

ENERGY EFFICIENCY FEATURES OF THE MODERN HPC HARDWARE AND ENERGY CONSUMPTION MEASUREMENT

VSB TECHNICAL

UNIVERSITY

OF OSTRAVA

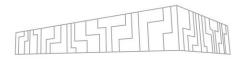
Ondřej Vysocký IT4Innovations

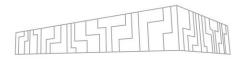
June 6, 2023

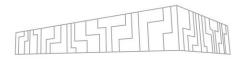
IT4INNOVATIONS

CENTER

NATIONAL SUPERCOMPUTING


EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education


How to improve energy efficiency?


How to improve energy efficiency? Improve (parallel) efficiency of your code!

How to improve energy efficiency?
Improve (parallel) efficiency of your code!
So, we can go home today...

How to improve energy efficiency?
Improve (parallel) efficiency of your code!
So, we can go home today... or not?

ENERGY EFFICIENCY

 $Energy Efficiency = \frac{Rmax}{power} [Flops/W]$



ENERGY EFFICIENCY

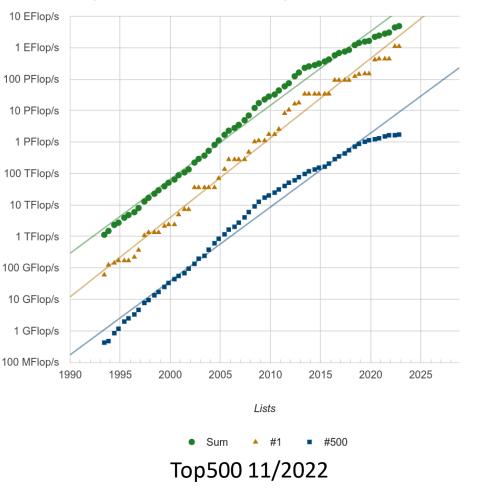
 $Energy Efficiency = \frac{Rmax}{power} [Flops/W]$

Why should I improve energy efficiency (and potentially reduce performance) of my application?

Why should I improve energy efficiency (and potentially reduce performance) of my application?

Better energy efficiency does not imply worse performance

END OF MOOR'S LAW


ÁRODNÍ SUPERPOČÍTAČOVÉ

Scaling

- Power wall
- Target 20 MW power limit for exascale
 - = 50 GFlop/W
 - Soft limit

General hardware optimised for all possible workloads => silicon area wasted to maximize single thread performance

New heterogenous hardware – GPU, FPGA, ... Specialized computing units

Projected Performance Development

TOP500

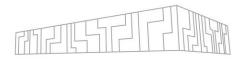
Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,463,616	174.70	255.75	5,610
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
6	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438
7	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371
8	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE DOE/SC/LBNL/NERSC United States	761,856	70.87	93.75	2,589
9	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63.46	79.22	2,646
10	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61.44	100.68	18,482

Rmax = Linpack Performance Rpeak = Theoretical Peak

11/2022

TOP500

Rmax = Linpack Performance Rpeak = Theoretical Peak


Exascale goal is 20 MW limit

=

50 GFlops/watts

11/2022	
---------	--

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65 2 (21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21 2 (^{29,899}
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70 2	6,016 022
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,463,616	174.70	255.75 2 (5,610 022
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79 2 (10,096 018
6	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71 2 (7,438 D18
7	Sunway TalhuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44 2 (15,371 D16
8	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856	70.87	93.75 2 (2,589 021
9	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63.46	79.22 2	^{2,646}
10	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61.44	100.68 2 (18,482 D18

x1.9 = 57 MW

x3.3 = 20 MW

x6 = 34 MW

x5 = 44 MW

x8 = 60 MW

x8 = 123 MW

x11 = 28 MW

x13 = 34 MW

x10 = 185 MW

VŠB TECHNICKÁ

UNIVERZITA OSTRAVA **IT4INNOVATIONS**

CENTRUM

Exascale computing

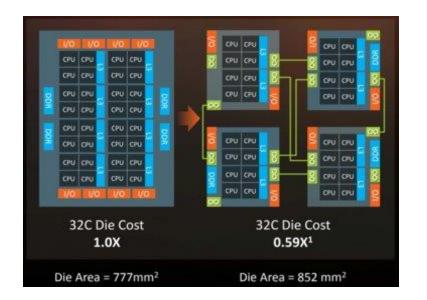
11/2016

3,014.6	125,435.9	15 071	
		15,371	
	x8 = 1	23 N	1VV
3,862.7	54,902.4	17,808	
1	x19 =	340	MV
7,590.0	27,112.5	8,209	
2	x38 =	310	MV
7,173.2	20,132.7	7,890	
	x50 =	395	MV
4,014.7	27,880.7	3,939	
2	x37 =	145	MV
7,	,590.0 ,173.2 ,014.7	x19 = ,590.0 27,112.5 x38 = ,173.2 20,132.7 x50 = ,014.7 27,880.7	x19 = 340 $x19 = 340$ $x38 = 310$ $x38 = 310$ $x50 = 395$

European Commission for Res

Horizon 2020 European Union funding for Research & Innovation

HARDWARE TRENDS


CPUs

- Rising number of cores
- Chiplets (tiles)
- Purpose specific units
 - AI, crypto, matrix calculation

GPUs

Tensor cores

FPGAs

GREEN500

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
1	255	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo	8,288	2.88	44	65.396
		Flatiron Institute United States	lvidia	a H100)	
2	34	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X,	120,832	19.20	309	62.684
		Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	MDN	/1250	X	
3	12	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C	319,072	46.10	921	58.021
		2GHz, AMD Instinct MI250X, Slingshot-11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI- CINES) France	MDN	/11250	X	
•	17	Setonix – GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE	181,248	27.16	477	56.983
				MI250	X	
5	77	Dardel GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C	52,864	8.26	146	56.491
		2GHz, AMD Instinct MI250X, AMD Instinct MI250X, Slingshot-11, HPE	MDN	/1250	X	
		KTH - Royal Institute of Technology Sweden				

ENERGY EFFICIENCY

 $Energy Efficiency = \frac{Rmax}{power} [Flops/W]$

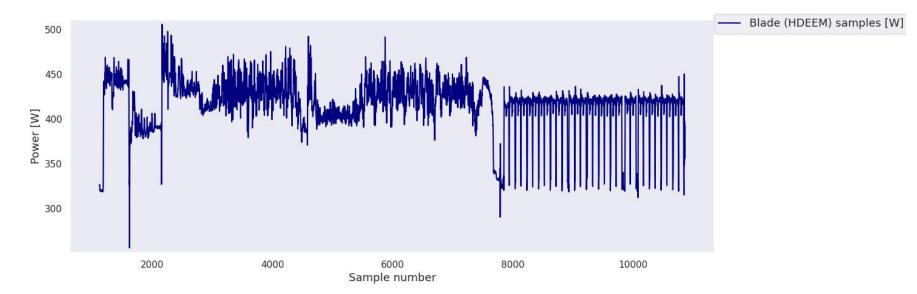
Power management and monitoring

VSB TECHNICAL IT4INNOVATIONS UNIVERSITY NATIONAL SUPERCOMPUTING OF OSTRAVA CENTER

ENERGY

$Energy = Power \times Time$

| Power [W]
| 1 W * 1 s = 1 J
| 1 W * 1 h = 1 Wh = 3 600 J



ENERGY

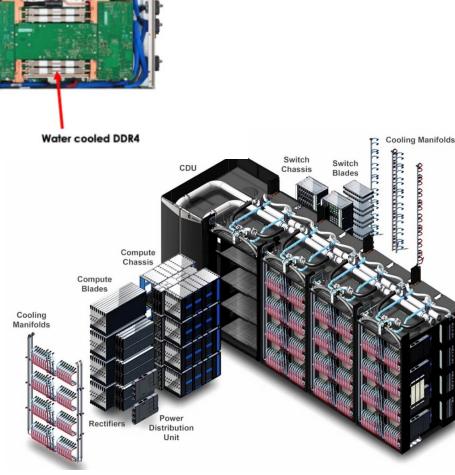
$Energy = Power \times Time$

| Power [W] | 1 W * 1 s = 1 J | 1 W * 1 h = 1 Wh = 3 600 J

ENERGY

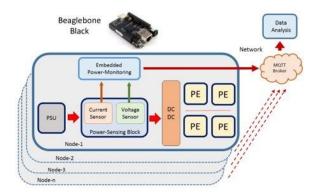
$$Energy = Power \times Time$$

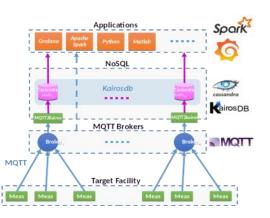
| Power [W]
| 1 W * 1 s = 1 J
| 1 W * 1 h = 1 Wh = 3 600 J


$$Energy(t) = \int_0^t Power(x) \, \mathrm{d}x \approx \frac{\sum_{i=0}^n PowerSample_i}{SamplingFrequency}$$

POWER MONITORING

Four AMD MI200 GPUs On node components Top view showing water cooling of all components CPU, GPU, memories, NIC The rear has Slingshot 11 Connectors Node and **Power input** Rack Sytem AMD EPYC CPU Data hall Water cooled DDR4 2 Slingshot 11 NICs 2 Slingshot 11 NICs Building Compute Chassis Compute CA K RID GE Cooling Manifold E NERG CRA AMDA Unit




Images of HPE Cray, OLCF Frontier

POWER MONITORING SYSTEMS FOR HPC

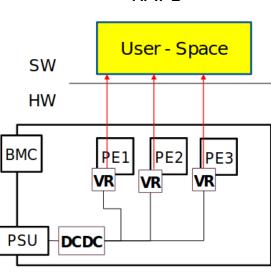
PIG JIII	GN	FT.	
			F-IL -

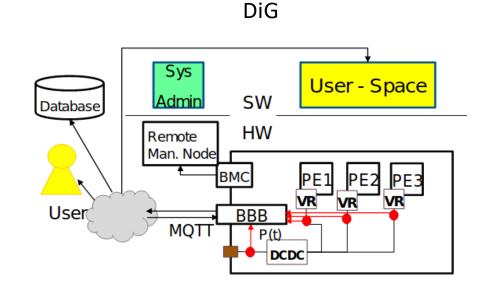
name	original purpose	out/in	sampling	sensors
		band	rate	
ADEPT	energy measurement	out	1 MHz	blade, CPUs, DRAMs,
				ACC, HDD, NIC
DiG	anomaly monitoring	out	$50\mathrm{kHz}$	blade
HDEEM	energy measurement	out	$1 \mathrm{kHz}$ /	blade, CPUs, DRAMs,
			$100\mathrm{Hz}$	NIC [*] , VAUX [*]
NVML	power management	in	$< 66.7 \mathrm{Hz}$ [82]	GPU
OCC	power management	in^2	4 kHz	blade
PI	energy measurement	both	1 kHz	CPUs, DRAMs, ACC
PM2	energy measurement	out	$1\mathrm{kHz}$ / $3\mathrm{kHz}$	8 sensors
RAPL	power management	in	1 kHz	Package, DRAM*,
				PP0 [*] , PP1 [*] , Platform [*]

$$Energy(t) = \int_0^t Power(x) \, \mathrm{d}x \approx \frac{\sum_{i=0}^n PowerSample_i}{SamplingFrequency}$$

