
DAE TOOLS SOFTWARE
INTRODUCTION

Dragan D. Nikolić

Updated: June 14, 2023

DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Outline

1. General Information

2. Motivation

3. Main Features

4. Programming Paradigms

5. Use Cases

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

GENERAL INFORMATION

What is DAE Tools?

Modelling, simulation, optimisation & parameter estimation
software 1

Areas of application:
◦ Initially: chemical process industry (mass, heat and

momentum transfers, chemical reactions, separation
processes, thermodynamics, electro-chemistry)

◦ Nowadays: multi-domain

Free/Open source software (GNU GPL)
Cross-platform
Multiple architectures (32/64 bit x86, ARM, ...)

1Nikolić DD. (2016) DAE Tools: equation-based object-oriented modelling, simulation and optimisation software. PeerJ
Computer Science 2:e54

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

https://doi.org/10.7717/peerj-cs.54
https://doi.org/10.7717/peerj-cs.54
http://daetools.sourceforge.io

What is DAE Tools? (cont’d)

DAE Tools is not:
◦ A modelling language (such as Modelica)
◦ An integrated software suite of data structures and routines

for scientific applications (such as PETSc, Sundials, ...)
DAE Tools is:

◦ An architectural design of interdependent software
components providing an API for:

◦ Model specification
◦ Activities on developed models (simulation, optimisation, ...)
◦ Processing of the results
◦ Report generation
◦ Code generation and model exchange

DAE Tools apply a hybrid approach between modelling
and general purpose programming languages, combining
the strengths of both approaches into a single one

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

What can be done with DAE Tools?

Simulation
◦ Steady-State
◦ Transient

Sensitivity analysis
◦ Local methods (derivative-based)
◦ Global methods (Morris, FAST, Sobol variance-based)

Optimisation
◦ Non-Linear Programming (NLP)
◦ Mixed Integer Non-Linear Programming (MINLP)

Parameter estimation
Code-generation, model-exchange, co-simulation

◦ Modelica, gPROMS, Functional Mockup Interface (FMI)
◦ Matlab MEX-functions, Simulink user-defined S-functions
◦ C99, C++ MPI (embedded and distributed systems)

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Types of systems that can be modelled

Initial value problems of implicit form:

Described by systems of linear, non-linear, and
(partial-)differential algebraic equations

Continuous with some elements of event-driven systems
(discontinuous equations, state transition networks and
discrete events)

Steady-state or dynamic
With lumped or distributed parameters (finite difference,

finite volume and finite element methods)
Only index-1 DAE systems at the moment

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

MOTIVATION

Whymodelling software?

In general, two scenarios:

Development of a new product/process/...
◦ Reduce the time to market (TTM)
◦ Reduce the development costs (no physical prototypes)
◦ Maximise the performance, yield, productivity, purity, ...
◦ Minimise the capital and operating costs
◦ Explore the new design options in less time and no risks

Optimisation of an existing product/process/...
◦ Increase the performance, yield, productivity, purity, ...
◦ Reduce the operating costs, energy consumption, ...
◦ Debottleneck

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Why YET ANOTHERmodelling software?

Current approaches to mathematical modelling:

1. Use of modelling languages (domain-specific or
multi-domain): Modelica, Ascend, gPROMS, Dymola,
APMonitor

2. Use of general-purpose programming languages:
◦ Lower level third-generation languages such as C, C++ and

Fortran (PETSc, SUNDIALS)
◦ Higher level fourth-generation languages such as Python

(NumPy, SciPy, Assimulo), Julia etc.
◦ Multi-paradigm numerical languages (Matlab,

Mathematica, Maple, Scilab, and GNU Octave)

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Why YET ANOTHERmodelling software? (cont’d)

The advantages of the Hybrid approach over the modelling and
general-purpose programming languages:

1. Support for the runtime model generation
2. Support for the runtime simulation set-up
3. Support for complex schedules (operating procedures)
4. Interoperability with the third-party software
5. Suitability for embedding and use as a web application or

software as a service
6. Code-generation, model exchange and co-simulation

capabilities

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

MAIN FEATURES

Parallel Computing

The shared-memory parallel programming model:

Evaluation of model equations using OpenCS framework
◦ OpenMP (general purpose processors)
◦ OpenCL (streaming processors/heterogeneous systems)

Assembly of Finite Element systems (OpenMP)
Solution of systems of linear equations (OpenMP)
Global Sensitivity Analysis (multiprocessing.Pool)

Parallel Computing (cont’d)

Simulation on message-passing systems through OpenCS code
generation.

