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Abstract—The success of the real-world implementation of
advanced control policies relies on the robustness of the designed
control laws. This paper presents a new software package for
the robust model predictive control (MPC) synthesis in the
framework of the Multi-Parametric toolbox (MPT) that is
representing one of the most successful open-source tools in
this field. In this paper, we introduce the Tube MPC design
in a user-friendly way. The goal of the paper is to demonstrate
that the wide research community may benefit from the ease
of the advanced controller design in a few lines of code and its
implementation to control the laboratory plant.

Index Terms—Software development, Model predictive con-
trol, Robust control, Tube model predictive control, Process
control, Plate heat exchanger.

I. Introduction

The model predictive control (MPC) [11] is a widely-
used optimal control policy, garnered significant popular-
ity worldwide in both, academia and industry, in several
past decades, e.g., see [3, 15]. The well-elaborated software
packages have an irreplaceable dissemination role in pro-
viding cutting-edge control algorithms for a wide audience
in both, academic research and industrial practice.
There are various tailored software tools dedicated to

the MPC design problem, e.g., see MPC Toolbox [12],
ACADO Toolkit [7], CasADi [1], to name a few. Among
other software packages, the Multi-Parametric Toolbox

(MPT) [5] for MATLAB programming environment arise into
a well-matured MPC design tool with a special focus on
the multi-parametric optimization and the corresponding
explicit MPC design. MPT provides all the steps necessary
for the construction of the MPC controller including its
tuning, and evaluation of the control performance, and
offers also export to Python and C-code. Update presented
in [9] extends MPT toolbox by introducing the robust MPC
design framework. Technically, the robust MPC design
for the linear time-invariant (LTI) system is affected by
parametric and/or additive disturbances. Although MPT

benefits from various advanced methods introduced in [9],
e.g., by including the evaluation of the forward/backward
robust invariant sets, etc., the evaluation of the worst-
case scenario-based robust (explicit) MPC design is hardly
tractable and time-consuming. As the complexity of MPC
controller design is determined by the number of decision
variables and the length of the prediction horizon, such a

robust MPC design approach is limited just for the systems
with a modest complexity.
Therefore, the main benefit of implementing Tube MPC

is that this approach designs robust MPC in a compu-
tationally tractable way similar to nominal (non-robust)
MPC. Tube MPC was originally introduced in [17, 13]
and refined in many later works, e.g., by introducing
the elastic [19] and homothetic tubes [18], the state es-
timation [14], the reference-tracking [10], considering the
linear parameter-varying (LPV) systems [6], sampled-data
systems [4], parallel computing [20], etc.
The main contributions of this paper are twofold. First,

we present the new package MPTplus extending the original
MPT toolbox by the ability to design, tune, and validate
the Tube MPC controllers designed in a user-friendly way.
Next, we provide an extensive case study investigating the
benefits of the developed package considering the advanced
robust control of the laboratory plate heat exchanger.
The paper is organized as follows: the Section II briefly

reviews the theoretical backgrounds on the Tube MPC de-
sign. Section III introduces the proposed software package.
The benefits of the proposed toolbox are demonstrated
in Section IV by considering a laboratory analysis of
the designed controllers, followed by the main conclusions
summarized in Section V.

II. Tube MPC design

This section briefly reviews the main theoretical back-
grounds of the original (rigid) Tube MPC design ap-
proach proposed in [13]. Consider an uncertain linear time-
invariant (ULTI) system in the form:

x(t+ Ts) = Ax(t) +Bu(t) + Ed(t), (1)

where t stands for the time instant in the discrete-
time domain determined by the given sampling time Ts.
A ∈ Rnx×nx is system matrix, B ∈ Rnx×nu is input
matrix, such that the matrix pair (A,B) is stabilizable.
E ∈ Rnx×nw is disturbance matrix, x ∈ Rnx is the vector of
the system states, u ∈ Rnu is control action, d ∈ D ⊂ Rnx

is bounded additive disturbance such that D is compact
set containing the origin.
For the sake of notation, in ULTI system (1) holds:

w = E d, w ∈ W, W = {w ∈ Rnx : ∥w∥∞ ≤ wmax} (2)



for given upper bound value wmax = ∥E d∥∞, ∀d ∈ D
such that W ⊇ E D is the minimum volume hyper-box
satisfying ∥w∥∞ = wmax. Moreover, the ULTI system
in (1) is subject to state and input constraints

x(t) ∈ X, u(t) ∈ U, ∀t ≥ 0, (3)

where X ∈ Rnx and U ∈ Rnu are polytopes, i.e., compact
sets, containing origin in their strict interiors.