VŠB TECHNICKÁ I IT4INNOVATIONS UNIVERZITA NÁRODNÍ SUPERPOČÍTAČOVÉ OSTRAVA CENTRUM

IN- AND OUT-OF-BAND POWER MONITORING




In-band

- Vendor dependent
- HW performance counters

Out-of-band

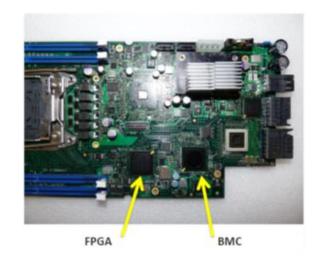
- High overhead of communication -> can be avoided by reading post mortem
- (usually) fine-grain power measurement
- Custom sensors

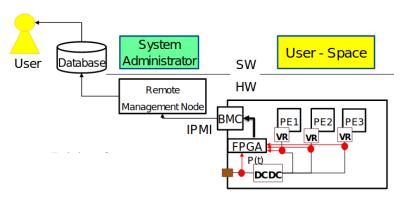
VŠB TECHNICKÁ | IT4INNOVATIONS ||||| UNIVERZITA NÁRODNÍ SUPERPOČÍTAČOVÉ OSTRAVA CENTRUM

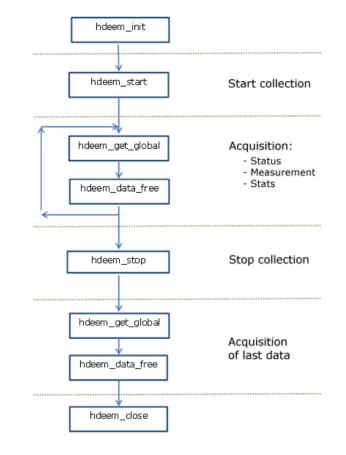
RAPL

Img source, Antoniu Libri (UNIBO)

HIGH DEFINITION ENERGY EFFICIENCY MONITORING (HDEEM)


Bull Atos technology available for production systems (Bullx B7xx and Bull Sequana) On board out-of-band technology for power monitoring


Power domains:


- Blade (1kHz)
- VRs (100 Hz) CPUs, DRAMs, NIC*, VAUX*

2% of accuracy uncertainty C library as well as command line utility:

- startHdeem
- stopHdeem
- checkHdeem
- printHdeem
- clearHdeem

POWER KNOBS

Intel

- CPU core frequency, uncore frequency, power capping
- ACC (PVC) GPU frequency, memory frequency, power capping
- ACC (KNL) core frequency, power capping

AMD

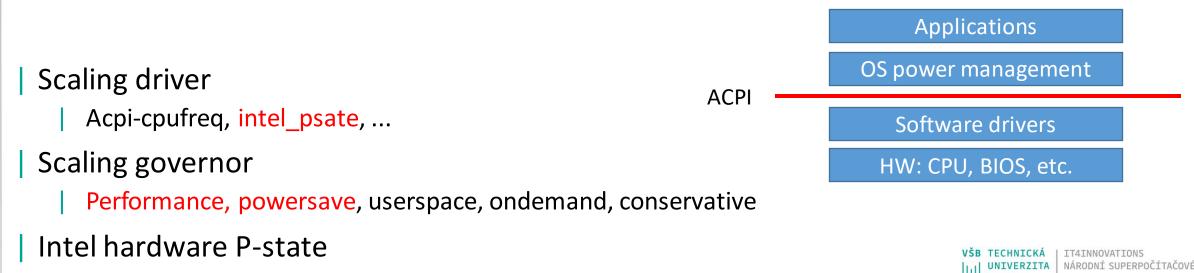
- CPU core frequency, power capping, Data Fabric frequency
- ACC power capping, frequency system, Data Fabric, display controller, SOC, memory, PCIe

Nvidia

GPU - SM frequency, memory frequency, power capping

IBM

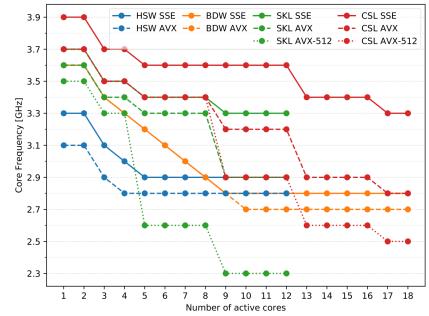
CPU - core frequency, power capping + GPU and node power capping

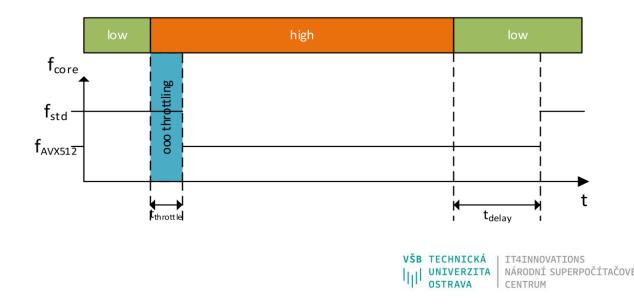

ARM

- A64FX core frequency, FLA (floating-point ops) and EXA (integer ops) pipelines elimination, memory frequency
- EPI core frequency, power capping, ???

This list is incomplete

OS POWER MANAGEMENT


- ACPI (Advanced Configuration and Power Interface) is an open industry specification establishes industry-standard interfaces enabling OS-directed configuration, power management, and thermal management of mobile, desktop, and server platforms.
- ACPI defines performance states (P-States)
- P-States correspond to different performance levels that are applied while the processor is actively executing instructions
- Intel CPUs from Haswell architecture provide Voltage regulators per core, so each core has its own P-State

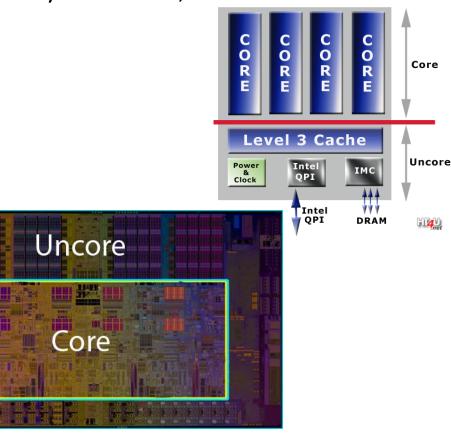


INTEL CPU CORE TURBO FREQUENCY

- Turbo Boost is a technology that opportunistically allows the processor to run faster than the nominal frequency if the CPU is operating below power, temperature and current limits
- There are three different levels of the turbo core frequency based on instruction set SSE, AVX/AVX2, AVX-512
- The turbo frequency limit also relies on the number of active cores
- Turbo Boost frequency is selected by the firmware of the CPU no OS control

Be careful when using an islands of AVX instructions, there is always a transition latency

INTEL CPU UNCORE FREQUENCY


MSR MSR_UNCORE_RATIO_LIMIT (0x620)

frequency of subsystems in the physical processor package that are shared by multiple processor cores last level cache, on-chip ring interconnect or the integrated memory controllers, etc.

occupies approximately 30 % of a chip area

specification of the maximum and minimum limit

620H	MSR UNCORE_RATIO_LIMIT	Package	Uncore Ratio Limit (R/W)
			Out of reset, the min_ratio and max_ratio fields represent the widest possible range of uncore frequencies. Writing to these fields allows software to control the minimum and the maximum frequency that hardware will select.
	63:15		Reserved
	14:8		MIN_RATIO
			Writing to this field controls the minimum possible ratio of the LLC/Ring.
	7		Reserved
	6:0		MAX_RATIO
			This field is used to limit the max ratio of the LLC/Ring.

VŠB TECHNICK

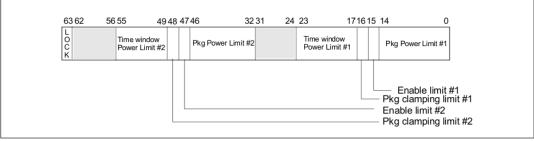
IT4INNOVATIONS

INTEL RUNNING AVERAGE POWER LIMIT (RAPL)

Sysfs: /sys/devices/virtual/powercap/intel-rapl/intel-rapl:X/intel-rapl:0:Y

Power domains:

- **Package**: limits the power consumption for the entire package of the CPU, this includes cores and uncore components Short (1.2 * TDP, ~ milliseconds) and long window (TDP, ~ second)
- **DRAM**: is used to power cap the DRAM memory = memory monitoring, P-State scaling.
 - only for server architectures, no client
 - single time window
 - in default is turned off
- **PPO/Core**: is used to restrict the power limit only to the cores of the CPU
 - no new server
 - single time window
- **PP1/Graphic**: is used to power limit only the graphic component of the CPU
 - no server
 - Single time window
- PSys/Platform: controls entire System on Chip
 - short and long window
 - available from Skylake architecture
 - requires support from vendor

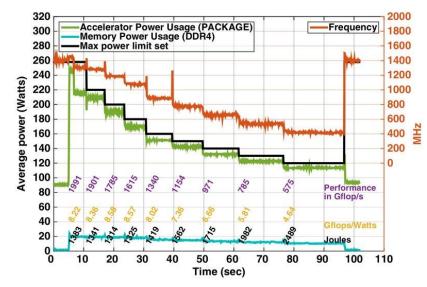

Domain	Machine Specific Register	Address
Package	MSR_PKG_POWER_LIMIT	0x610
DRAM	MSR_DRAM_POWER_LIMIT	0x618
PP0	MSR_PP0_POWER_LIMIT	0x638
PP1	MSR_PP1_POWER_LIMIT	0x640
Platform	MSR_PLATFORM_POWER_LIMIT	0x65C

VŠB TECHNICKÁ

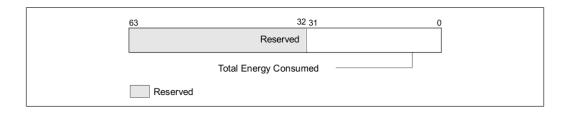
IT4INNOVATIONS

INTEL RUNNING AVERAGE POWER LIMIT (RAPL)

MSR MSR_PKG_POWER_LIMIT (0x610)



MSR MSR_RAPL_POWER_UNIT (0x606)


- Power units
- Energy status units
- Time units

Energy consumption measurement

- MSR MSR_PKG_ENERGY_STATUS (0x611) MSR MSR_DRAM_ENERGY_STATUS (0x619) MSR MSR_PP0_ENERGY_STATUS (0x639) MSR MSR_PP1_ENERGY_STATUS (0x641)
- MSR MSR_PLATFORM_ENERGY_COUNTER (0x64D)

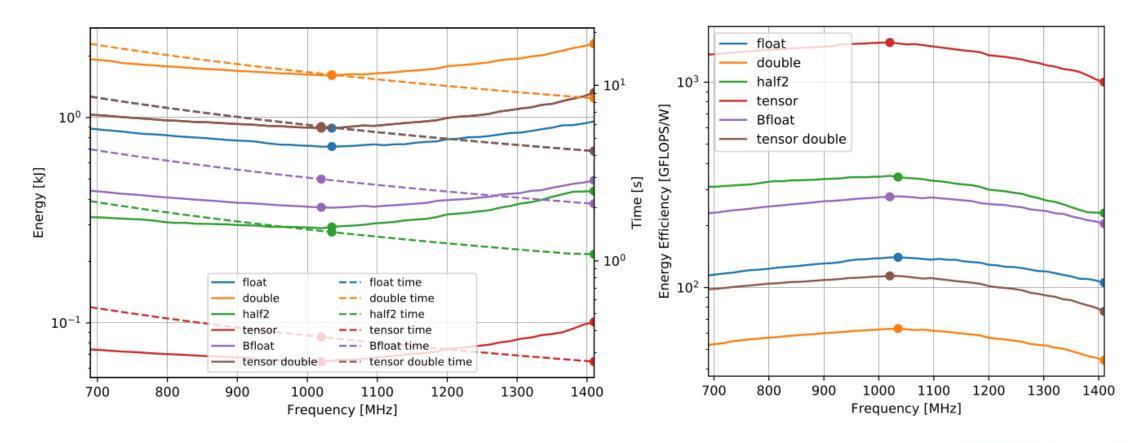
Haidar et al: Investigating power capping toward energy-efficient scientific applications

VŠB TECHNICKÁ

OSTRAVA

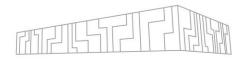
IT4INNOVATIONS

CENTRUM


NVIDIA GPU SM FREQUENCY TUNING

A100-SXM4

- 1410 MHz SM max turbo frequency
- 1095 MHz SM nominal frequency


Mandelbrot benchmark

Spetko et al: DGX-A100 Face to Face DGX-2—Performance, Power and Thermal Behavior Evaluation.

