
ENERGY EFFICIENCY
FEATURES OF THE MODERN
HPC HARDWARE AND
ENERGY CONSUMPTION
MEASUREMENT

Ondřej Vysocký
IT4Innovations

June 6, 2023

|How to improve energy efficiency?

ENERGY EFFICIENCY

|How to improve energy efficiency?

|Improve (parallel) efficiency of your code!

ENERGY EFFICIENCY

|How to improve energy efficiency?

|Improve (parallel) efficiency of your code!

|So, we can go home today...

ENERGY EFFICIENCY

|How to improve energy efficiency?

|Improve (parallel) efficiency of your code!

|So, we can go home today... or not?

ENERGY EFFICIENCY

ENERGY EFFICIENCY

ENERGY EFFICIENCY

|Why should I improve energy efficiency (and potentially reduce
performance) of my application?

ENERGY EFFICIENCY

|Why should I improve energy efficiency (and potentially reduce
performance) of my application?

|Better energy efficiency does not imply worse performance

ENERGY EFFICIENCY

END OF MOOR'S LAW

Top500 11/2022

| Scaling
| Power wall

| Target 20 MW power limit for exascale
| = 50 GFlop/W

| Soft limit

| General hardware optimised for all
possible workloads => silicon area wasted
to maximize single thread performance

| New heterogenous hardware – GPU, FPGA, …

| Specialized computing units

TOP500

11/2022

Rmax = Linpack Performance
Rpeak = Theoretical Peak

TOP500

11/2022

Rmax = Linpack Performance
Rpeak = Theoretical Peak

x1.9 = 57 MW

x5 = 44 MW

x8 = 60 MW

x8 = 123 MW

x13 = 34 MW

x11 = 28 MW

x10 = 185 MW

x3.3 = 20 MW

x6 = 34 MW

Exascale goal is

20 MW limit

=

50 GFlops/watts

2021

2020

2022

2022

2018

2018

2016

2021

2020

2018

Exascale computing

11/2016

| CPUs
| Rising number of cores

| Chiplets (tiles)

| Purpose specific units
| AI, crypto, matrix calculation

| GPUs
| Tensor cores

| FPGAs

HARDWARE TRENDS

GREEN500

Nvidia H100

AMD MI250X

AMD MI250X

AMD MI250X

AMD MI250X

Nvidia H100

MI210

AMD MI250X

6/2023
Nvidia A100

AMD MI250X

ENERGY EFFICIENCY

Power management
and monitoring

ENERGY

| Power [W]

| 1 W * 1 s = 1 J

| 1 W * 1 h = 1 Wh = 3 600 J

ENERGY

| Power [W]

| 1 W * 1 s = 1 J

| 1 W * 1 h = 1 Wh = 3 600 J

ENERGY

| Power [W]

| 1 W * 1 s = 1 J

| 1 W * 1 h = 1 Wh = 3 600 J

POWER MONITORING

| On node components
| CPU, GPU, memories, NIC

| Node

| Rack

| Sytem

| Data hall

| Building

Images of HPE Cray, OLCF Frontier

POWER MONITORING SYSTEMS FOR HPC

| In-band
| Vendor dependent
| HW performance counters

| Out-of-band
| High overhead of communication -> can be avoided by reading post mortem
| (usually) fine-grain power measurement
| Custom sensors

IN- AND OUT-OF-BAND POWER MONITORING

Img source, Antoniu Libri (UNIBO)

RAPL DiG

| Bull|Atos technology available for production systems (Bullx B7xx and Bull Sequana)
| On board out-of-band technology for power monitoring

| Power domains:
| Blade (1kHz)
| VRs (100 Hz) CPUs, DRAMs, NIC*, VAUX*

| 2% of accuracy uncertainty
| C library as well as command line utility:

| startHdeem
| stopHdeem
| checkHdeem
| printHdeem
| clearHdeem

HIGH DEFINITION ENERGY EFFICIENCY MONITORING (HDEEM)

| Intel
| CPU - core frequency, uncore frequency, power capping

| ACC (PVC) - GPU frequency, memory frequency, power capping

| ACC (KNL) - core frequency, power capping

| AMD
| CPU - core frequency, power capping, Data Fabric frequency

| ACC - power capping, frequency – system, Data Fabric, display controller, SOC, memory, PCIe

| Nvidia
| GPU - SM frequency, memory frequency, power capping

| IBM
| CPU - core frequency, power capping

+ GPU and node power capping

| ARM

| A64FX - core frequency, FLA (floating-point ops) and EXA (integer ops) pipelines elimination, memory
frequency

| EPI - core frequency, power capping, ???

