

executable = "./hydro orig"
run_command = "<executable> 300 200" -- <size of matrix> <number

of repetitions>

numbe:;processes_per_pode =1
mpi command = "srun -p ncpu --exclusive -t 1"

[]
universite pARIS-SACLAY

Running and analyzing original kernel

Run

Profile with MAQAO

UvsQe
=

Viewing results (HTML)

Open file MAQAO HANDSON/hydro/ov_orig/RESULTS/\
hydro orig one html/index.html

Global Metrics (7]
11.15

Total Time (s)

Profiled Time (s)

Time in analyzed loops (%) 99 9
Time in analyzed innermost loops (%4)

Time in user code (%) 1(]0 0

Compilation Options Score (%)
Perfect Flow Complexity
Array Access Efficiency (%)
Perfect OpenMP + MPI + Pthread
1 14

Perfect OpenMP + MPI + Pthread + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80%

. Potential Speedup 1.21
FP Vectorised Nb Loops to get 80% 2

: Potential Speedup ~ 13.9 |

el e e Nb Loops to get 80% 5
Potential Speedup 121
Nb Loops to get 80% 3

No Scalar Integer

FP Arithmetic Only

UvsQe
=

o
A
o

CQA output for original kernel

As for matmul, loops

e Try another compiler or update/tune your current one:
o recompile with fassociative-math (included in Sh ou I d be pe rm Uted '
Ofast or ffast-math) to extend loop vectorization C F b u | I d | n d ex

to FP reductions.
¢ Remove inter-iterations dependences from W
and make it unit-stride-

o If your arrays have 2 or more dimensions, check
whether elements are accessed contiguously
and, otherwise, try to permute loops accordingly:
C storage order is row-major: for(i) for(j) a[j][i] =
b[illi]; (slow, non stride 1) => for(i) for(j) a[i][j] =
b[i][j]; (fast, stride 1)

try to use structures of arrays instead (SoA): for(i)
afi].x = b[i].x; (slow, non stride 1) => for(i) a.x[i] =
b.x[i]; (fast, stride 1)

Unroll opportunity

Loop is data access bound.

Consider loop unrolling

Unroll your loop if trip count is significantly higher than target unroll
factor and if some data references are common to consecutive
iterations. This can be done manually. Or by recompiling with
-funroll-loops and/or -floop-unroll-and-jam.

[]
universite pARIS-SACLAY

Running and analyzing kernel with loop permutation

Run

Profile with MAQAO

UvsQe
=

Viewing results (HTML)

Open file MAQAO HANDSON/hydro/ov_perm/RESULTS/\
hydro perm one html/index.html

Global Metrics (7]
Pr 8.83

Time in analyzed loops (%) 99.9
Time in analyzed innermost loops (%) 99.8
Time in user code (%) 99.9
Compilation Options Score (%)

Perfect Flow Complexity

Array Access Efficiency (%)
Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect
Load Distribution

Potential Speedup
Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%
Potential Speedup
Nb Loops to get 80%

Mo Scalar Integer

FP Vectorised

Fully Vectorised

FP Arithmetic Only

o
=% UVS
o

Memory references reuse : 4x4 unroll footprint on loads

i >

LINEAR_SOLVER(i+0,j+0)

o
=% UVS
o

Memory references reuse : 4x4 unroll footprint on loads

i >

LINEAR _SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)

o
=% UVS
o

Memory references reuse : 4x4 unroll footprint on loads

LINEAR _SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)

1 reuse

o
=% UVS
o

Memory references reuse : 4x4 unroll footprint on loads

LINEAR _SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

M

2 reuses

o
=% UVS
o

Memory references reuse : 4x4 unroll footprint on loads

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)

4 reuses

o
=% UVS
o

Memory references reuse : 4x4 unroll footprint on loads

LINEAR SOLVER(i+0,j+0)
LINEAR SOLVER(i+1,j+0)
LINEAR SOLVER(i+2,j+0)
LINEAR SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)

7 reuses

o
=% UVS
o

Memory references reuse : 4x4 unroll footprint on loads

LINEAR SOLVER(i+0,j+0)
LINEAR SOLVER(i+1,j+0)
LINEAR SOLVER(i+2,j+0)
LINEAR SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)