NVIDIA GPU SM FREQUENCY TUNING

A100-SXM4

- 1410 MHz SM max turbo frequency
- 1095 MHz SM nominal frequency

Mandelbrot benchmark

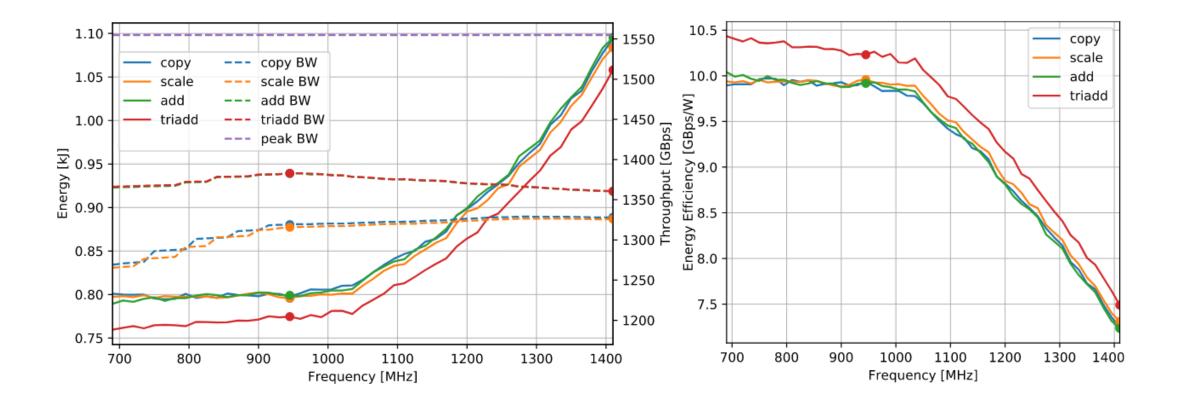
	Frequency [MHz]	Time [s]	Time Difference	Energy [J]	Energy Savings	Performance [TFLOPS]	Energy Efficiency [GFLOPS/W]
double	1410	8.43		2285		9.71	35.86
uouble	1035	11.49	136.19%	1601	29.91%	7.13	51.16
float	1410	4.23		958		19.37	85.53
	1035	5.76	136.13%	721	24.76%	14.23	113.68
Bfloat	1410	2.11		494		38.75	165.74
Diloat	1035	2.88	136.19%	364	26.40%	28.46	225.17
half2	1380 *	1.09		439		75.04	186.69
	1020	1.48	135.65%	289	34.15%	55.32	283.53
toncor half	1410	0.27		101		307.02	810.80
tensor half	1020	0.37	138.18%	65	35.86%	222.18	1264.15
tongor double	1410	4.21		1321		19.44	62.02
tensor double	1020	5.82	138.19%	887	32.82%	14.07	92.32

Spetko et al: DGX-A100 Face to Face DGX-2—Performance, Power and Thermal Behavior Evaluation.

A100 VS V100

A100

V100



	Frequency [MHz]	Time [s]	Time Difference	Energy [J]	Energy Savings	Performance [TFLOPS]	Energy Efficiency [GFLOPS/W]	
louble	1410 1035	8.43 11.49	136.19%	2285 1601	29.91%	9.71 7.13	35.86 51.16	
loat	1410 1035	4.23 5.76	136.13%	958 721	24.76%	19.37 14.23	85.53 113.68	-
Bfloat	1410 1035	2.11 2.88	136.19%	494 364	26.40%	38.75 28.46	165.74 225.17	
nalf2	1380 * 1020	1.09 1.48	135.65%	439 289	34.15%	75.04 55.32	186.69 283.53	-
ensor half	1410 1020	0.27 0.37	138.18%	101 65	35.86%	307.02 222.18	810.80 1264.15	-
ensor double	1410 1020	4.21 5.82	138.19%	1321 887	32.82%	19.44 14.07	62.02 92.32	-
	Frequency [MHz]	Time [s]	Time Difference	Energy [J]	Energy Savings	Performance [TFLOPS]	Energy Efficiency [GFLOPS/W]	-
double	1597 1050	10.02 15.25	152.16%	3303 2015	39.01%	8.17 5.37	24.80 40.67	
float	1597 1057	5.01 7.57	150.99%	1596 982	38.50%	16.34 10.82	51.33 83.46	
half2	1597 1057	2.51 3.78	151.05%	870 531	38.97%	32.69 21.64	94.18 154.30	-
	1057	00						

GPU TUNING

STREAM benchmark A100 + core frequency tuning

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

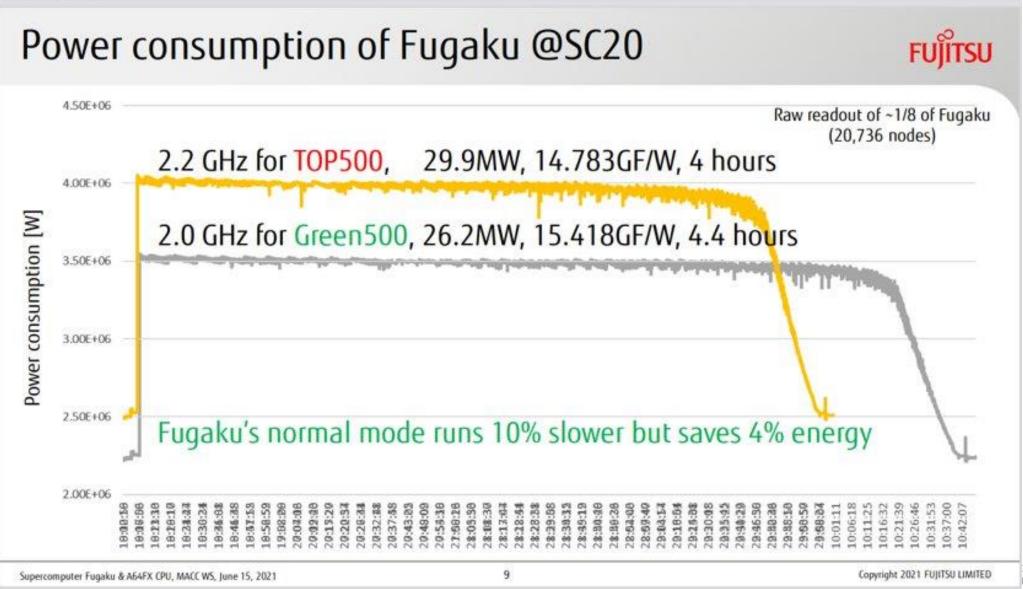
GPU TUNING

STREAM benchmark

A100 + core frequency tuning

	Frequency [MHz]	Time [s]	Time Difference	Energy [J]	Energy Savings	Throughput [GBps]	Energy Efficiency [GBps/W]
сору	1410 945	5.97 6.01	100.69%	1094 798	27.07%	1328.16 1319.02	7.25 9.94
scale	1410 945	5.98 6.02	100.77%	1084 796	26.59%	1325.90 1315.73	7.31 9.96
add	1410 945	5.83 5.73	98.39%	1095 799	27.05%	1360.35 1382.62	7.23 9.92
triadd	1410 945	5.82 5.73	98.39%	1058 775	26.79%	1360.62 1382.92	7.49 10.23

EE HPC centers


RIKEN Fugaku:

- #1 in Top500 since 6/2020
- Using Fujitsu A64FX (48 compute cores + 4 assistant cores for OS daemon and MPI offload)
 - No TDP, no nominal frequency => no turbo frequency
 - Available frequencies 1.6, 2.0, or 2.2 GHz
- User-controlled options
 - Power mode (scheduler option)
 - Normal 2.0 GHz frequency
 - Boost 2.2 GHz frequency
 - **ECO** 2.0 GHz frequency + use one of two FP units only + reduces its standby power
 - Boost ECO 2.2 GHz frequency + FPU elimination
 - Core retention ON/OFF
 - Eliminates standby power idle CPU cores
- See: <u>https://sites.google.com/view/rikenfugakushowcase/home</u>

Memory peak bandwidth		1024		GB/s
Peak HP perf (FP16)	11	12	13	TFLOPS
Peak SP perf (FP32)	5.5	6.1	6.7	TFLOPS
Peak DP perf (FP64)	2.7	3.0	3.3	TFLOPS
CPU core frequency	1.8	2.0	2.2	GHz

IONS PERPOČÍTAČOVÉ

LRZ SuperMUC-NG:

- #8 in Top500 in 11/2018, Rmax 20 PFlops
- Using Intel Xeon Platinum 8174 (24 cores)
 - Intel default
 - 240 W TDP
 - 2.4 GHz CPU uncore frequency
 - Turbo CPU core frequencies
 - 3.9 GHz SSE, 3.8 GHz AVX-2, 3.8 GHz AVX-512
 - LRZ Default
 - 205 W power limit (-14.6%)
 - 1.8 GHz CPU uncore frequency
 - Turbo CPU core frequencies
 - | 3.7 GHz SSE, 3.6 GHz AVX-2, 3.5 GHz AVX-512
- All jobs executed under Energy Aware Runtime (EAR)

See: <u>https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes</u>

https://doku.lrz.de/display/PUBLIC/Energy+Aware+Runtime

CINECA's systems:

- It is possible to access and change all the power knobs without special permission on all CINECA's systems,
- the SLURM scheduler takes care to restore a default configuration after the termination of power-aware jobs.