POWER KNOBS

This list is incomplete

| ACPI (Advanced Configuration and Power Interface) is an open industry specification
establishes industry-standard interfaces enabling OS-directed configuration, power
management, and thermal management of mobile, desktop, and server platforms.

| ACPI defines performance states (P-States)

| P-States correspond to different performance levels that are applied while the
processor is actively executing instructions

| Intel CPUs from Haswell architecture provide Voltage regulators per core, so each core
has its own P-State

| Scaling driver
| Acpi-cpufreq, intel_psate, ...

| Scaling governor
| Performance, powersave, userspace, ondemand, conservative

| Intel hardware P-state

OS POWER MANAGEMENT

Applications

OS power management

Software drivers

HW: CPU, BIOS, etc.

ACPI

| Turbo Boost is a technology that opportunistically allows the processor to run faster than the nominal
frequency if the CPU is operating below power, temperature and current limits

| There are three different levels of the turbo core frequency based on instruction set – SSE, AVX/AVX2,
AVX-512

| The turbo frequency limit also relies on the number of active cores
| Turbo Boost frequency is selected by the firmware of the CPU – no OS control

| Be careful when using an islands of AVX instructions, there is always a transition latency

INTEL CPU CORE TURBO FREQUENCY

| MSR MSR_UNCORE_RATIO_LIMIT (0x620)

| frequency of subsystems in the physical processor package that are shared by multiple processor cores
| last level cache, on-chip ring interconnect or the integrated memory controllers, etc.
| occupies approximately 30 % of a chip area
| specification of the maximum and minimum limit

INTEL CPU UNCORE FREQUENCY

| Sysfs: /sys/devices/virtual/powercap/intel-rapl/intel-rapl:X/intel-rapl:0:Y

| Power domains:
| Package: limits the power consumption for the entire package of the CPU, this includes cores and uncore components

| Short (1.2 * TDP, ~ milliseconds) and long window (TDP, ~ second)

| DRAM: is used to power cap the DRAM memory = memory monitoring, P-State scaling.
| only for server architectures, no client
| single time window
| in default is turned off

| PP0/Core: is used to restrict the power limit only to the cores of the CPU
| no new server
| single time window

| PP1/Graphic: is used to power limit only the graphic component of the CPU
| no server
| Single time window

| PSys/Platform: controls entire System on Chip
| short and long window
| available from Skylake architecture
| requires support from vendor

INTEL RUNNING AVERAGE POWER LIMIT (RAPL)

| MSR MSR_PKG_POWER_LIMIT (0x610)

| MSR MSR_RAPL_POWER_UNIT (0x606)
| Power units
| Energy status units
| Time units

| Energy consumption measurement
| MSR MSR_PKG_ENERGY_STATUS (0x611)
| MSR MSR_DRAM_ENERGY_STATUS (0x619)
| MSR MSR_PP0_ENERGY_STATUS (0x639)
| MSR MSR_PP1_ENERGY_STATUS (0x641)
| MSR MSR_PLATFORM_ENERGY_COUNTER (0x64D)

INTEL RUNNING AVERAGE POWER LIMIT (RAPL)

Haidar et al: Investigating power capping toward energy-efficient scientific applications

| A100-SXM4
| 1410 MHz SM max turbo frequency
| 1095 MHz SM nominal frequency

| Mandelbrot benchmark

NVIDIA GPU SM FREQUENCY TUNING

Spetko et al: DGX-A100 Face to Face DGX-2—Performance, Power and Thermal Behavior Evaluation.

| A100-SXM4
| 1410 MHz SM max turbo frequency
| 1095 MHz SM nominal frequency

| Mandelbrot benchmark

NVIDIA GPU SM FREQUENCY TUNING

Spetko et al: DGX-A100 Face to Face DGX-2—Performance, Power and Thermal Behavior Evaluation.

