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Abstract. In this work, a methodology for efficient evaluation of model equations in equation-
based simulation programs is presented. A typical equation-based model consists of a coupled set of
partial-differential equations (often referred to as kernel equations) such as mass, heat and momen-
tum balances and transport equations, and additional algebraic and ordinary differential equations
(auxiliary equations) such as boundary conditions and process performance indicators. The method-
ology implements the concept of kernel equations which represent a group of identical mathematical
expressions operating on different variables and provides: (a) an API for specification of kernel equa-
tions, (b) a method for generation of the source code for kernels in multiple languages targeting
different APIs/frameworks, and (c) a method for evaluation of coupled kernels and auxiliary equa-
tions on multiple computing devices/architectures. The auxiliary equations are typically evaluated
using general purpose processors while kernels are evaluated on streaming processors/accelerators
or heterogeneous systems. The methodology is implemented as a part of the Open Compute Stack
(OpenCS) framework. The kernels approach is applied to simulation of two large-scale models. Two
performance critical phases of the numerical solution are analysed: evaluation of residuals and evalu-
ation of derivatives (used for a preconditioner). Execution times of individual phases and the overall
performance are compared and discussed. The performance of the kernels concept are compared to
the performance of the existing approach where all equations are treated individually and evaluated
using the Compute Stack Machine byte-code instructions, and to the tailor-made C implementations.
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1. Introduction. Large scale systems of non-linear (partial-)differential and al-
gebraic equations (ODE or DAE) are found in many engineering problems. Equation-
based approach is one of the efficient methods to solve this kind of models. Equation-
based simulation, optimisation, parameter estimation and sensitivity analysis software
requires a numerical integration of a system of differential-algebraic equations and in-
tegration of sensitivity equations by a suitable ODE/DAE solver. An efficient evalua-
tion of model equations is of utmost importance since it can require up to 85% of the
total integration time. The focus in this work is on an efficient parallel evaluation of
residuals, derivatives (used as a preconditioner or a Jacobian matrix) and sensitivity
residuals on various computing platforms. Since most of the modern computers and
many specially designed clusters are equipped with additional stream processors/ac-
celerators such as Graphics Processing Units (GPU) and Field Programmable Gate
Arrays (FPGA), the simulation software must be specially designed to effectively take
advantage of multiple architectures.

In general, a typical equation-based model consists of a coupled set of partial-
differential equations and auxiliary algebraic and ordinary differential equations. An
individual partial-differential equation is often treated as a distinct group of equa-
tions - a kernel equation. Kernel equations represent a homogeneous group of identical
mathematical expressions operating on different variables and can be efficiently evalu-
ated on streaming processors/accelerators or heterogeneous systems. A typical exam-
ple could be mass, heat and momentum balance equations and various scalar/vector
transport equations. The auxiliary equations represent, for instance, boundary con-
ditions, phase equilibria, connectivity between units and various process performance
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indicators. The auxiliary equations are typically evaluated on general purpose pro-
cessors (in general, they cannot be evaluated on streaming processors/accelerators).
A detailed discussion of capabilities and limitations of the available approaches for
model specification and development of large-scale simulation programs are given in
[20, 21, 23].