Marconi

- Intel Xeon 8160 Skylake, 24 cores, 150 W TDP
- User-controlled knobs Power capping, frequency scaling, power driver

Marconi100

- #9 Top500 6/2020
- IBM POWER9 AC922, 16 cores
- User-controlled knobs Power capping, frequency scaling, power driver

Galileo100

- Intel Xeon 8260 Cascade lake, 24 cores, 165 W TDP
- Support under development
- User-controlled knobs Power capping, frequency scaling, power driver

\$ srun - A \$ PROJECT --partition=skl usr prod

- --partition=ski_usr_prod
- --gres=msrsafe,sysfs --exclusive
- \$ srun -A \$PROJECT
 --partition=m100_usr_prod
 --gres=sysfs --exclusive

\$ srun -A \$PROJECT
--partition=g100_usr_prod
--gres=msrsafe,sysfs --exclusive

IT4I's systems:

It is possible to access and change power knobs and monitor energy consumption

Barbora

- Intel Xeon Cascade Lake 6240, 18 cores, 150 W TDP / Intel Skylake Gold 6126, 12 cores, 120 W TDP + Nvidia V100, 300 W TDP
- User-controlled knobs
 - CPU: Power capping, core + uncore frequencies scaling, power driver
 - GPU: Power capping, Mem + SM frequencies scaling
- Power monitoring Intel RAPL, Atos | Bull HDEEM / Intel RAPL, Nvidia NVML

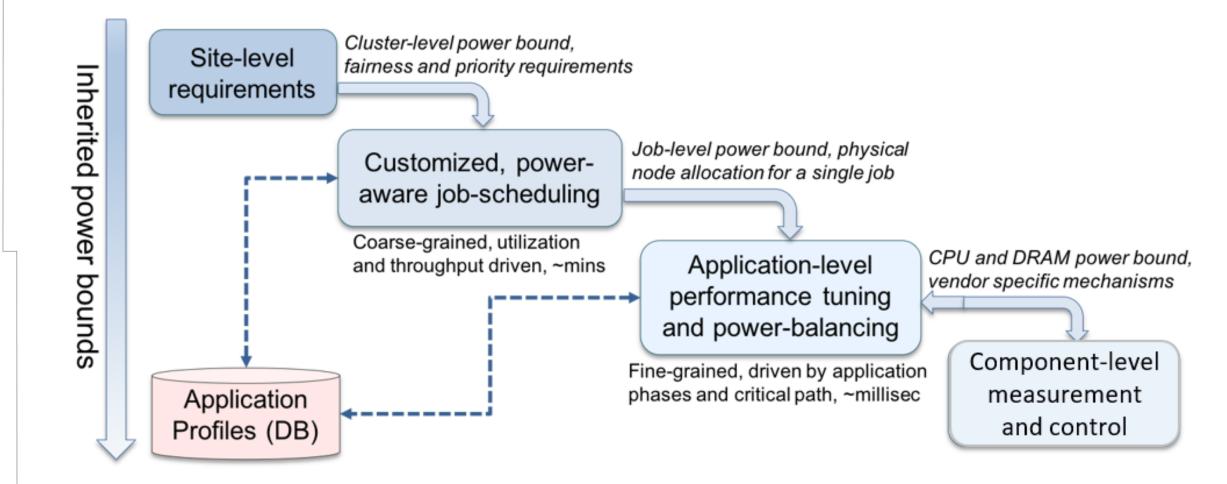
Karolina

- AMD EPYC 7h12, 64 cores, 280 W TDP / AMD EPYC 7763, 64 cores, 280 W TDP + Nvidia A100, 400 W TDP
- IT4I settings: 7h12 3.3GHz -> 2.1GHz, 7763 3.5GHz -> 2.6GHz, A100 1.41GHz -> 1.29GHz
- User-controlled knobs
 - CPU: Power capping, core frequency scaling
 - GPU: Power capping, Mem + SM frequencies scaling
- Power monitoring AMD RAPL / AMD RAPL, Nvidia NVML

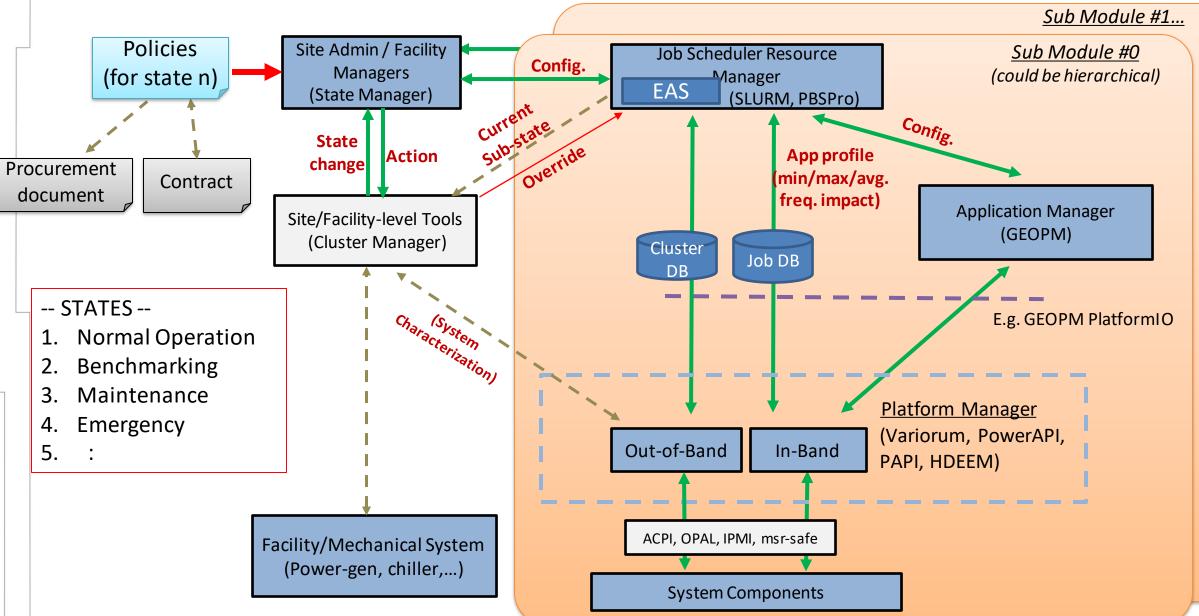
NSCC's system:

It is possible to access and change power knobs and monitor energy consumption

Devana


- Intel Xeon Gold 6338, 32 cores, 205 W TDP / Intel Xeon Gold 6338, 32 cores, 205 W TDP + Nvidia A100, 400 W TDP
- User-controlled knobs
 - CPU: core + uncore frequencies scaling, scaling governor
 - GPU: none
- Power monitoring Intel RAPL / --, Nvidia NVML

- \$ srun -A \$PROJECT --partition=ncpu
- --gres=msrsafe,sysfs --exclusive

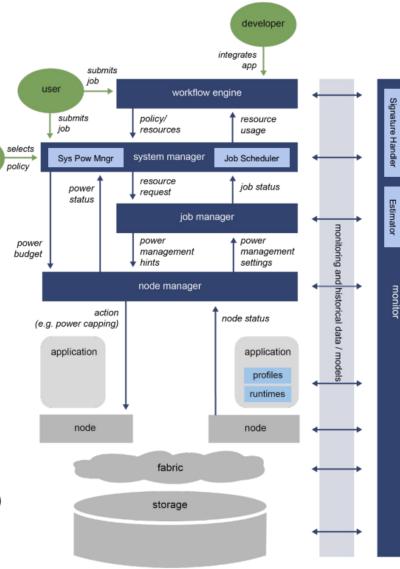


HPC POWERSTACK ARCHITECTURE

HPC POWERSTACK ARCHITECTURE

REGALE ARCHITECTURE

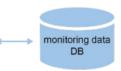
system


admin

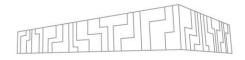
system manager

- receives:
 - admin policy
 - job requests
 - ➤ application profiles
 - > job status
- decides on:
 - > job launch
 - resource allocation
 - power budgets

job manager


- receives:
 - policy and resources
 - power management settings
- provides
 - power management hints (e.g., idle event like MPI wait)

workflow engine


- integrates with user applications
- applies optimized and elastic resource management

node manager

- receives power budget and hints
- applies actions at the node level, i.e., setting up HW knobs accordingly

Energy-aware dynamic tuning

VSB TECHNICAL | IT4INNOVATIONS ||||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

EE RUNTIME SYSTEMS

BSC EAR

CPU core frequency tuning based on executed instructions

CINECA/UniBo COUNTDOWN

• CPU core frequency tuning during MPI communication phases

LLNL Conductor

Power overprovisioning per loop iteration

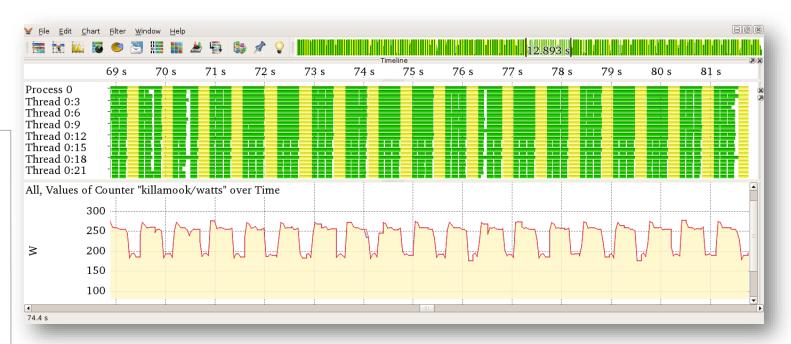
Atos BDPO

- CPU core frequency tuning based on HW metrics sampling to identify HW execution phase
- CPU core frequency tuning during MPI communication phases

Intel GEOPM

• Power overprovisioning or CPU core frequency tuning for instrumented regions (manual, MPI, OMP)

READEX PROJECT


Applications exhibit dynamic behavior

- Changing resource requirements
- Computational characteristics
- Changing load on processors over time

Runtime Exploitation of Application Dynamism for Energy-efficient eXascale computing

UNIVERSITY NATIONAL SUPERCOMPUTING OF OSTRAVA CENTER

Goal was to create a tools-aided methodology for automatic tuning of parallel applications

Dynamically adjust system parameters to actual resource requirements

0.1-1.0 flops per byte Typically < 2 flops per byte

(a) Arrow presenting a range of applications of various arithmetic intensities

FFTs.

Spectral Methods

O(log(N))

https://crd.lbl.gov/divisions/amcr/computer-scienceamcr/par/research/roofline/introduction/

(b) Roofline model of the Intel Xeon Gold 6240 processor when executing a workload of AVX-512 instructions.

memory bound, compute bound, communication, I/O, etc.