A100 VS V100

A100

V100

STREAM benchmark

A100 + core frequency tuning

GPU TUNING

STREAM benchmark

A100 + core frequency tuning

GPU TUNING

EE HPC centers

RIKEN Fugaku:

| #1 in Top500 since 6/2020

| Using Fujitsu A64FX (48 compute cores + 4 assistant cores for OS daemon and MPI offload)

| No TDP, no nominal frequency => no turbo frequency

| Available frequencies 1.6, 2.0, or 2.2 GHz

| User-controlled options

| Power mode (scheduler option)

| Normal - 2.0 GHz frequency

| Boost - 2.2 GHz frequency

| ECO – 2.0 GHz frequency + use one of two FP units only + reduces its standby power

| Boost ECO - 2.2 GHz frequency + FPU elimination

| Core retention ON/OFF

| Eliminates standby power idle CPU cores

| See: https://sites.google.com/view/rikenfugakushowcase/home

ENERGY AND POWER AWARE HPC CENTERS

https://sites.google.com/view/rikenfugakushowcase/home

ENERGY AND POWER AWARE HPC CENTERS

LRZ SuperMUC-NG:

| #8 in Top500 in 11/2018, Rmax 20 PFlops

| Using Intel Xeon Platinum 8174 (24 cores)

| Intel default

| 240 W TDP

| 2.4 GHz CPU uncore frequency

| Turbo CPU core frequencies

| 3.9 GHz SSE, 3.8 GHz AVX-2, 3.8 GHz AVX-512

| LRZ Default

| 205 W power limit (-14.6%)

| 1.8 GHz CPU uncore frequency

| Turbo CPU core frequencies

| 3.7 GHz SSE, 3.6 GHz AVX-2, 3.5 GHz AVX-512

| All jobs executed under Energy Aware Runtime (EAR)

ENERGY AND POWER AWARE HPC CENTERS

See:
https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes

https://doku.lrz.de/display/PUBLIC/Energy+Aware+Runtime

https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes
https://doku.lrz.de/display/PUBLIC/Energy+Aware+Runtime

CINECA's systems:

| It is possible to access and change all the power knobs without special permission on all CINECA's systems,

the SLURM scheduler takes care to restore a default configuration after the termination of power-aware jobs.

| Marconi

| Intel Xeon 8160 Skylake, 24 cores, 150 W TDP

| User-controlled knobs - Power capping, frequency scaling, power driver

| Marconi100

| #9 Top500 6/2020

| IBM POWER9 AC922, 16 cores

| User-controlled knobs - Power capping, frequency scaling, power driver

| Galileo100

| Intel Xeon 8260 Cascade lake, 24 cores, 165 W TDP

| Support under development

| User-controlled knobs - Power capping, frequency scaling, power driver

ENERGY AND POWER AWARE HPC CENTERS

$ srun -A $PROJECT
--partition=skl_usr_prod
--gres=msrsafe,sysfs --exclusive

$ srun -A $PROJECT
--partition=m100_usr_prod
--gres=sysfs --exclusive

$ srun -A $PROJECT
--partition=g100_usr_prod
--gres=msrsafe,sysfs --exclusive

IT4I's systems:

| It is possible to access and change power knobs and monitor energy consumption

| Barbora

| Intel Xeon Cascade Lake 6240, 18 cores, 150 W TDP / Intel Skylake Gold 6126, 12 cores, 120 W TDP + Nvidia V100, 300 W TDP

| User-controlled knobs

| CPU: Power capping, core + uncore frequencies scaling, power driver

| GPU: Power capping, Mem + SM frequencies scaling

| Power monitoring – Intel RAPL, Atos|Bull HDEEM / Intel RAPL, Nvidia NVML

| Karolina

| AMD EPYC 7h12, 64 cores, 280 W TDP / AMD EPYC 7763, 64 cores, 280 W TDP + Nvidia A100, 400 W TDP

| IT4I settings: 7h12 3.3GHz -> 2.1GHz, 7763 3.5GHz -> 2.6GHz, A100 1.41GHz -> 1.29GHz

| User-controlled knobs

| CPU: Power capping, core frequency scaling

| GPU: Power capping, Mem + SM frequencies scaling

| Power monitoring – AMD RAPL / AMD RAPL, Nvidia NVML

ENERGY AND POWER AWARE HPC CENTERS

NSCC's system:

| It is possible to access and change power knobs and monitor energy consumption

| Devana

| Intel Xeon Gold 6338, 32 cores, 205 W TDP / Intel Xeon Gold 6338, 32 cores, 205 W TDP + Nvidia A100, 400 W TDP

| User-controlled knobs

| CPU: core + uncore frequencies scaling, scaling governor

| GPU: none

| Power monitoring – Intel RAPL / --, Nvidia NVML

ENERGY AND POWER AWARE HPC CENTERS

$ srun -A $PROJECT
--partition=ncpu
--gres=msrsafe,sysfs --exclusive

| ...

HPC POWERSTACK ARCHITECTURE

| ...