Multiphysics Capabilities

Modelling of multiple simultaneous physical phenomena

Finite Difference (FD), Finite Volume (FV)
and Finite Element (FE) methods

Mixed coupled systems of equations
(FD, FV and FE methods)

DAE Tools variables for boundary
conditions, source terms and non-linear
coefficients

Additional constraints and auxiliary
equations

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Code Generation & Co-Simulation

Code-generation

◦ Modelica
◦ gPROMS
◦ C99 (embedded systems)
◦ C++ MPI (distributed systems)

Co-simulation

◦ Matlab MEX-functions
◦ Simulink user-defined

S-functions
◦ Functional Mockup Interface

(FMI) for Co-Simulation

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Software As a Service

Web service with the RESTful API
◦ DAE Tools simulations (daetools_ws)
◦ DAE Tools FMU objects (daetools_fmi_ws)

Language independent (JavaScript, Python, C++, ...)
Benefits:

◦ Application servers
◦ Individual simulations as a web service
◦ Attractive Graphical User Interface

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Sensitivity Analysis

Local sensitivity analysis (derivative-based)
Global sensitivity analysis (SALib library):

◦ 1st and 2nd order sensitivities and confidence intervals
◦ Total sensitivity indices and confidence intervals
◦ Scatter plots

Methods available:
◦ Method of Morris (elementary effect method)
◦ FAST (variance-based)
◦ Sobol (variance-based)

Simulations performed in parallel (multiprocessing.Pool)

Code Verification

The formal code verification techniques applied to test
almost all aspects of the software

The most rigorous code verification methods used:
◦ The Method of Exact Solutions (MES)
◦ The Method of Manufactured Solutions (MMS)

The most rigorous acceptance criteria used:
◦ Percent error
◦ Normalised global error
◦ Order-of-accuracy

Additional DAE TOOLS features

Support for multiple platforms/architectures
Support for the automatic differentiation (ADOL-C)
Support for a large number of DAE, LA and NLP solvers
Support for the generation of model reports (XML +

MathML, Latex)
Export of the simulation results to various file formats

(Matlab, Excel, json, xml, HDF5, Pandas, VTK)

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

PROGRAMMING PARADIGMS

The HYBRID approach

DAE Tools approach is a type of a hybrid approach
Combines strengths of modelling and general purpose

programming languages:
1. Developed in C++ with the Python bindings
2. Provides API (Application Programming Interface) that

resembles a syntax of modelling languages as much as
possible

3. Takes advantage of the higher level languages for:
◦ Model specification, simulation setup and schedules
◦ Access to the operating system
◦ Access to the standard/third-party libraries

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

The HYBRID approach (cont’d)

Modelica/gPROMS grammars vs. DAE Tools API

A simple model:
Cylindrical tank containing a liquid with an inlet and an outlet

flow; the outlet flowrate depends on the liquid level in the tank

gPROMS grammar Modelica grammar

The HYBRID approach (cont’d)

DAE Tools API

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

The HYBRID approach (cont’d)

Modelling language approach DAE Tools approach

Solutions expressed in the idiom and at the level of
abstraction of the problem domain

Must be emulated in the API or in some other way

Clean and concise way of building models Verbose and less elegant

Could be and often are simulator independent Simulator dependent (but with code-generation)

Cost of designing, implementing, and maintaining a
language and a compiler/lexical parser/interpreter,
error handling and grammar ambiguities

A compiler/lexical parser/interpreter is an integral
part of C++/Python with a robust error handling, uni-
versal grammar and massively tested

Cost of learning a new language vs. its limited appli-
cability (yet another language grammar)

No learning of a new language required

Difficult to integrate with other components Calling external libraries is a built-in feature

Models usually cannot be created/modified in the
runtime (or at least not easily)