Particl

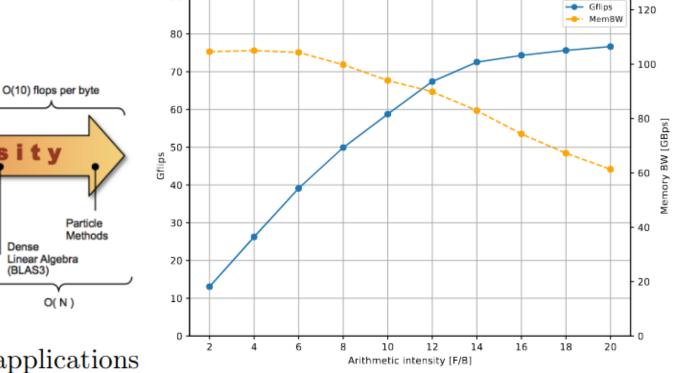
Dense

(BLAS3)

Linear Algebra

O(N)

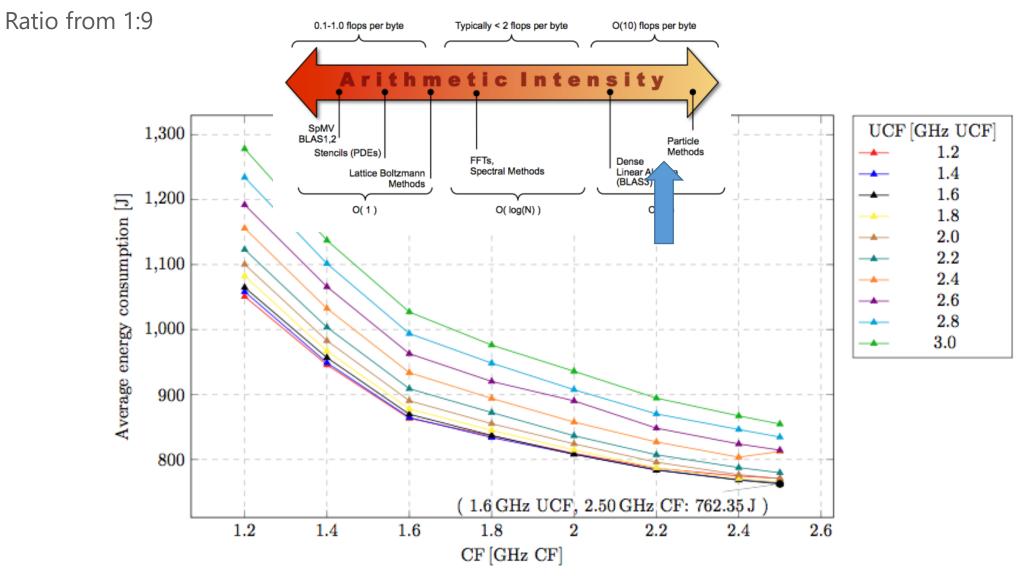
DYNAMICITY

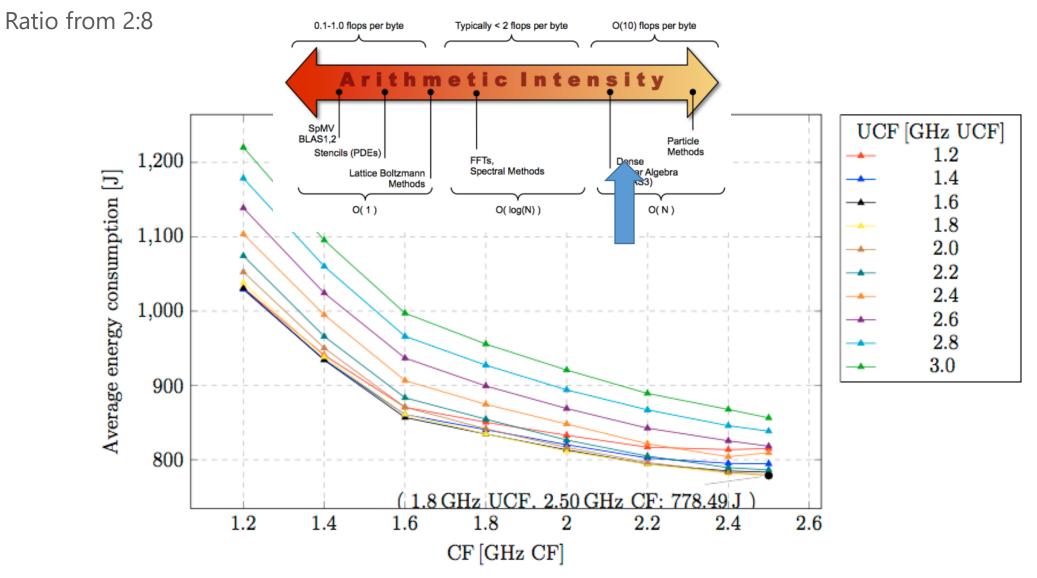

SpMV BLAS1.2

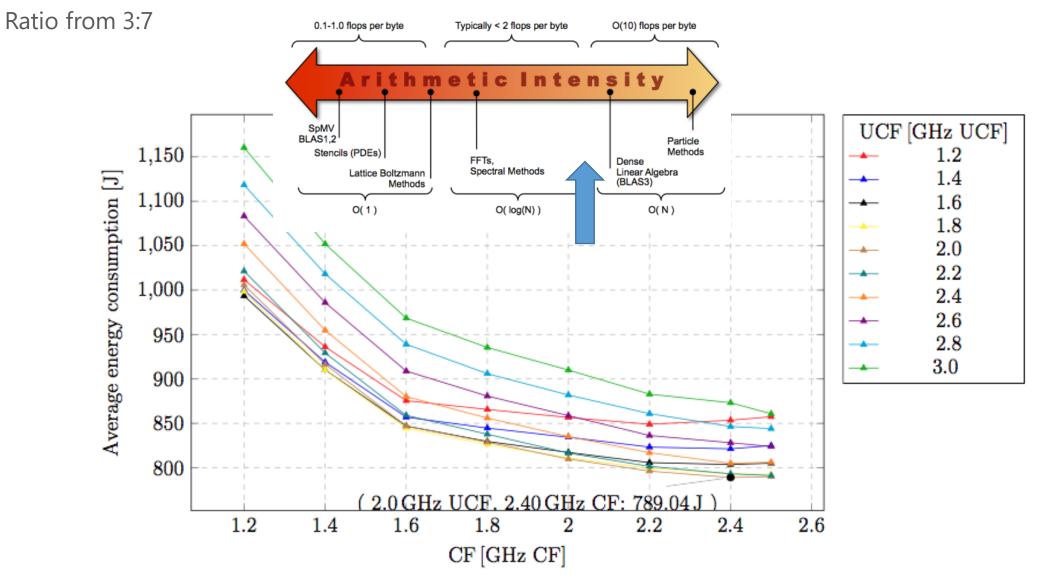
Stencils (PDEs)

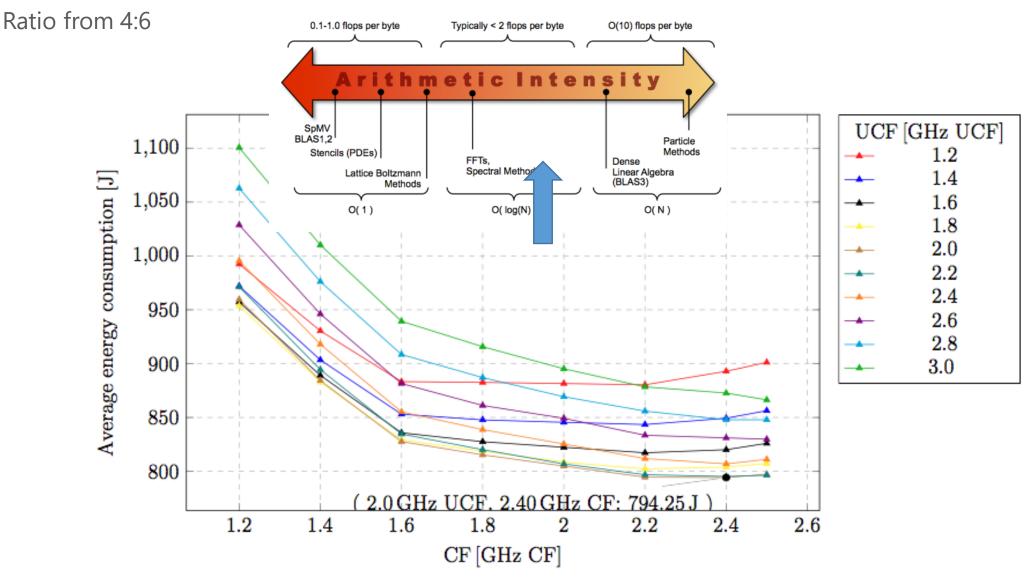
O(1)