HPC POWERSTACK ARCHITECTURE

Site Admin / Facility
Managers

(State Manager)

Site/Facility-level Tools
(Cluster Manager)

Facility/Mechanical System
(Power-gen, chiller,…)

Job Scheduler Resource
Manager

(SLURM, PBSPro)

Application Manager
(GEOPM)

System Components

In-BandOut-of-Band

E.g. GEOPM PlatformIO

Platform Manager

ACPI, OPAL, IPMI, msr-safe

(Variorum, PowerAPI,
PAPI, HDEEM)

Job DB

Sub Module #0
(could be hierarchical)

App profile
(min/max/avg.
freq. impact)

Sub Module #1…

State
change Action

Config.

-- STATES --
1. Normal Operation
2. Benchmarking
3. Maintenance
4. Emergency
5. :

Cluster
DB

EAS

Contract
Procurement

document

Policies
(for state n)

| ...

REGALE ARCHITECTURE

Energy-aware
dynamic tuning

▪ BSC EAR
▪ CPU core frequency tuning based on executed instructions

▪ CINECA/UniBo COUNTDOWN
▪ CPU core frequency tuning during MPI communication phases

▪ LLNL Conductor
▪ Power overprovisioning per loop iteration

▪ Atos BDPO
▪ CPU core frequency tuning based on HW metrics sampling

to identify HW execution phase

▪ CPU core frequency tuning during MPI communication phases

▪ Intel GEOPM
▪ Power overprovisioning or CPU core frequency tuning for instrumented regions (manual, MPI, OMP)

EE RUNTIME SYSTEMS

| Applications exhibit dynamic behavior
| Changing resource requirements

| Computational characteristics

| Changing load on processors over time

| Goal was to create a tools-aided methodology for automatic tuning of parallel applications

| Dynamically adjust system parameters to actual resource requirements

READEX PROJECT

DYNAMICITY

memory bound, compute bound, communication, I/O, etc.

https://crd.lbl.gov/divisions/amcr/computer-science-
amcr/par/research/roofline/introduction/

STATIC TUNING FOR VARIOUS AI
Ratio from 1:9

STATIC TUNING FOR VARIOUS AI
Ratio from 2:8

STATIC TUNING FOR VARIOUS AI
Ratio from 3:7

STATIC TUNING FOR VARIOUS AI
Ratio from 4:6

STATIC TUNING FOR VARIOUS AI
Ratio from 5:5

STATIC TUNING FOR VARIOUS AI
Ratio from 6:4

STATIC TUNING FOR VARIOUS AI
Ratio from 7:3

STATIC TUNING FOR VARIOUS AI
Ratio from 8:2

STATIC TUNING FOR VARIOUS AI
Ratio from 9:1

DYNAMIC TUNING

FREQ=2 GHz

Phase region

Significant region

Significant region

FREQ=1.5 GHz

Behavior of the simple application with two kernels

| Low computational intensity – DGEMV

| High computational intensity – DGEMM

| Tuning of three parameters
| CPU core and uncore frequency, number of OpenMP threads

HW PARAMETERS TUNING

Two kernels with 1:1

workload ratio

Energy

consumption

Energy savings

Default settings 2017 J - -

Static tuning 1833 J 184 J 9%

Dynamic tuning 1617 J 400 J 20%

Low CI (DGEMV) High CI (DGEMM)

10 threads

2.2 GHz UCF
1.2 GHz CF

12 threads

1.2 GHz UCF
2.5 GHz CF

Static tuning for both kernels

12 threads

2.2 GHz UCF
2.4 GHz CF

Co
m

pu
te

 n
od

e
en

er
gy

 c
on

su
m

pt
io

n
[J

]

CPU core frequency [GHz] CPU core frequency [GHz] CPU core frequency [GHz]

C
o

m
p

u
te

 n
o

d
e

en
er

gy
 c

o
n

su
m

p
ti

o
n

 [
J]

C
o

m
p

u
te

 n
o

d
e

 e
n

e
rg

y
co

n
su

m
p

ti
o

n
 [

J]