Numerous software packages and libraries implement various methods for speci-
fication of model equations that can be evaluated on multiple computing devices. Li-
braries for Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)
such as deal.II [6], libMesh [15], and OpenFOAM [34], and Computer Aided Engineer-
ing (CAE) software for Finite Element Analysis and Computational Fluid Dynamics
such as HyperWorks [4], STAR-CCM+ and STAR-CD [31], COMSOL Multiphysics
[9], ANSYS Fluent/CFX [5] and Abaqus [10] employ various, mostly proprietary,
methods for generation and evaluation of kernels on different compute devices. Max-
eler Technologies [17] utilise Java language based framework for generation of kernels
for Data Flow Engines. In addition, there is a large number of software projects deal-
ing with code generation and transformation of model equations into a code suitable
for parallel evaluation on different HPC platforms/architectures. OpenFPM is a scal-
able open framework for particle and particle-mesh codes on parallel computers [13].
The same authors introduce a C++ expression system to implement numerical simula-
tions of continuum biological hydrodynamics [32]. The expression system allows spec-
ification of partial differential equations in near-mathematical notation. Simulations
can be parallelised on multi-processor computer systems. Devito [16] is a framework
capable of generating highly-optimized code given symbolic equations expressed in
Python, specialized in, but not limited to, affine (stencil) codes. It automates stencil
computations from a high-level mathematical syntax. A high-performance vendor-
agnostic method for massively parallel solving of ensembles of ordinary differential
equations and stochastic differential equations (SDEs) on GPUs was presented in [35].
The method is integrated with a widely used differential equation solver library in a
high-level language (Julia’s DifferentialEquations.jl) and enables GPU acceleration
and automatically generates optimized GPU kernels. Bempp-cl [7] is an open-source
boundary element method (BEM) library that can be used to assemble all the stan-
dard integral kernels for Laplace, Helmholtz, modified Helmholtz, and Maxwell prob-
lems. It uses PyOpenCL to just-in-time compile its computational kernels on a wide
range of CPU and GPU devices and modern architectures. Chaste (Cancer, Heart
And Soft Tissue Environment) [18] - is an open source C++ library for the computa-
tional simulation of mathematical models developed for physiology and biology. The
code provides modules for handling common scientific computing components, such as
meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Ex-
asim [36] is an open-source software for generating high-order discontinuous Galerkin
codes to numerically solve parametrised partial differential equations. The software
combines high-level and low-level languages to construct parametrised PDE mod-
els via Julia, Python or Matlab scripts and produce high-performance C++ codes
for solving the PDE models on CPU and NVidia GPU processors with distributed
memory. MOD2IR [19] is an open-source code generation pipeline for NMODL (NEU-
RON MODeling Language, a domain specific language for neuroscience). MOD2IR
leverages the LLVM toolchain to target multiple CPU and GPU hardware platforms.
Generating LLVM IR allows the vector extensions of modern CPU architectures to
be targeted directly, producing optimized SIMD code. Nektar++ is an open-source
software framework designed to support the development of high-performance scal-
able solvers for partial differential equations using the spectral/hp element method.
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It runs on general purpose processors and utilises MPI for parallelisation. Other ap-
proaches include using modern frameworks such as SYCL for solution of systems of
partial differential equations. Solving Maxwell’s equation by using a Discontinuous
Galerkin time-domain solver implemented in C ++ 17 and SYCL was presented in [2].
Implementation of the nodal discontinuous Galerkin time domain method (NDGTD)
and SYCL code generation for Multigrid Methods (fast and scalable numerical solvers
for partial differential equations) is given in [11]. Finally, there is a number of projects
for development of open-source software for solution of partial-diiferential equations
that utilise various compute platforms and architectures such as: DPIVSoft-OpenCL
[3], MaMICo [14], MOOSE [25], pyBaram [24], lifex [1], and MultiFEBE [8].

The methodology for specification of model equations in the Open Compute Stack
(OpenCS) framework is presented in [22]. In the OpenCS framework, equations can be
evaluated using the Compute Stack Machine on all types of compute devices. However,
the performance is still an issue since the equations are evaluated using the byte-code
instructions. Compared to the models implemented in C/C++ and compiled into
the machine code, the compute Stack Machine performance is lower. Therefore, the
evaluation performance needs to be further improved. In this work, the existing
methodology available in the Open Compute Stack framework [22] has been extended
using the concept of kernel equations. This way, models can contain a set of coupled
kernels and auxiliary equations that can be evaluated independently. The proposed
methodology consists of the following components: (a) an API for specification of
kernel equations, (b) a method for generation of the source code for kernels in multiple
languages targeting different APIs/frameworks, and (c) a method for evaluation of
coupled kernels and auxiliary equations on multiple computing devices/architectures.