10 reuses

o
=% UVS
o

Memory references reuse : 4x4 unroll footprint on loads

LINEAR SOLVER(i+0,j+0)
LINEAR SOLVER(i+1,j+0)
LINEAR SOLVER(i+2,j+0)
LINEAR SOLVER(i+3,j+0)

LINEAR_SOLVER(i+0,j+1)
LINEAR_SOLVER(i+1,j+1)
LINEAR_SOLVER(i+2,j+1)
LINEAR_SOLVER(i+3,j+1)

12 reuses

a N7
= %, uvsQe
ﬂ A ;
O universite paris-sacLAY

Memory references reuse : 4x4 unroll footprint on loads

i >

LINEAR SOLVER(i+0-3,j+0)

LINEAR_SOLVER(i+0-3,j+1)
LINEAR_SOLVER(i+0-3,j+2)
LINEAR_SOLVER(i+0-3,j+3)

32 reuses

[]
universite pARIS-SACLAY

Impacts of memory reuse

* For the x array, instead of 4x4x4 = 64 loads,
now only 32 (32 loads avoided by reuse)

* For the x0 array no reuse possible : 16 loads

 Total loads : 48 instead of 80

uvsQre
..
universite pARIS-SACLAY

4x4 unroll

grid_size must now be multiple
of 4. Or loop control must be
adapted (much less readable)
to handle leftover iterations

[]
universite pARIS-SACLAY

Running and analyzing kernel with manual 4x4 unroll

Run

Profile with MAQAO

o

- TR
A
o

Viewing results (HTML)

UvsQe
=

Open file MAQAO HANDSON/hydro/ov_unroll/RESULTS/\
hydro unroll one html/index.html

Global Metrics (7]
o Tine () [S COONASIGIG -

Profiled Time (s) 4.89
Time in analyzed loops (%) 100.0
Time in analyzed innermost loops (%) 100.0
Time in user code (%) 100
Compilation Options Score (%)

Perfect Flow Complexity

Array Access Efficiency (%) 62.9

Perfect OpenMP + MPI + Pthread
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution

Potential Speedup

No Scalar Integer

Nb Loops to get 80% 1
FP Vectorised Sl z
Eiyictingse 50 s o ot s o
oatmetcony Poasty

UvsQe
=

CQA output for unrolled kernel

Matching between your loop (in the source code) and the

binary loop

The binary loop is composed of 96 FP arithmetical operations:

« 64: addition or subtraction (16 inside FMA instructions)
« 16: multiply (all inside FMA instructions)
/ « 16: divide

The binary loop is loading 260 bytes (65 le precision FP elements).
The binary loop is storing 64 bytes (16 single precist P elements).

Lower than 80: 64 (from x) + 16 (from
x0)

4x4 Unrolling were applied

Nz
N2
-'
universite pARIS-SACLAY

Summary of optimizations and gains

2.28X speedup

A 4

[]
universite pARIS-SACLAY

More sample codes

More codes to study with MAQAO in

	Diapo 1
	Setup (reminder)
	Setup (optional: bt-mz compilation with debug symbols)
	Diapo 4
	Setup ONE View for batch mode
	Review jobscript for use with ONE View
	Launch MAQAO ONE View on bt-mz (batch mode)
	Display MAQAO ONE View results
	Diapo 11
	Diapo 12
	Display MAQAO ONE View results (optional)
	Diapo 14
	Setup ONE View for scalability analysis
	Launch MAQAO ONE View on lulesh (scalability mode)
	Diapo 17
	Matrix Multiply code
	Preparing interactive session with GNU compiler
	Analysing matrix multiply with MAQAO
	Viewing results (HTML)_clipboard0
	CQA output for the baseline kernel
	Impact of loop permutation on data access
	Diapo 24
	Analyse matrix multiply with permuted loops
	Viewing results (HTML)
	CQA output after loop permutation
	Impacts of architecture specialization: vectorization and FMA
	Diapo 29
	Diapo 30
	Viewing results (HTML)_clipboard1
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Summary of optimizations and gains
	Diapo 43
	Preparing (new) interactive session with Intel compiler
	Diapo 45
	Running and analyzing kernel0 (icc -O3 -xHost)
	Diapo 47
	Diapo 48
	Running and analyzing kernel1
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66