STATIC TUNING

MANUAL STATIC

TUNING

12.6%

PROPOSAL

4.3%

17.6% Test Suite MAX

Test Suite MIN

Test Suite AVG

Software
Static tuning

savings

AMG2013 12.5 %

Blasbench 7.4 %

Kripke 11.5 %

Lulesh 17.6 %

NPB3.3 11.0 %

BEM4I 15.7 %

INDEED 17.6 %

ESPRESO 4.3 %

OpenFOAM 15.9 %

Average 12.6 %

DYNAMIC TUNING

proposal goal: up to 30%

Test Suite MAX

MANUAL DYNAMIC

TUNING

PROPOSAL

Test Suite MIN

Test Suite AVG

Software
Dynamic tuning

savings

AMG2013 12.5 %

Blasbench 15.3 %

Kripke 18.5 %

Lulesh 18.7 %

NPB3.3 11.0%

BEM4I 34.1 %

INDEED 19.5 %

ESPRESO 8.2 %

OpenFOAM 20.1%

Average 17.5 %

34.1%

8.2%

17.%

| Strong scaling of ESPRESO FEM code
| Improved performance and energy consumption

IMPROVING PERFORMANCE AT SCALE

#nodes
Default

time
[s]

Default
energy

[kJ]

Tuned
time
[s]

Tuned
energy

[kJ]

Time
savings

[s]

Energy
savings

[%]

1 129.3 37.2 143.7 34.3 -11.1 8.0

2 68.6 39.8 75.5 36.5 -10.1 8.2

4 33.2 38.0 35.6 34.3 -7.2 9.8

8 21.5 49.6 22.9 44.7 -6.8 9.9

16 13.4 60.8 14.3 53.5 -6.3 12.1

32 7.7 62.2 7.2 50.6 6.1 18.7

64 4.0 69.9 3.6 52.4 9.3 25.0

128 3.6 119.6 2.8 80.1 22.2 33.0

Application runtime
assemble_k

[s]

assemble_v

[s]

gmres_solve

[s]

print_vtu

[s]

main

[s]

default runtime 5.4 5.9 10.2 5.6 27.3

static tuning runtime 9.8 10.6 6.1 2.4 29.0

dynamic tuning runtime 7.0 7.2 7.9 2.1 24.3

static savings [%] -82.3% -79.1% 40.5% 56.8% -6.2%

dynamic savings [%] -30.6% -20.9% 23.2% 62.9% 10.9%

BEM4I

Hardware: dual socket system with 2x12 CPU cores – ”standard HW” in HPC centres

Region description:

• assemble_k and assemble_v – high utilization of vector units, extreme level of optimization – fully

compute bound great utilization of both sockets and all cores

• gmres_solve – uses DGEMV from MKL – memory bound, suffers on NUMA effect; this routine is more

efficient on single socket

• print_vtu – single threaded I/O and network bound region why stores data to a file on LUSTRE system

”static": {

"FREQUENCY": ”25", <--------- 2.5 GHz

"NUM_THREADS": ”12", <--------- 12 OpenMP threads

"UNCORE_FREQUENCY": ”22” } <--------- 2.2 GHz

"assemble_k": {

"FREQUENCY": "23",
"NUM_THREADS": "24",
"UNCORE_FREQUENCY": ”16”

},

"assemble_v": {
"FREQUENCY": ”25",
"NUM_THREADS": "24",

"UNCORE_FREQUENCY": ”14”
},

"gmres_solve": {
"FREQUENCY": ”17",

"NUM_THREADS": ”8",
"UNCORE_FREQUENCY": ”22”

},

"print_vtu": {

"FREQUENCY": "25",
"NUM_THREADS": ”6",

"UNCORE_FREQUENCY": ”24”
}

BEM4I

Compute node energy
assemble_k

[J]

assemble_v

[J]

gmres_solve

[J]

print_vtu

[J]

main

[J]

default energy 1476 1484 2733 1142 6872

static tuning energy 1962 2015 1366 420 5792

dynamic tuning energy 1467 1462 1259 293 4531

static savings [%] -33.8% -35.8% 50.0% 63.2% 15.7%

dynamic savings [%] 0.6% 1.5% 53.9% 74.3% 34.1%

Large energy savings is combination of optimal HW settings and runtime

savings due to mitigation of NUMA effect by optimal settings of OpenMP

threading

• Without savings in runtime caused by similar application will

• Energy savings approx. 15 – 20%

• Runtime savings approx. -15%

”static": {

"FREQUENCY": ”25", <--------- 2.5 GHz

"NUM_THREADS": ”12", <--------- 12 OpenMP threads

"UNCORE_FREQUENCY": ”22” } <--------- 2.2 GHz

"assemble_k": {

"FREQUENCY": "23",
"NUM_THREADS": "24",
"UNCORE_FREQUENCY": ”16”

},

"assemble_v": {
"FREQUENCY": ”25",
"NUM_THREADS": "24",

"UNCORE_FREQUENCY": ”14”
},

"gmres_solve": {
"FREQUENCY": ”17",

"NUM_THREADS": ”8",
"UNCORE_FREQUENCY": ”22”