Assume that the closed-loop system (A+BK) is Schur
stable for some given state feedback controller K ∈
Rnu×nx . The gain matrix K can be computed by solving
the discrete-time Riccati equation:

A⊤
(
P − PB

(
R+B⊤B

)−1
B⊤P

)
A+Q = 0 (4)

leading to the well-known discrete-time LQ-optimal con-
troller design:

K = −
(
R+B⊤B

)−1
B⊤PA, (5)

where the penalty matrices Q ∈ Rnx×nx , R ∈ Rnu×nu and
Lyapunov matrix P ∈ Rnx×nx are set such that Q ⪰ 0,
R ≻ 0, and P ≻ 0 hold.
The“tube” introduced into the MPC design is evaluated

by the convex set T ⊂ Rnx and represents the origin for the
perturbed system, see [13]. By plugging the LQ-optimal
controller as in (5) into (1) and updating the additive
disturbances per (2), we obtain an autonomous discrete-
time uncertain system

x(t+ Ts) = (A+BK)x(t) + w(t). (6)

Subsequently, if T is a robust positive invariant (RPI) set
for (6), then we have that following statement holds

(A+BK)T⊕W ⊆ T, (7)

where ⊕ denotes the Minkowski sum. Obviously, T in (7)
is constructed as the minimal RPI set to minimize the
conservativeness of Tube MPC design by:

T =

∞∑
i=0

(A+BK)
i W, (8)

where Σ represents a set addition. However, if the K is not
a dead-beat controller, then the minimal RPI set T does
not necessarily lead to the polytope, see [13]. Therefore, T
is designed as the outer approximation of the minimal RPI
set. Algorithm constructing such invariant approximations
of the minimal robust positively invariant set T is proposed
in detail in [16].
Finally, the Tube MPC design problem has the form:

min
û0,...,ûN−1,x̂0,...,x̂N

∥x̂N∥2P +

N−1∑
k=0

(
∥x̂k∥2Q + ∥ûk∥2R

)
(9a)

s.t. x(t)− x̂0 ∈ T, (9b)

x̂k+1 = Ax̂k +Bûk, (9c)

x̂k ∈ X⊖ T, (9d)

ûk ∈ U⊖K T, (9e)

x̂N ∈ XN, (9f)

for all steps ∀k = 0, . . . , N − 1 along the prediction
horizon N . The decision variables ûk, x̂k, are optimized
subject to the nominal system behaviour in (9c), i.e.,
an idealized system without the impact of any uncertain
parameters. The state and input constraints in (3) are
respectively adopted in (9d), (9e) to respect the RPI set
T in (7) assuming: (X ⊖ T), (U ⊖ K T) are non-empty
sets, convex by definition. Analogous, the initial condition
in (9b) takes into account the RPI set T keeping the
perturbed system state vector x(t) close to its nominal
counterpart x̂0. The terminal constraint in (9f) has the
conventional form, i.e., the set XN ⊂ Rnx is constructed
to be positive invariant, such that no constraints of (9d),
(9e) are active. The quadratic cost function in (9a) is
minimized considering the Q, R, P as defined for (4).
Note, ∥x̂N∥2P denotes simplified notation for the weighted
two norm: x̂⊤

NPx̂N , and analogous hold for the remaining
terms. The corresponding stability and recursive feasibility
proofs of (9) are documented in [13].