Models can be created/modified in the runtime

Setting up a simulation embedded in the language;
difficult to obtain initial values from other software

Setting up a simulation done programmaticaly and the
initial values can be obtained from other software

Schedules limited to the options allowed by the
langueage grammar

Schedules completely flexible (within the limits of a
programming language itself)

The OBJECT-ORIENTED approach

Everything is an object (variables, equations, models ...)
All objects can be manipulated in the runtime
All C++/Python object-oriented concepts supported
Models, simulations, optimisations:

◦ Derived from the corresponding base classes
◦ Inherit the common functionality from the base classes
◦ Perform the functionality in overloaded functions

The hierarchical model decomposition possible:
◦ Models can contain instances of other models
◦ Complex, re-usable model definitions can be created
◦ Models at different scales can be loosely coupled

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

The EQUATION-ORIENTED (ACAUSAL) approach

Equations given in an implicit form (as a residual)
𝐹(¤𝑥, 𝑥, 𝑦, 𝑝) = 0

Input-Output causality is not fixed:
◦ Increased model re-use
◦ Support for different simulation scenarios (based on a

single model) by specifying different degrees of freedom
An example:

◦ The equation given in the following form:
𝑥1 + 𝑥2 + 𝑥3 = 0

◦ Can be used to determine either 𝑥1, 𝑥2 or 𝑥3 depending on
what combination of variables is known:

𝑥1 = −𝑥2 − 𝑥3 , or 𝑥2 = −𝑥1 − 𝑥3 , or 𝑥3 = −𝑥1 − 𝑥2

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Separation of MODEL DEFINITION from its APPLICATIONS

Model structure specified in the model class
Runtime information specified in the simulation class
Solvers/auxiliary objects declared in the main program
Single model definition, but one or more:

◦ Different simulation scenarios
◦ Different optimisation scenarios

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

USE CASES

Use Case 1 - Chemical Engineering

Continuously Stirred Tank Reactor (Van de Vusse)
Plug Flow Reactor
Distillation column
Batch crystalliser
Discretised Population Balance equations
Newman Porous Electrode Theory (PET)
Multiphase Porous Electrode Theory (MPET)
Hydroxide Exchange Membrane Fuel Cells (HEMFCs)
Maxwell-Stefan equations (porous membranes)

Presssure Swing Adsorption

https://doi.org/10.1021/i160048a700
http://daetools.com/docs/tutorials-chemeng.html#tutorial-che-1
http://daetools.com/docs/tutorials-chemeng.html#tutorial-che-7
http://dx.doi.org/10.1016/S0098-1354(02)00120-5
http://daetools.com/docs/tutorials-chemeng.html#tutorial-che-2
http://dx.doi.org/10.1016/j.jcrysgro.2011.06.016
http://daetools.com/docs/tutorials-chemeng.html#tutorial-che-3
http://dx.doi.org/10.20944/preprints201611.0012.v1
http://daetools.com/docs/tutorials-chemeng.html#tutorial-che-4
http://daetools.com/docs/tutorials-chemeng.html#tutorial-che-5
http://dx.doi.org/10.1007/0-306-47508-1_13
http://daetools.com/docs/tutorials-chemeng.html#tutorial-che-6
https://github.com/raybsmith/daetools-example-battery
https://arxiv.org/abs/1702.08432
https://bitbucket.org/bazantgroup/mpet
http://doi.org/10.1038/nnano.2016.265
http://doi.org/10.1007/s10450-015-9670-z
http://daetools.com/docs/tutorials-chemeng.html#tutorial-che-8
http://doi.org/10.1021/ie801357a
http://doi.org/10.1021/ie0712582

Use Case 2 - Finite Element Method

Transient heat conduction/convection
Cahn-Hilliard equation
Flow through the porous media
Diffusion/reaction in an irregular catalyst shape

Stokes flow driven by the differences in buoyancy

http://daetools.com/docs/tutorials-fe.html#tutorial-dealii-2
http://daetools.com/docs/tutorials-fe.html#tutorial-dealii-3
http://daetools.com/docs/tutorials-fe.html#tutorial-dealii-5
http://daetools.com/docs/tutorials-fe.html#tutorial-dealii-6
http://daetools.com/docs/tutorials-fe.html#tutorial-dealii-7