},

"print_vtu": {

"FREQUENCY": "25",
"NUM_THREADS": ”6",

"UNCORE_FREQUENCY": ”24”
}

▪ MERIC runtime system provides dynamic application tuning

▪ Lightweight & easy to install & easy to use

▪ C/C++ API and Fortran module

▪ MPI, OpenMP and CUDA parallelization

▪ Performance and power aware

▪ Support for a wide range of architectures

▪ x86,

▪ IBM OpenPOWER,

▪ ARM,

▪ Nvidia GPUs, …

▪ Power monitoring systems

▪ Intel/AMD RAPL,

▪ OCC

▪ ATOS HDEEM,

▪ NVML,

▪ DiG,

▪ A64FX

MERIC LIBRARY

| Intel
| CPU - core frequency, uncore frequency, power capping

| ACC (PVC) - GPU frequency, memory frequency, power capping

| ACC (KNL) - core frequency, power capping

| AMD
| CPU - core frequency, power capping, Data Fabric frequency

| ACC - power capping, frequency – system, Data Fabric, display controller, SOC, memory, PCIe

| Nvidia
| GPU - SM frequency, memory frequency, power capping

| IBM
| CPU - core frequency, power capping

+ GPU and node power capping

| ARM

| A64FX - core frequency, FLA (floating-point ops) and EXA (integer ops) pipelines elimination, memory
frequency

| EPI - core frequency, power capping, ???

| Jetson - core frequency, memory frequency

POWER KNOBS

export MERIC_FREQUENCY=2400MHz

export MERIC_UNCORE_FREQUENCY=2GHz

export MERIC_NUM_THREADS=24

export MERIC_MEASURE=RAPL,HDEEM-S

export MERIC_COUNTERS=papi

| And many more, see MERIC README

MERIC PARAMETERS

https://code.it4i.cz/vys0053/meric/-/blob/dev/README.md

| void MERIC_Init()
| At the beginning of the main() or in case of MPI applications follows after MPI_Init()

| void MERIC_Close()
| At the end of application run, but before MPI_Finalize()

| void MERIC_MeasureStart(const char * regionName)

| double MERIC_MeasureStop(const char * regionName)

| double MERIC_MeasureStopStart(const char * regionName)
| Optimized transition, removes switching to configuration of the parent region

| void MERIC_CaptureScope(const char * regionName)
| Resource Acquisition Is Initialization (RAII)

| void MERIC_IgnoreStart()

| void MERIC_IgnoreStop()

MERIC API

| tools/energyMeasuereStart + tools/energyMeasureStop

| Commandline energy measurement

| The tuneable parameters also possible to specify

STATIC TUNING WITHOUT INSTRUMENTATION

energyMeasureStart parameters:
-e = energy measurement system "RAPL" or "NVML"
-c = CPU core frequency [Hz]
-u = CPU uncore frequency [Hz]
-t = #OpenMP threads
-p = power capping power limit [mW]
-w = power capping time window [ms]
-s = GPU SM frequency [Hz]
-r = GPU memory frequency [Hz]
-g = GPU power capping power limit [mW]

energyMeasureStop parameters:
-e = energy measurement system "RAPL" or "NVML"
-b = node baseline (static) power [W]
-q = print the overall consumed energy only [J]

$./energyMeasureStart -e RAPL

$ sleep 5

$./energyMeasureStop -e RAPL
Runtime [s] = 5.03672
RAPL_RAM_0 [J] = 38.2296
RAPL_RAM_1 [J] = 27.3747
RAPL_PCKG_0 [J] = 249.266
RAPL_PCKG_1 [J] = 256.062

RAPL Energy consumption [J] = 570.932

Tool using Dyninst library (or MAQAO library) to produce a new binary that contains
MERIC instrumentation

| Inserts all the necessary shared libraries dependencies

| Inserts MERIC_Init() and MERIC_Close()
| In case of MPI applications generates also a new binary of MPI library that contains these functions

| LD_PRELOAD=$(pwd)/libmpi.so mpirun -n $NUMPROC ./application [APP_PARAMS]

| Instruments all the selected application’s functions
| Detects selected functions in the binary and changes the instructions of the function to add

MERIC_MeasureStart(“funcName”) call at the function beginning and MERIC_MeasureStop() call as
the last function instruction

| How to select functions to instrument?
| any profiler

| or TIMEPROF (part of MERIC repository) provides runtime of the instrumented
functions (application binary can be also instrumented with TIMEPROF using dinst_instrument.cpp
tool)