The control action u(t), which is applied to the con-
trolled plant in (1), is determined by the control law
κ : XF → U

κ(x(t)) = û⋆
0 +K (x(t)− x̂⋆

0) , (10)

where the symbol ⋆ denotes the solution of the optimiza-
tion problem in (9) and XF ⊆ Rnx is the corresponding
domain, i.e., the feasibility set of the optimized initial
conditions x̂0 of (9). Tube MPC is implemented in re-
ceding horizon fashion, i.e., just the first control action
u(t) = κ(x(t)) is applied to the plant and the optimization
problem in (9) is re-computed in each control step.

III. Package for Tube MPC design

This section briefly reviews the benefits of the package
MPTplus1 from the user’s perspective.

A. Installation

MPTplus can be installed in a comfortable way using
tbxManager2:

tbxmanager install mptplus

The other option is to install the package MPTplus manu-
ally and set the corresponding path in MATLAB. We recall
that MPTplus is dependent on the MPT toolbox, see [5].

B. Tube MPC Controller construction and evaluation

The benefits of the package are demonstrated by adopt-
ing an illustrative example of the Tube MPC design intro-
duced in [13]. First, we use the conventional MPT framework
to define the control problem. The ULTI system in (1) for
x(0) = [−5,−2]⊤ and for given matrices in the form:

x(t+ Ts) =

[
1 1
0 1

]
x(t) +

[
0.5
1

]
u(t) +

[
1 0
0 1

]
d(t), (11)

is defined intuitively by calling:

1MPTplus: https://github.com/holaza/mptplus
2tbxManager: https://www.tbxmanager.com



model = ULTISystem( ' A ' , [1, 1; 0, 1],...

' B ' , [0.5; 1],...

' E ' , [1, 0; 0, 1])

x0 = [-5; -2]

Constraints on the additive disturbance ∥w∥∞ ≤ 0.1
in (2), and the constraints3 on the system states
[−100,−2]⊤ ⪯ x ⪯ [100, 2]⊤ and on the control inputs
−1 ≤ u ≤ 1 in (3) are, respectively, defined by:

model.d.min = [-0.1; -0.1]

model.d.max = [ 0.1; 0.1]

model.x.min = [-100; -2]

model.x.max = [ 100; 2]

model.u.min = -1

model.u.max = 1

Penalty matrices Q = I, R = 0.01 considered to construct
LQ-optimal controller K, to compute the Lyapunov ma-
trix P in (4) of the Tube MPC cost function in (9a), and
to construct the associated terminal set XN in (9f) is given
by:

model.x.penalty=QuadFunction ([1 ,0;0 ,1])

model.u.penalty=QuadFunction (0.01)

ops = { ' LQRstability ' ,1};

We define also a desired prediction horizon using:

N = 9

Finally, we call MPTplus to construct the implicit Tube
MPC controller by:

TMPC = TMPCController(model ,N,ops)

Then we compute the control action u = 1 in (10) for given
system states x(0) by:

u = TMPC.evaluate(x0)

If one needs to evaluate the separate optimal values of the
decision variables û⋆

0 = 0.7026, x̂⋆
0 = [−5.0516,−1.7500]⊤

in (10), i.e., the compact vector of the decision variables[
û⋆⊤
0 , x̂⋆⊤

0

]⊤
of (9), then run:

ops = { ' LQRstability ' ,1, ' solType ' ,0}
TMPC = TMPCController(model ,N,ops)

ux = TMPC.optimizer(x0)

To return and plot, if applicable, K = [−0.6609,−1.3261]
in (10), T in (7), X⊖T in (9d), U⊖K T in (9f), respectively,
call:

K = TMPC.TMPCparams.K

T = TMPC.TMPCparams.Tube

figure , Tube.plot()

XT = TMPC.TMPCparams.Xset

figure , XT.plot()

UKT = TMPC.TMPCparams.Uset

figure , UKT.plot()

3MPT supports also a formulation based on the general
polytopes using, e.g.: model.x.with(’setConstraint’);
model.x.setConstraint = X; visit: https://www.mpt3.org/U
I/Filters

All interested users can type:

help TMPCController

to receive list of all input settings and output variables
that are supported by the MPTplus package.