Use Case 3 - Parameter Estimation & Optimisation

Large-scale Constrained Optimisation Problem Set (COPS)

Determination of the reaction coefficients in the thermal
isomerization of 𝛼-pinene (COPS 5)

Determination of stage specific growth and mortality rates for
species at each stage as a function of time (COPS 6)

Determination of the reaction coefficients for the catalytic
cracking of gas oil and other byproducts (COPS 12)

Determination of the reaction coefficients for the conversion of
methanol into various hydrocarbons (COPS 13)

Catalyst mixing in a tubular plug flow reactor (COPS 14)

http://daetools.com/docs/tutorials-chemeng-optimisation.html#tutorial-che-opt-2
http://daetools.com/docs/tutorials-chemeng-optimisation.html#tutorial-che-opt-3
http://daetools.com/docs/tutorials-chemeng-optimisation.html#tutorial-che-opt-4
http://daetools.com/docs/tutorials-chemeng-optimisation.html#tutorial-che-opt-5
http://daetools.com/docs/tutorials-chemeng-optimisation.html#tutorial-che-opt-6

Use Case 4 - Multi-scale modelling

Multi-scale model of phase-separating battery electrodes 2

Approach: porous electrode theory

Lithium transport in:

◦ Particles (small length scale)
◦ Electrolyte (large length scale)

Two phases are coupled via a
volume-averaged approach

Particles act as volumetric
source/sink terms as they interact
with the electrolyte via reactions

The code available at Bitbucket

2Li et al. (2014) Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating
battery electrodes. Nature Materials 13(12):1149–1156. doi:10.1038/nmat4084.

https://bitbucket.org/bazantgroup/mpet
https://doi.org/10.1038/nmat4084

Use Case 4 - Multi-scale modelling (cont’d)

Spatial discretisation: finite-volume method

Large DAE system:
◦ Discretised transport eqns.
◦ Algebraic constraints (electrostatic eqns.)
◦ Constraints on the current

Implementations
◦ MATLAB (ode15s solver)
◦ DAE Tools (Sundials IDAS)

DAE Tools up to 10x faster (average 4.22x) due to:
◦ Built-in support for auto-differentiation
◦ Rapid derivative evaluation
◦ Accurate derivatives

Dragan D. Nikolić, DAE Tools Project, http://daetools.sourceforge.io

http://daetools.sourceforge.io

Use Case 5 - Sensitivity Analysis

Thermal analysis of a batch reactor & exothermic reaction

The global sensitivity analysis methods available via Python SALib library

Three sensitivity analysis methods applied:
◦ Morris (Elementary Effect/Screening method)

◦ FAST and Sobol (Variance-based methods)
Calculations can be performed in parallel (Python multiprocessing module)

Available information:
◦ 1𝑠𝑡 and 2𝑛𝑑 order sensitivities and confidence intervals
◦ Total sensitivity indices and confidence intervals

◦ Scatter plots

http://daetools.com/docs/tutorials-sa.html#tutorial_sa_3
http://salib.readthedocs.io

Use Case 6 - Embedded simulator (back end)

Network Interchange format for NEuroscience (NineML)

XML-based DSL for modelling of networks of spiking neurones
DAE Tools embedded into a reference implementation simulator

Abstraction Layer (AL)

◦ Mathematical description
◦ Modelling concepts

User Layer (UL)

◦ Parameters values
◦ Instantiations

NineML concepts → DAE Tools concepts

◦ Neurone models
◦ Synapse models
◦ Populations of neurones
◦ Layers of neurones

http://software.incf.org/software/nineml

Use Case 7 - Software as a service

DAE Tools simulations as a web service

RESTful API (JavaScript, Python, C++, ...)

◦ DAE Tools simulations (daetools_ws)
◦ DAE Tools FMU objects (daetools_fmi_ws)

Benefits:

◦ Application servers or individual simulations as a service
◦ Attractive Graphical User Interface

Use Case 7 - Software as a service (cont’d)

Sample HTML GUI (JavaScript + plotly.js plotting library):

	General Information
	Motivation
	Main Features
	Programming Paradigms
	Use Cases