STATIC BINARY INSTRUMENTATION

| Dynamism investigation = running the application
in different configurations

| MERIC stores measurements for each configuration
for each instrumented application region

| systemInfo tool provides an overview what is the
current status of the CPU and what are the
available configurations

DYNAMISM INVESTIGATION
$ meric/tools/systemInfo

SYSTEM INFORMATION
Sockets per Node:2
Cores per Socket:8
Threads per Core: 2

CPU FREQUENCIES
Current scaling driver: intel_pstate
Current scaling governor: powersave
Available governors: performance powersave
Hardware controlled P-State: not available
Turbo CPU core frequencies: 3400000(1) 3400000(2)
3200000(3) 3100000(4) 3000000(5) 2900000(6)
2800000(7) 2800000(8) kHz(#cores)
Nominal CPU core frequency: 2600000 kHz
Min CPU core frequency: 1200000 kHz
Max CPU uncore frequency: 3000000 kHz
Min CPU uncore frequency: 1200000 kHz

RAPL POWER LIMITS
RAPL time window unit:976.562 us
PKG max power limit: 180 W
PKG min power limit: 34 W
DRAM max power limit: 36 W
DRAM min power limit: 16.5 W

DEFAULT RAPL POWER LIMITS
PKG power limit #1: enabled + clamping enabled
PKG power limit #1: 90 W
PKG time window #1: 1 s
PKG power limit #2: enabled + clamping enabled
PKG power limit #2: 108 W
PKG time window #2: 0.0078125 s

AVAILABLE ENERGY MEASUREMENT SYSTEMS
RAPL

MERICwrapper

| Provides algorithms for state
space search – the tool will
execute the application in
various configurations to find the
optimal one for each region

| A json configuration file:

DYNAMISM INVESTIGATION
{

"MPI" : "true",

"PARAMETERS" : {

"FREQUENCY" : {

"MAX" : 3600000000,

"MIN" : 1200000000,

"STEP": 200000000

},

"UNCORE_FREQUENCY" : {

"MAX" : 2800000000,

"MIN" : 1200000000,

"LIST": [2800000000,2100000000,

1600000000,1200000000]

},

"NUM_THREADS" : {

"MAX" : 36,

"MIN" : 1,

"STEP": 4

}

},

"MERIC" : {

"MEASURE" : "RAPL",

"PWRCAP_POWER" : 0,

"PWRCAP_TIME" : 0,

"COUNTERS" : "msr",

"AGGREGATE" : 1,

"CONTINUAL" : 1,

"DETAILED" : 1,

"SAMPLES" : 0,

"BARRIERS" : "a ll",

"OUTPUT_DIR" : "mericMeasurement"

},

"ALGORITHM" : {

…

}

}

"ALGORITHM" : {

"NAME" : "EXHAUSTIVE"
}

"ALGORITHM" : {

"NAME" : "EVO",
"PARAMETERS" : {

"END_CONDITION" : 2,
"POPULATION" : 10

}
}

"ALGORITHM" : {

"NAME" : "PSO",
"PARAMETERS" : {

"END_CONDITION" : 2,
"PARTICLES" : 10,

"CONST_CP" : 2.05,
"CONST_CG" : 2.05,

"CONST_W" : 0.9
}

}

ANALYSIS WORKFLOW

RADAR visualizer

PyQt5 tool

1
• Application profiling

2
• Identification of significant regions

3
• Application instrumentation

4
• Application analysis

5
• Optimal configuration identification

6
• App’s behavior visualization

7
• Production runs and dynamic tuning

MERIC wrapper

Binary instrumentation tool

Dyninst / MAQAO

▪ Visualisation of applicatin behavior in various configuration

▪ Tables
▪ Overall application evaluation

▪ Summary of nested regions' behavior

▪ Each region behavior description

▪ Heatmaps

▪ Plots

▪ Power timeline
▪ Cluster analysis

▪ Call-path graph

RADAR VISUALIZER

▪ waLBerla

▪ LaBS

SERVICES

▪ waLBerla

▪ LaBS

SERVICES

| Funded by the European Union. This project has received funding from the European High Performance
Computing Joint Undertaking (JU) and Germany, Bulgaria, Austria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania,
Slovenia, Spain, Sweden, France, the Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye,
Republic of North Macedonia, Iceland, Montenegro, Serbia under grant agreement No 101101903. This
project has received funding from the Ministry of Education, Youth and Sports of the Czech Republic.