IV. Experimental analysis

The early stage of the code MPTplus was used to investi-
gate its benefits of easily modifying controller parameters
and its implementation using the laboratory case study of
heat exchanger control.

A. Laboratory plate heat exchanger

The case study of the developed package was performed
using a laboratory heat exchanger Armfield Process Con-
trol Trainer PCT23, see Figure 1. The controlled pro-
cess is the three-stage indirect liquid-liquid plate heat
exchanger (Figure 1, device 1), in which cold medium
(water) stored in two retention tanks (Figure 1, device 2)
is heated. The hot medium (water) is preheated to a fixed
temperature in the heating tank (Figure 1, device 3). The
heating of hot medium is provided by an electric spiral,
controlled by a suitably designed auxiliary PID controller.
Cold and hot media are pumped into the heat exchanger
by two peristaltic pumps (Figure 1, device 4–5). The flow–
rate of the cold medium is constant and the flow–rate of
the hot medium is manipulated variable. Further technical
details are listed in [2].
The process of heating the cold medium is a challenging

control problem due to the nonlinear and asymmetric
behaviour of the plate heat exchanger. The aim of control
is to ensure offset-free reference tracking follows the tem-
perature of the cold medium (cool water) on the output
of the heat exchanger from its initial steady-state value
T0 into the required reference values representing a new
steady-state value. Tuning such a controller operating

2 1 3

4 5

Fig. 1: Laboratory heat exchanger Armfield Process Plant
Trainer PCT23: (1) heat exchanger, (2) cold medium tank,
(3) hot medium tank, (4) cold medium pump, (5) hot
medium pump.



in the presence of nonlinearity is a non-trivial control
problem. Therefore, this plant was selected to investigate
the benefits of the proposed MPTplus package. The tuning
parameters of the MPC design and the physical constraints
of the manipulated variables can be easily modified and
simulated using the MPTplus toolbox, which helps the user
stay focused on improving the control performance.

B. Control setup

Since MPC is a model-based control approach, it was
necessary to identify the values of the system parameters,
first. In industrial practice, it is expected the designed
controller provides offset-free reference tracking. For that
reason, the considered mathematical model of the plate
heat exchanger was augmented by an integral action.
The set of experimentally collected data was evaluated
using the step-response-based identification method. The
resulting matrices of the augmented discrete-time state-
space system in (1) are as follows

A =

[
0.5897 0

3 1

]
, B =

[
0.0426

0

]
, E =

[
1 0
0 1

]
, (12)

considering the sampling time Ts = 3 s. The bound on the
additive disturbance d(t) in (1) was determined according
to the amplitude value of the measurement noise and the
impact of the nonlinearities wmax = 0.8.
To satisfy the physical limits of the manipulated variable

the constraints on the control input u in the deviation form
were introduced

−30 ≤ u(t) ≤ 20, (13)

corresponding to the preferred bounds on the pump sup-
plying the hot medium to the heat exchanger within a
range of operating conditions of an interval 5%− 55%. In
order to improve and analyze the control performance, the
other controller was easily tuned considering the relaxed
constraints on control input:

−35 ≤ u(t) ≤ 50, (14)

and these bounds correspond to the operating conditions
of an interval 0% − 85%. Analogous to other tuning
parameters, such as the penalty matrices Q, R, also con-
straint relaxation has a significant impact on the control
performance, as it directly shapes the closed-loop control
law, especially, in the case of the robust control policy.

The sequence of the references was considered to inves-
tigate the control performance subject to both, increasing
(heating) and decreasing (cooling) values of the steady-
state temperature values. The evaluated set of the oper-
ating points was set as follows: 30 ◦C → 35 ◦C → 40 ◦C →
35 ◦C. Simultaneously, the temperature of the hot medium
was kept constant at the value 60 ◦C using an auxiliary P
controller with the proportional gain 0.2.
The parameters of the Tube MPC design problem in (9)

were tuned by adjusting the penalty matrices Q, R, and
the length of the prediction horizon N . As the identified

time constant of the plant was T = 341 s and the sampling
time was chosen as Ts = 3 s, the length of the prediction
horizon was set as N = 60 to sufficiently cover the dynam-
ics of the plate heat exchanger. The extensive laboratory
experiments led to the following tuning:

Q =

[
0.1 0
0 10

]
, R =

[
150

]
. (15)

Note, 0.1 in Q in (15) tunes the aggressiveness of the
controller and 10 penalizes the integral action ensuring
the offset-free control performance. This selection of such
weighting matrices values was motivated by the aim to
reduce the energy consumption needed to heat the cold
medium to the reference temperature.
Finally, the Tube MPC controller was constructed in

MATLAB 2022b programming environment, using toolboxes
YALMIP R20210331, MPT 3.2.1, MPTplus, and solver
Gurobi 10.04. Tube MPC was executed on CPU i7
1.2Ghz with 16GB RAM, and the communication with
the laboratory heat exchanger plant was provided via WiFi
using eLab toolbox [8].

C. Results and discussion

Measured control trajectories evaluated for the Tube
MPC controller setups described in Section IV-B are
depicted in Figure 2. The Figure 2a shows the control
trajectory of the temperature of the cold medium and
Figure 2b plots the associated control inputs – the flow
rate of the hot medium fed by the pump into the heat
exchanger. Although Figure 2 depicts the original (non-
filtered) trajectory of the controlled temperature Tout, the
first-order discrete-time domain filter with a time constant
Tf = 0.5 s was implemented to reduce the measurement
noise on the output signal processed by the Tube MPC
controller.
We have also investigated the set of control performance

criteria and Tables I–II summarize the computed values,
where tϵ is the settling time evaluated for 0.8 neigh-
bourhood of the reference, emax stands for the maximum
overshoot, and V , E are the corresponding consumption
of hot medium and energy, respectively.

As can be seen in Figure 2a, the controlled variable Tout

reached the reference value of the new operating point
after a relatively small value of the settling time tϵ. The
evaluated values of the settling time tϵ differ significantly
in each case. The settling time of the step changes to
the lower temperature is increased due to the nonlinear
behaviour of the heat exchanger described in Section IV-A.
In the step change of the reference value from 35 ◦C
to 40 ◦C the control input was firstly too aggressive in
both setups, which led to an oscillating behaviour of the
output and prolonged settling time. Nevertheless, it can be
assumed in the setup with the relaxed constraints on the
control input that a greater portion of time is needed to

4Gurobi: Gurobi Optimization, LLC.: https://www.gurobi.com



settle the temperature Tout, if the reference has decreased
(cooling). Similar trend is also visible for the result of the
setup with the tight constraints.

On the other hand, control with more relaxed input
constraints needed considerably less time to settle the
temperature Tout, as the control input could be more
freely adjusted. Figure 2a illustrates that the maximum
overshoot emax is much higher in the case of a decrease of
the reference value, see Table II for the computed values.
These overshoots were markedly reduced in the case with
the relaxed input constraints.

Figure 2b shows the control inputs corresponding to the
controlled variables described in the previous paragraph.
Even though the maximum overshoot emax is the highest in
the case of reference change towards lower values (cooling),
the manipulated variable reached its constraints in the
case of the increasing reference value (heating). Adjusting
penalty matrix R could decrease the aggressiveness of
the control input, however, there would be the cost of
prolonging the settling time.

Besides others control performance indicators, also the
volume of the hot medium consumed during the control V
and corresponding energy E were evaluated. The results
in Tables I–II, show that more water and energy are
needed if the controller operates above the initial point
temperature. Moreover, even though the control trajectory
presented in Figure 2 confirmed the improved result for
the control setup with the relaxed constraints (Figure 2a,
purple solid; Figure 2b, orange solid), values of energy
E and water consumption V are slightly higher in this
case. Based on the experimental results, it can be observed
that although the control setup with relaxed constraints
on control input achieved better control performance of
the controlled variable (output temperature Tout), it is at
the price of increased demands on the environment.