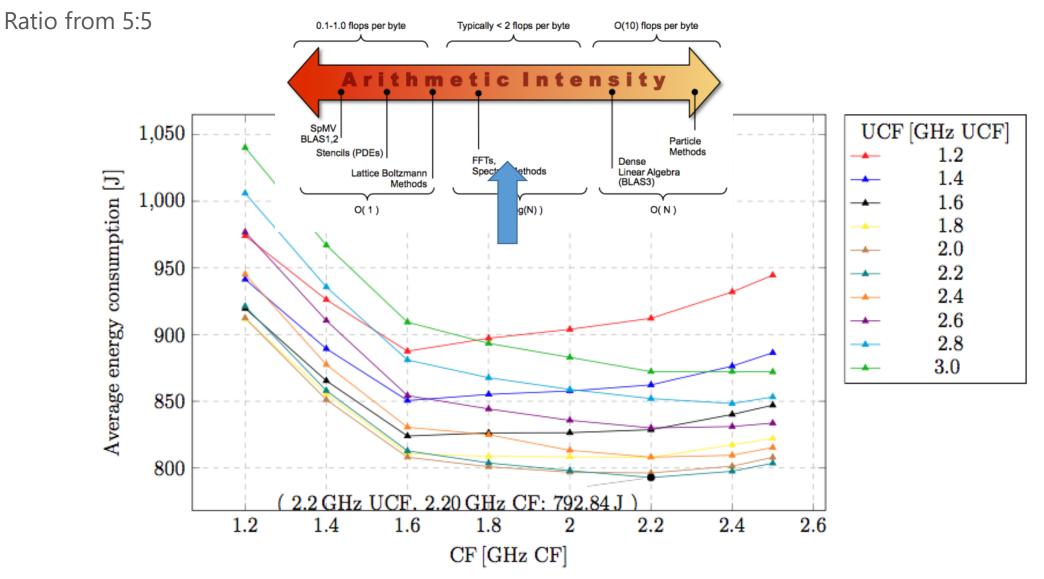
Lattice Boltzmann

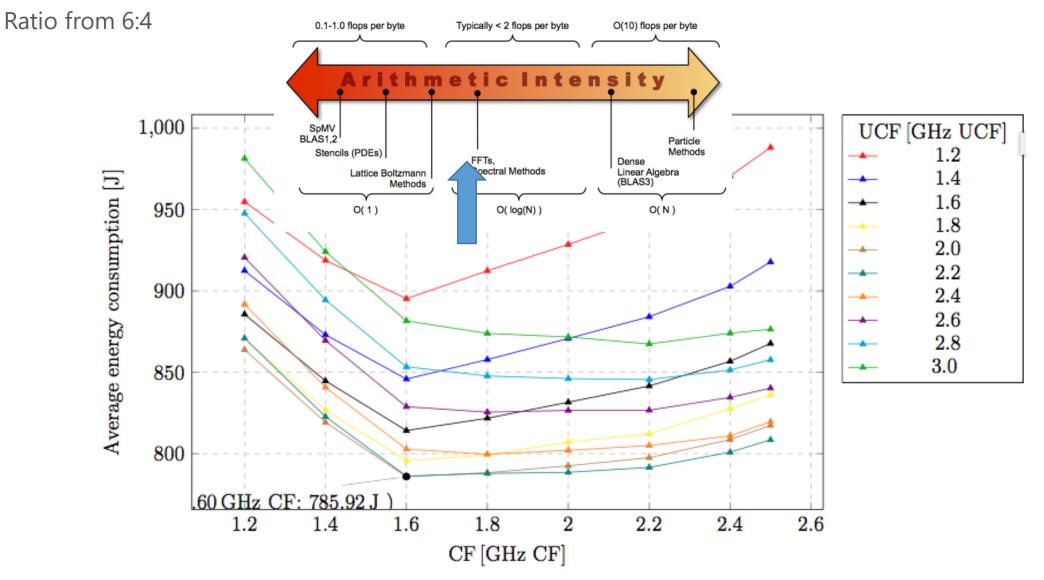

Methods

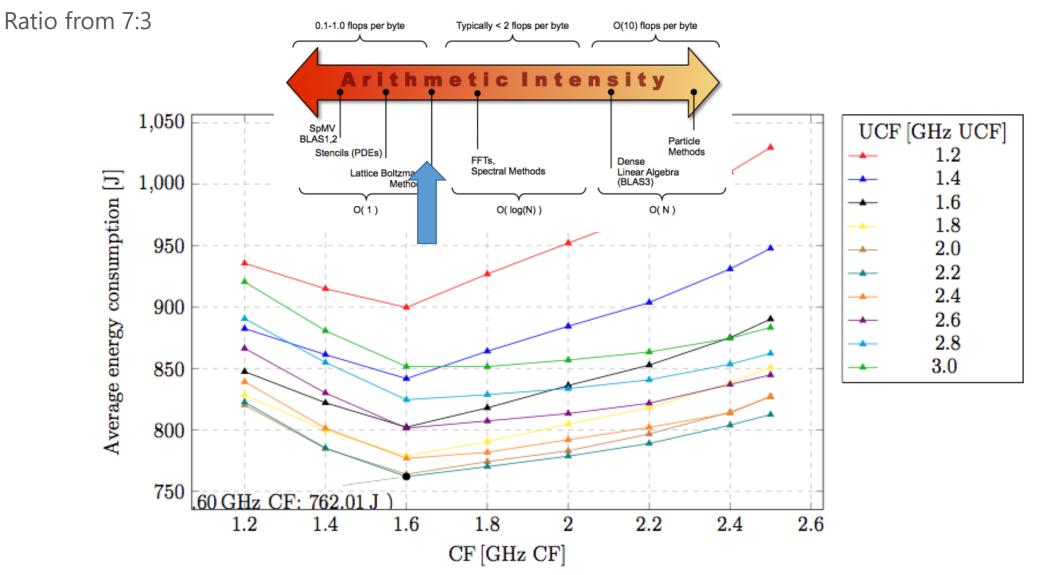

90

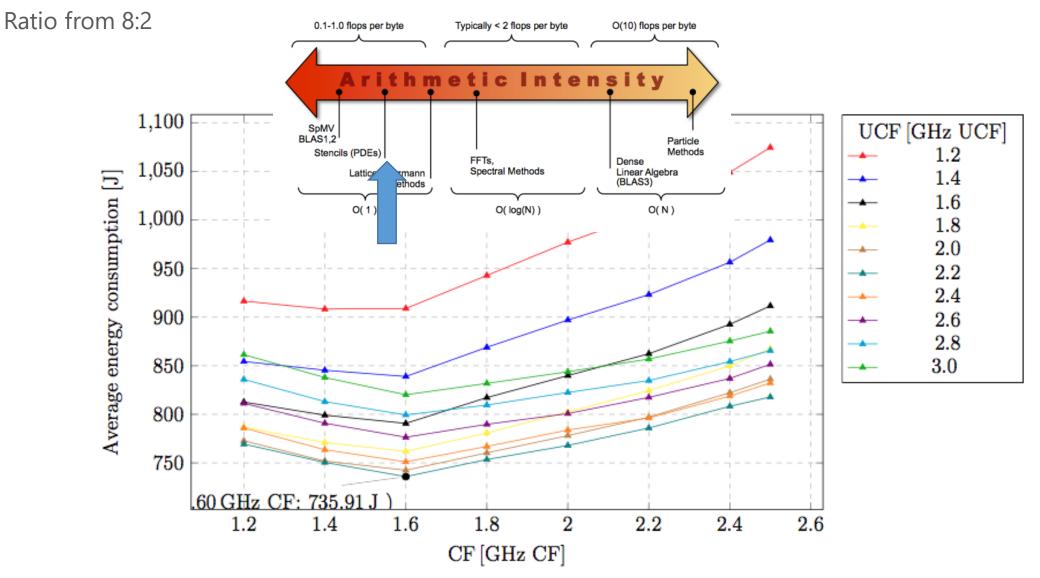


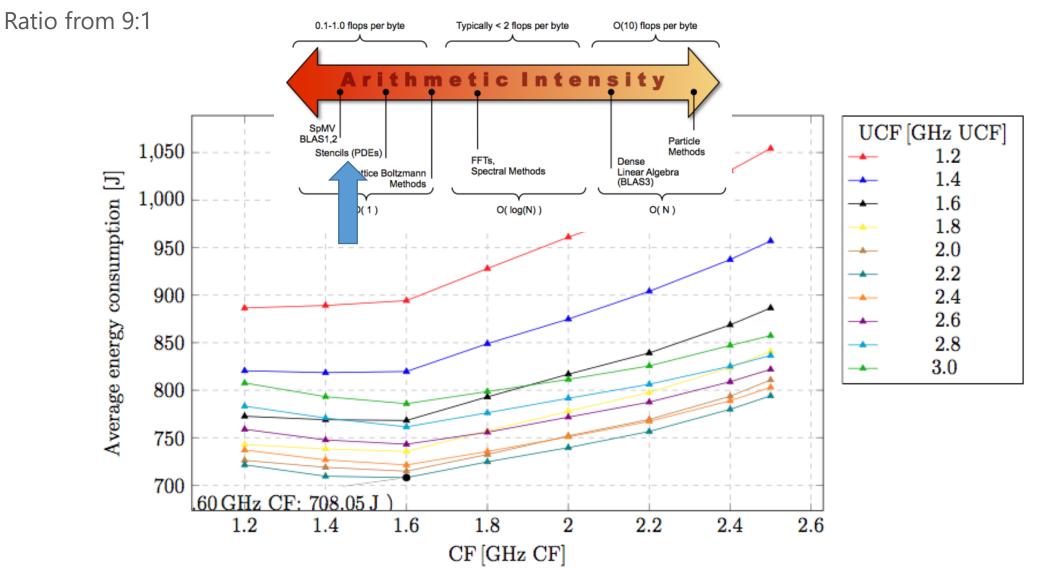


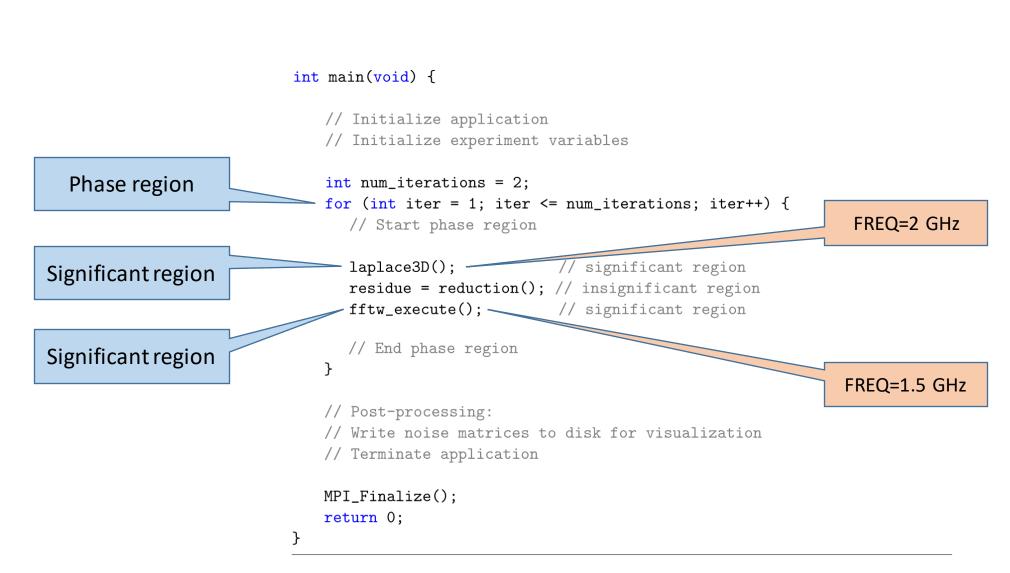




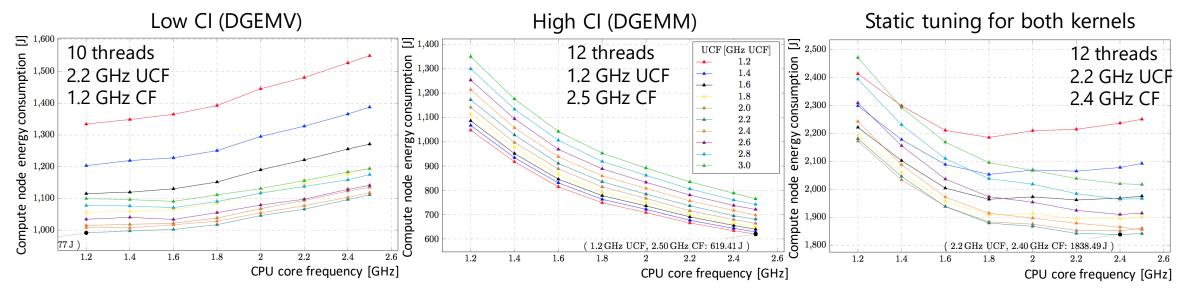








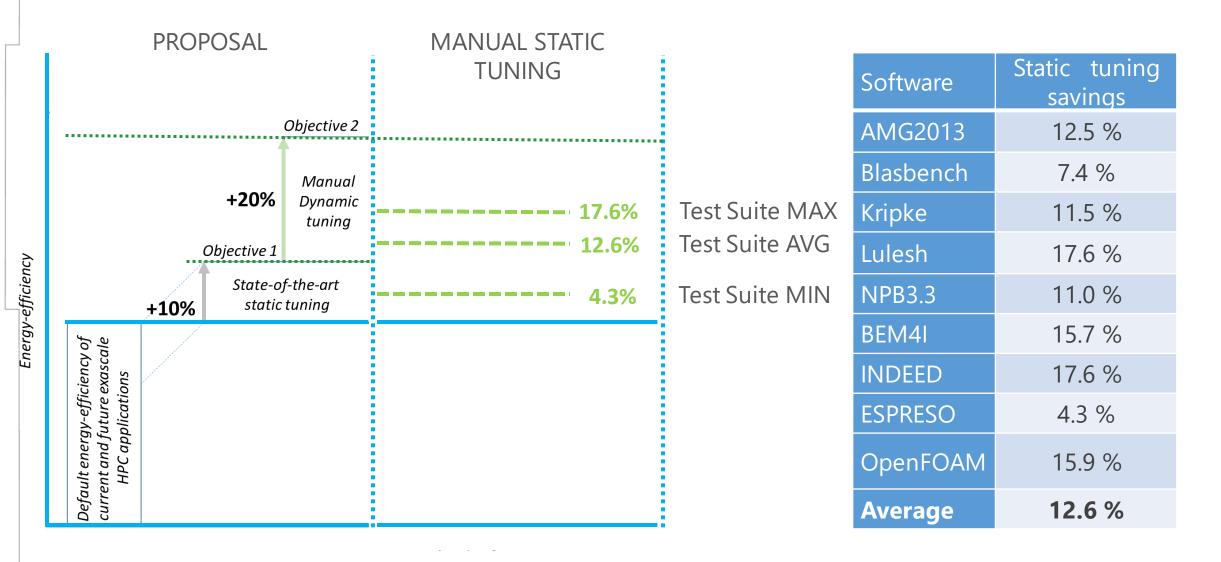
DYNAMIC TUNING



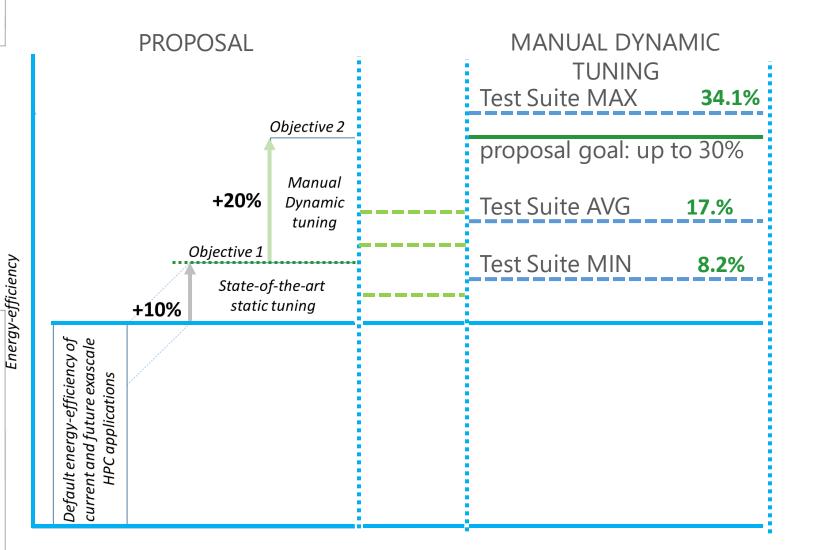
HW PARAMETERS TUNING

Behavior of the simple application with two kernels

- Low computational intensity DGEMV
- High computational intensity DGEMM
- Tuning of three parameters
 - CPU core and uncore frequency, number of OpenMP threads

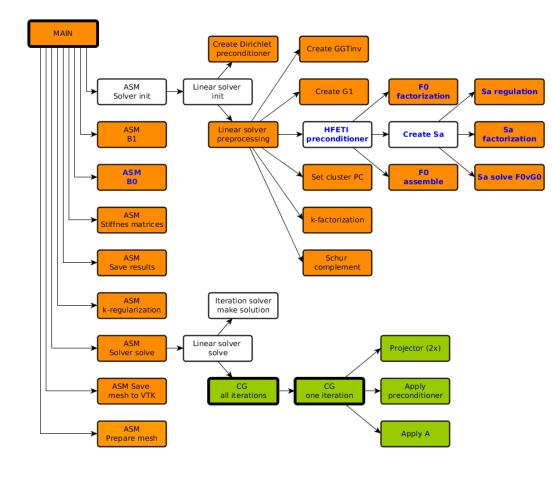

Two kernels with 1:1 workload ratio	Energy consumption	Energy savings	
Default settings	2017 J	-	-
Static tuning	1833 J	184 J	9%
Dynamic tuning	1617 J	400 J	20%

STATIC TUNING



VSB TECHNICAL | IT4INNOVATIONS ||||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

DYNAMIC TUNING


Software	Dynamic tuning savings
AMG2013	12.5 %
Blasbench	15.3 %
Kripke	18.5 %
Lulesh	18.7 %
NPB3.3	11.0%
BEM4I	34.1 %
INDEED	19.5 %
ESPRESO	8.2 %
OpenFOAM	20.1%
Average	17.5 %

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

IMPROVING PERFORMANCE AT SCALE

Strong scaling of ESPRESO FEM code

Improved performance and energy consumption

ESPRESO Highly Parallel Framework for Engineering Applications

0

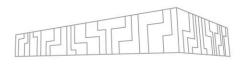
#nodes	Default time [s]	Default energy [kJ]	Tuned time [s]	Tuned energy [kJ]	Time savings [s]	Energy savings [%]
1	129.3	37.2	143.7	34.3	-11.1	8.0
2	68.6	39.8	75.5	36.5	-10.1	8.2
4	33.2	38.0	35.6	34.3	-7.2	9.8
8	21.5	49.6	22.9	44.7	-6.8	9.9
16	13.4	60.8	14.3	53.5	-6.3	12.1
32	7.7	62.2	7.2	50.6	6.1	18.7
64	4.0	69.9	3.6	52.4	9.3	25.0
128	3.6	119.6	2.8	80.1	22.2	33.0

BEM4I

		Time
RIST JIL	니티	111477

VSB TECHNICAL

UNIVERSITY OF OSTRAVA **IT4INNOVATIONS**


CENTER

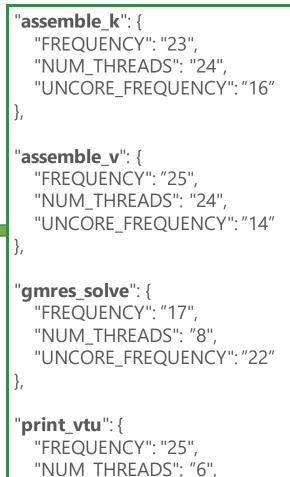
NATIONAL SUPERCOMPUTING

						"assemble_k": {
Application runtime	assemble_k [s]	assemble_v [s]	gmres_solve [s]	print_vtu [s]	main [s]	"FREQUENCY": "23", "NUM_THREADS": "24",
default runtime	5.4	5.9	10.2	5.6	27.3	"UNCORE_FREQUENCY": "16"
static tuning runtime	9.8	10.6	6.1	2.4	29.0	},
dynamic tuning runtime	7.0	7.2	7.9	2.1	24.3	"assemble v": {
static savings [%]	-82.3%	-79.1%	40.5%	56.8% 产	-6.2%	"FREQUENCY": "25", "NUM_THREADS": "24",
dynamic savings [%]	-30.6%	-20.9%	23.2%	62.9%	10.9%	"UNCORE_FREQUENCY": "14"
"static": { "FREQUENCY": "25", < 2.5 GHz "NUM_THREADS": "12", < 12 OpenMP threads "UNCORE_FREQUENCY": "22" } < 2.2 GHz Hardware: dual socket system with 2x12 CPU cores – "standard HW" in HPC centres						" gmres_solve ": { "FREQUENCY": "17", "NUM_THREADS": "8", "UNCORE_FREQUENCY": "22" },
 assemble_k and assemble_v – high utilization of vector units, extreme level of optimization – fully compute bound great utilization of both sockets and all cores 					" print_vtu ": { "FREQUENCY": "25", "NUM_THREADS": "6",	
 gmres_solve – uses DGEMV from MKL – memory bound, suffers on NUMA effect; this routine is more efficient on single socket 					"UNCORE_FREQUENCY": "24" }	

• print_vtu – single threaded I/O and network bound region why stores data to a file on LUSTRE system