ACKNOWLEDGEMENT

| This work was supported by the READEX project - the European Union's Horizon
2020 research and innovation programme under grant agreement No. 671657.

| This work was supported by The Ministry of Education, Youth and Sports from
the National Programme of
Sustainability (NPS II) project “IT4Innovations excellence in science -
LQ1602” and by the IT4Innovations infrastructure which is supported from

the Ministry of Education, Youth and Sports of the Czech Republic through the
e-INFRA CZ (ID:90140).

| This work was supported by the POP2 project - the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 824080.

| This work was supported by the SCALABLE project. This project has received
funding from the European High-Performance Computing Joint Undertaking (JU)
under grant agreement No 956000. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and France, Germany,
the CzechRepublic.

| This work was supported by the EUPEX project - the European Union’s Horizon
2020 research and innovation programme under grant agreement No.
101033975.

ACKNOWLEDGEMENT

	Snímek 1: Energy Efficiency Features of the modern HPC hardware and energy consumption measurement
	Snímek 2: ENergy efficiency
	Snímek 3: ENergy efficiency
	Snímek 4: ENergy efficiency
	Snímek 5: ENergy efficiency
	Snímek 6: Energy Efficiency
	Snímek 7: Energy Efficiency
	Snímek 8: ENergy efficiency
	Snímek 9: ENergy efficiency
	Snímek 10: End of moor's law
	Snímek 11: TOP500
	Snímek 12: TOP500
	Snímek 13: Exascale computing
	Snímek 14: Hardware trends
	Snímek 15: Green500
	Snímek 16: Energy Efficiency
	Snímek 19
	Snímek 20: energy
	Snímek 21: energy
	Snímek 22: energy
	Snímek 23: Power monitoring
	Snímek 24: Power monitoring systems for HPC
	Snímek 25: In- and out-of-band power Monitoring
	Snímek 26: High Definition Energy Efficiency Monitoring (HDEEM)
	Snímek 27: Power knobs
	Snímek 28: OS power management
	Snímek 29: Intel CPU core turbo frequency
	Snímek 30: Intel CPU UNcore frequency
	Snímek 31: Intel Running Average Power Limit (RAPL)
	Snímek 32: Intel Running Average Power Limit (RAPL)
	Snímek 33: Nvidia GPU SM frequency tuning
	Snímek 34: Nvidia GPU SM frequency tuning
	Snímek 35: A100 vs V100
	Snímek 36: GPU tuning
	Snímek 37: GPU tuning
	Snímek 38
	Snímek 39: Energy and power aware HPC centers
	Snímek 40: Energy and power aware HPC centers
	Snímek 41: Energy and power aware HPC centers
	Snímek 42: Energy and power aware HPC centers
	Snímek 43: Energy and power aware HPC centers
	Snímek 44: Energy and power aware HPC centers
	Snímek 45: HPC powerstack architecture
	Snímek 46: HPC powerstack architecture
	Snímek 47: REGALE architecture
	Snímek 48
	Snímek 49: EE runtime systems
	Snímek 52: Readex project
	Snímek 54: dynamicity
	Snímek 55: Static tuning for various AI
	Snímek 56: STATIC TUNING FOR VARIOUS AI
	Snímek 57: STATIC TUNING FOR VARIOUS AI
	Snímek 58: STATIC TUNING FOR VARIOUS AI
	Snímek 59: STATIC TUNING FOR VARIOUS AI
	Snímek 60: STATIC TUNING FOR VARIOUS AI
	Snímek 61: STATIC TUNING FOR VARIOUS AI
	Snímek 62: STATIC TUNING FOR VARIOUS AI
	Snímek 63: STATIC TUNING FOR VARIOUS AI
	Snímek 65: Dynamic tuning
	Snímek 66: HW parameters tuning
	Snímek 68: static tuning
	Snímek 69: dynamic tuning
	Snímek 70: Improving performance at scale
	Snímek 71: BEM4I
	Snímek 72: BEM4I
	Snímek 79: MERIc library
	Snímek 82: Power knobs
	Snímek 83: MERIC parameters
	Snímek 84: MERIC API
	Snímek 85: Static tuning without instrumentation
	Snímek 86: Static binary instrumentation
	Snímek 87: Dynamism investigation
	Snímek 88: Dynamism investigation
	Snímek 89: Analysis workflow
	Snímek 90: Radar visualizer
	Snímek 91: services
	Snímek 92: services
	Snímek 93: Acknowledgement
	Snímek 94: Acknowledgement