V. Conclusion and future work

The paper presented a Tube MPC design using the novel
software package MPTplus extending the features of the
MPT toolbox. The benefits of the proposed package were

TABLE I: Control performance criteria for the Tube MPC
controller with relaxed constraints in (13).

reference step-change tϵ [s] emax [%] V [L] E [kJ]
35 → 30 ◦C 55 62 3.9 621
30 → 35 ◦C 22 33 4.6 725
35 → 40 ◦C 130 43 5.7 881
40 → 35 ◦C 40 43 5.2 810

TABLE II: Control performance criteria for the Tube MPC
controller with tight constraints in (14).

reference step-change tϵ [s] emax [%] V [L] E [kJ]
35 → 30 ◦C 193 171 4.0 632
30 → 35 ◦C 70 73 4.7 733
35 → 40 ◦C 160 55 5.5 844
40 → 35 ◦C 181 241 4.9 771

(a) Controlled variable – the temperature of the cold medium:
control setup with tight input constraints (greem solid), control
setup with relaxed input constraints (orange solid), and the
reference (black dotted).

(b) Manipulated variable – flow-rate of hot medium: control
setup with tight constraints (green solid), control setup with
relaxed constraints (orange solid), and hard constraint for the
tighter control setup (black dashed).

Fig. 2: Control performance ensured by Tube MPC con-
trollers.

presented using the extensive case study of the control
of the plate laboratory heat exchanger. The ease of Tube
MPC design and tuning package enabled a user to fully
focus their attention on improving the control performance
leading to the decreased consumption of hot medium and
reduced energy demands. Further development of the soft-
ware package consider introducing advanced Tube MPC
design methods including, e.g., LPV systems [6], sampled-
data [4], reference-tracking [10], state estimation [14],
introducing elastic tubes [19], homothetic tubes [18], etc.
The development of MPTplus will include also deeper
integration of the functions available for the conventional



(non-robust) MPC controllers designed by the core MPT

toolbox, e.g., sub-optimal complexity reduction methods,
etc.

Acknowledgements

The authors gratefully acknowledge the contribution of
the Scientific Grant Agency of the Slovak Republic under
the grants 1/0545/20, 1/0297/22, and the Slovak Research
and Development Agency under the project APVV-20-
0261. This research is funded by the European Commission
under the grant no. 101079342 (Fostering Opportunities
Towards Slovak Excellence in Advanced Control for Smart
Industries).

References

[1] J. Andersson, J. Gillis, G. Horn, J. Rawlings, and
M. Diehl. CasADi – a software framework for nonlin-
ear optimization and optimal control. Mathematical
Programming Computation, 11(1):1–36, 2019. doi:
10.1007/s12532-018-0139-4.

[2] Armfield. Process plant trainer – PCT23MKII, 2007.
[3] F. Borrelli. Constrained Optimal Control of Linear

and Hybrid Systems. Springer Berlin Heidelberg,
2017. ISBN 978-3-540-00257-4. doi: 10.1007/3-540
-36225-8.

[4] M. Farina and R. Scattolini. Tube-based robust
sampled-data MPC for linear continuous-time sys-
tems. Automatica, 48(7):1473–1476, 2012. ISSN 0005-
1098. doi: https://doi.org/10.1016/j.automatica.201
2.03.026.

[5] M. Herceg, M. Kvasnica, C. Jones, and M. Morari.
Multi-parametric toolbox 3.0. In 2013 European
Control Conference, pages 502–510, 2013.

[6] R. Heydari and M. Farrokhi. Robust tube-based
model predictive control of LPV systems subject to
adjustable additive disturbance set. Automatica, 129:
109672, 2021. ISSN 0005-1098. doi: https://doi.org/
10.1016/j.automatica.2021.109672.

[7] B. Houska, H. Ferreau, and M. Diehl. ACADO
Toolkit – an open source framework for automatic
control and dynamic optimization. Optimal Control
Applications and Methods, 32(3):298–312, 2011.
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K. Janschek, and M. Mönnigmann, editors, Preprints
of the 21st IFAC World Congress (Virtual), Berlin,
Germany, July 12-17, 2020, volume 21, pages 17469–
17474, 2020.
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