BEM4

Compute node energy	assemble_k [J]	assemble_v [J]	gmres_solve [J]	print_vtu [J]	main [J]
default energy	1476	1484	2733	1142	6872
static tuning energy	1962	2015	1366	420	5792
dynamic tuning energy	1467	1462	1259	293	4531
static savings [%]	-33.8%	-35.8%	50.0%	63.2% 🔿	15.7%
dynamic savings [%]	0.6%	1.5%	53.9%	74.3%	34.1%


"static": {

"FREQUENCY": "25",	<	2.5 GHz
"NUM_THREADS": "12",	<	12 Open
"UNCORE_FREQUENCY": "22" }	<	2.2 GHz

--- 12 OpenMP threads --- 2.2 GHz

Large energy savings is combination of optimal HW settings and runtime savings due to mitigation of NUMA effect by optimal settings of OpenMP threading

- Without savings in runtime caused by similar application will
 - Energy savings approx. 15 20%
 - Runtime savings approx. -15% .

"UNCORE_FREQUENCY": "24"

MERIC LIBRARY

MERIC runtime system provides dynamic application tuning

BHCO/ACCO

BDPO

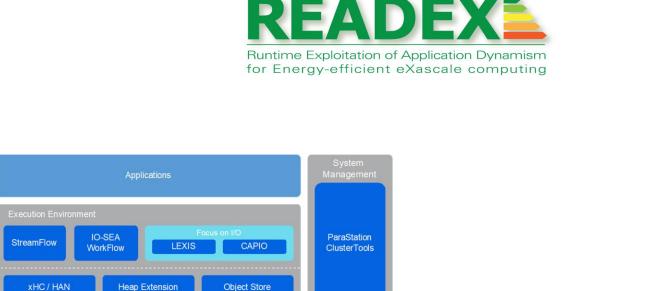
COUNTDOWN

MERIC

Syster

DAMARIS

I/O Analyzer


SCALASCA SCORE-P

LLView

BEO

ParaStation HealthChecker

- Lightweight & easy to install & easy to use
- C/C++ API and Fortran module
- MPI, OpenMP and CUDA parallelization
- Performance and power aware
- Support for a wide range of architectures
 - x86,
 - IBM OpenPOWER,
 - ARM,
 - Nvidia GPUs, ...
- Power monitoring systems
 - Intel/AMD RAPL,
 - OCC
 - ATOS HDEEM,
 - NVML,
 - DiG,
 - A64FX

Ocean-core /

Ocean-stack

(ECMWF)

Storage

Node

Stack

(TeraHeap, xmap)

OpenMPI

Slurm+ParaStation

Resource Manager

(Collectives)

GPUDirect

Adaptation

ParaStation MPI

hwloc

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

European Pilot for Exascale

POWER KNOBS

Intel

- CPU core frequency, uncore frequency, power capping
- ACC (PVC) GPU frequency, memory frequency, power capping
- ACC (KNL) core frequency, power capping

AMD

- CPU core frequency, power capping, Data Fabric frequency
- ACC power capping, frequency system, Data Fabric, display controller, SOC, memory, PCIe

Nvidia

GPU - SM frequency, memory frequency, power capping

IBM

CPU - core frequency, power capping + GPU and node power capping

ARM

- A64FX core frequency, FLA (floating-point ops) and EXA (integer ops) pipelines elimination, memory frequency
- EPI core frequency, power capping, ???
- Jetson core frequency, memory frequency


```
export MERIC_FREQUENCY=2400MHz
export MERIC_UNCORE_FREQUENCY=2GHz
export MERIC_NUM_THREADS=24
export MERIC_MEASURE=RAPL,HDEEM-S
export MERIC_COUNTERS=papi
```

And many more, see MERIC README

MERIC API

void MERIC_Init()

At the beginning of the main() or in case of MPI applications follows after MPI_Init()

void MERIC_Close()

At the end of application run, but before MPI_Finalize()

void MERIC_IgnoreStart()
void MERIC_IgnoreStop()

STATIC TUNING WITHOUT INSTRUMENTATION

tools/energyMeasuereStart + tools/energyMeasureStop

- Commandline energy measurement
- The tuneable parameters also possible to specify

\$./energyMeasureStart -e RAPL

\$ sleep 5

\$./energyMeasureStop -e RAPL Runtime [s] = 5.03672 RAPL_RAM_0 [J] = 38.2296 RAPL_RAM_1 [J] = 27.3747 RAPL_PCKG_0 [J] = 249.266 RAPL_PCKG_1 [J] = 256.062

RAPL Energy consumption [J] = 570.932

energyMeasureStart parameters:

- -e = energy measurement system "RAPL" or "NVML"
 -c = CPU core frequency [Hz]
 -u = CPU uncore frequency [Hz]
 -t = #OpenMP threads
 -p = power capping power limit [mW]
 -w = power capping time window [ms]
 -s = GPU SM frequency [Hz]
 -r = GPU memory frequency [Hz]
- -g = GPU power capping power limit [mW]

energyMeasureStop parameters:

-e = energy measurement system "RAPL" or "NVML"

- -b = node baseline (static) power [W]
- -q = print the overall consumed energy only [J]

STATIC BINARY INSTRUMENTATION

Tool using Dyninst library (or MAQAO library) to produce a new binary that contains MERIC instrumentation

Inserts all the necessary shared libraries dependencies

Inserts MERIC_Init() and MERIC_Close()

- In case of MPI applications generates also a new binary of MPI library that contains these functions
- LD_PRELOAD=\$(pwd)/libmpi.sompirun -n \$NUMPROC ./application [APP_PARAMS]
- Instruments all the selected application's functions
 - Detects selected functions in the binary and changes the instructions of the function to add MERIC_MeasureStart("funcName") call at the function beginning and MERIC_MeasureStop() call as the last function instruction
- How to select functions to instrument?
 - any profiler
 - or TIMEPROF (part of MERIC repository) provides runtime of the instrumented functions (application binary can be also instrumented with TIMEPROF using dinst_instrument.cpp tool)

DYNAMISM INVESTIGATION

Dynamism investigation = running the application in different configurations

MERIC stores measurements for each configuration for each instrumented application region

systemInfo tool provides an overview what is the current status of the CPU and what are the available configurations

\$ meric/tools/systemInfo

SYSTEM INFORMATION

Sockets per Node: 2 Cores per Socket: 8 Threads per Core: 2

CPU FREQUENCIES

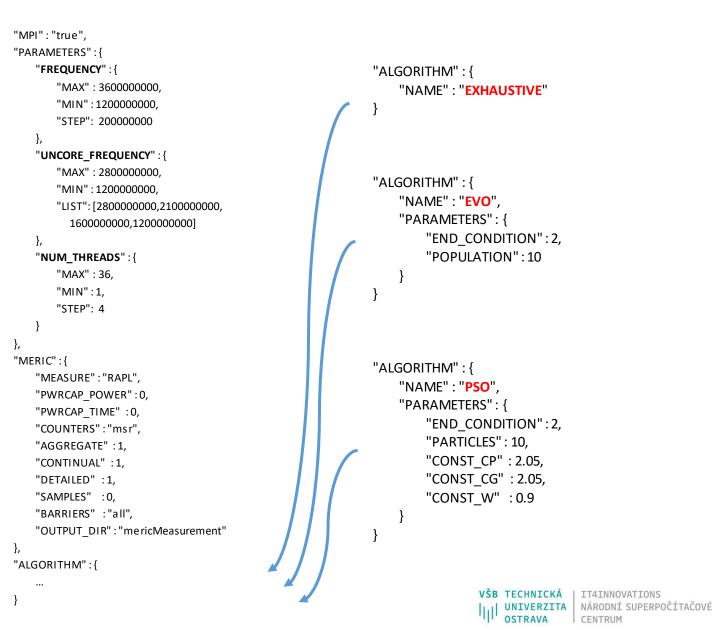
Current scaling driver: intel_pstate Current scaling governor: powersave Available governors: performance powersave Hardware controlled P-State: not available Turbo CPU core frequencies: 3400000(1) 3400000(2) 3200000(3) 3100000(4) 3000000(5) 2900000(6) 2800000(7) 2800000(8) kHz(#cores) Nominal CPU core frequency: 2600000 kHz Min CPU core frequency: 1200000 kHz Max CPU uncore frequency: 3000000 kHz Min CPU uncore frequency: 1200000 kHz

RAPL POWER LIMITS

RAPL time window unit: 976.562 us PKG max power limit: 180 W PKG min power limit: 34 W DRAM max power limit: 36 W DRAM min power limit: 16.5 W

DEFAULT RAPL POWER LIMITS

PKG power limit #1: enabled + clamping enabled PKG power limit #1: 90 W PKG time window #1: 1 s PKG power limit #2: enabled + clamping enabled PKG power limit #2: 108 W PKG time window #2: 0.0078125 s


AVAILABLE ENERGY MEASUREMENT SYSTEMS RAPL

DYNAMISM INVESTIGATION

MERICwrapper

- Provides algorithms for state
 space search the tool will
 execute the application in
 various configurations to find the
 optimal one for each region
- A json configuration file:

ANALYSIS WORKFLOW

• Application profiling

2

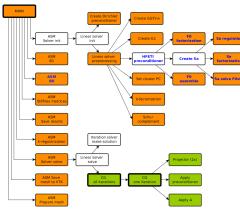
- Identification of significant regions
- Application instrumentation
- Application analysis
- Optimal configuration identification
- App's behavior visualization
- Production runs and dynamic tuning

Binary instrumentation tool Dyninst / MAQAO

MERIC wrapper

RADAR visualizer PyQt5 tool

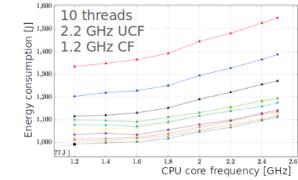
RADAR VISUALIZER

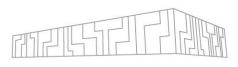

Visualisation of applicatin behavior in various configuration

Tables

- Overall application evaluation
- Summary of nested regions' behavior
- Each region behavior description
- Heatmaps
- Plots
- Power timeline
 - Cluster analysis
- Call-path graph

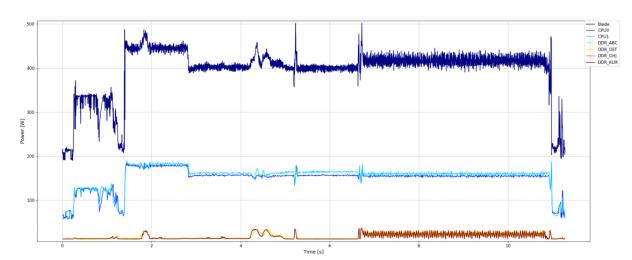
100		инии	ицицици	ининини	и и и и и и и
80		ւելելելել	կկկկկկ	ելելելելելել	կկկկկի)
60					
40		11111	INTE	uu ni	1111111
20					
	վեր	สโคโคโคโ		արութութութութություն	1 manduran man


	Default settings	Default values	Best static configuration	Static savings	Dynamic savings	
Runtime of function [s], Job info - rapl	3.0GHz, 2.5GHz	1.97s	3.0GHz, 2.5GHz	0.00s (0.00%)	0.015s of 1.97s (0.76%)	
Energy summary, COUNTERS - rapl:	3.0GHz, 2.5GHz 800.37 2.4GHz, 2.5GHz 19.70 (2.46%) 46.5 780 (5.9					
Run-time change with the energy optimal settings	+0.14s (107.04 % of default time)					

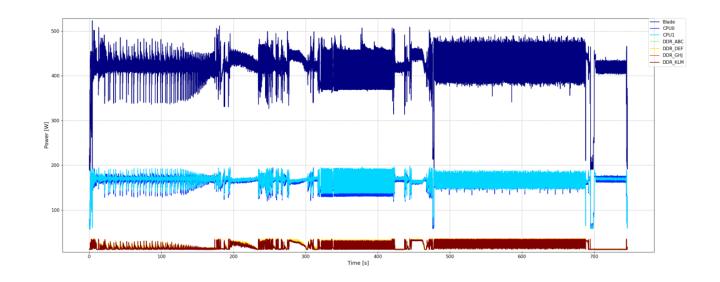

Voltage regulator (CPU0)

Voltage regulator (DDR EF)

Voltage regulator (DDR GH)



Uncore freq [GHz] Core freq [GHz]	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1.2	13,200.02	12,717.1	12,621.78	12,410.62	12,380.68	12,507.38	12,774.16	13,108.6	$13,\!604.2$	14,040.8
1.4	13,161.9	12,597.78	12,125.18	12,065.52	12,074.54	12,173.36	12,312.24	12,802.26	13,095.84	13,450.8
1.6	13,320.66	12,640.76	12,256.22	12,033.62	11,966.36	11,992.7	12,372.04	12,579.22	13,126.44	13,370.24
1.8	13,878.04	13,082.66	12,700.92	$12,\!457.08$	12,373.86	$12,\!445.98$	12,574.6	12,831.82	13,081.62	13,296.04
2	14,218.58	13,327.12	12,902.62	12,544.82	12,456.82	12,494.8	12,680.32	13,038.86	13,207.38	13,474.8
2.2	14,625.62	13,849.58	13,240.14	12,851	12,760.98	$12,\!802.24$	12,993.44	13,260.38	13,497.6	13,767.62
2.4	15,083.2	14,412.62	13,568.68	13,447.18	12,973.38	13,238.6	13,332.7	13,388.7	13,777.68	14,030.66
2.5	$15,\!554.96$	14,465.2	13,991	13,553.84	13,300.24	13,354.46	13,472.36	14,179.16	14,083.06	14,231.3
							CHNICAL EVERSITY OSTRAVA			OMPUTING


SERVICES

waLBerla

LaBS

DRIVING THE EXASCALE TRANSITION

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY OF OSTRAVA | CENTER

VSB TECHNICAL | IT4INNOVATIONS UNIVERSITY OF OSTRAVA NATIONAL SUPERCOMPUTING CENTER

- waLBerla

LaBS

	Default	Static tuning	Dynamic tuning	Dynamic tuning
			constant runtime	
Runtime [s]	1797.9	1942.73	1807.13	1871.14
Energy consumption [kJ]	3102.3	1942.73	2726.7	2496.71
Solver energy-efficiency [MLups/W]	0.054	0.059	0.056	0.056
Runtime extension [%]	-	8.1	0.5	4.1
Energy savings [%]	-	15.1	12.1	19.5

	Default	Static tuning	Dynamic tuning	Dynamic tuning
			constant runtime	
Runtime [s]	66.86	70.75	66.64	77.69
Energy consumption [kJ]	99.04	90.88	91.24	80.17
Solver energy-efficiency [MLups/W]	0.548	0.667	0.595	0.734
Runtime extension [%]	-	5.82	-0.4	16.2
Energy savings [%]	-	9.2	7.9	19.1

SCALABLE

ACKNOWLEDGEMENT

Funded by the European Union. This project has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria, Austria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant agreement **No 101101903**. This project has received funding from the Ministry of Education, Youth and Sports of the Czech Republic.

ACKNOWLEDGEMENT

This work was supported by the **READEX** project - the European Union's Horizon 2020 research and innovation programme under grant agreement No. 671657.

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of

Sustainability (NPS II) project "IT4Innovations excellence in science -LQ1602" and by the IT4Innovations infrastructure which is supported from the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140).

This work was supported by the **POP2** project - the European Union's Horizon 2020 research and innovation programme under grant agreement No. 824080.

This work was supported by the **SCALABLE** project. This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 956000. The JU receives support from the European Union's Horizon 2020 research and innovation programme and France, Germany, the CzechRepublic.

This work was supported by the **EUPEX** project - the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101033975.

IT4INNOVATIONS

NÁRODNÍ SUPERPOČÍTAČOVÉ

/ŠB TECHNICKÁ