An API for specification of kernel equations is very simple and it is straightforward
to transform existing models. Kernel equations can generate the source code for
compute kernel functions in: (a) C/C++ for compilation into a shared library, and
(b) OpenCL C/C++ for streaming processors/accelerators. The information about
kernel equations are stored into the Compute Stack while the source code is saved
in the file system. Since only variable indexes are stored the size of the resulting
Compute Stack is significantly lower.

Kernel equations can be evaluated in a very efficient way using generated kernel
functions on most existing computing platforms including general purpose processors,
GPUs, FPGAs and other accelerators. As a result, performance of evaluation of model
equations is significantly improved (approximately an order of magnitude faster than
the Compute Stack Machine). The OpenCS framework can utilise multiple streaming
processors/accelerators. Each device can evaluate one or more kernels (the list of
kernels are specified as an input parameter). Kernel equations are evaluated using the
Compute Stack evaluators that execute compute kernel functions from the generated
code. At the moment two kernel evaluators are available: (1) the generated kernels
compiled into a shared library are evaluated in parallel using the OpenMP framework,
and (2) the generated OpenCL kernels are executed by the OpenCL kernel evaluator.

The article is organised in the following way. First, the required data structures,
an API and implementation details are presented. Then, the proposed methodology
is applied to two large-scale problems. The simulation results, an overall performance
and performance of individual phases are analysed and discussed in details. Finally,
a summary of the most important capabilities of the methodology and directions for
future work are given in the last section.
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2. Methods. The kernel equations concept is implemented as a part of the
OpenCS framework [22] and based on the previously developed methodology for par-
allel evaluation of general systems of differential and algebraic equations on shared
and distributed memory systems and heterogeneous setups presented in [21, 23]. In
the OpenCS framework, in the current approach, model equations are specified in
a symbolic form and transformed using the operator overloading technique into the
byte-code instructions. Byte-code instructions are then stored as an array of binary
data (a Compute Stack) for direct evaluation on all platforms with no additional
processing nor compilation steps. A limited set of byte-code instructions is utilised
(only memory access to supplied data arrays and unary and binary mathematical op-
erations). Individual equations (Compute Stacks) are evaluated by a stack machine
(Compute Stack Machine) using the Last In First Out (LIFO) queue. Systems of
equations are evaluated in parallel using a Compute Stack Evaluator interface which
manages the Compute Stack Machine kernels. Two APIs/frameworks are used for
parallelism: (a) the Open Multi-Processing (OpenMP) API for parallelisation on gen-
eral purpose processors (multi-core CPUs), and (b) the Open Computing Language
(OpenCL) framework for parallelisation on streaming processors (GPU) and heteroge-
neous systems (CPU+GPU). Switching to a different computing device for evaluation
of equations is straightforward and controlled by an input parameter.

In general, models can contain a coupled set of kernel equations and auxiliary
algebraic and ordinary differential equations. In the new approach, all equations must
belong to one of equation groups or kernels. Auxiliary equations must be assigned
to a single or multiple groups of equations. Kernels by default represent a group of
equations. Compute Stack Evaluators now operate on groups of equations and kernels
- not the plain range of equations. Kernels can generate C/C++ source code targeting
different APIs/frameworks and hardware/accelerators.

The following data structures were introduced to support the concept of ker-
nel equations: csGroup_t, csKernel_t, csEquation_t and csKernelGenerator_t.
csGroup_t data structure contains an ID and the name of the group. csKernel_t
data structure inherits csGroup_t and in addition contains an array of equations, a
map of variable indexes in each equation, number of equations and produces a list of
source code generators for each supported language/API. csEquation_t data struc-
ture contains a reference to a group (or kernel), the mathematical expression of the
equation and the target variable index. csKernelGenerator_t interface is utilised
for generation (and automatic compilation, if required) of the kernel source code.

OpenCS kernels during the equations creation phase analyse the supplied equa-
tions, gather required information and generate: (a) the Compute Stack byte-code
instructions with variable indexes for evaluation using the generated kernel functions,
and (b) the C/C++ source code for evaluation functions. For each equation, three
separate arrays of indexes are created for variables, time derivatives and degrees of
freedom appearing in the expression (degrees of freedom represent system variables
that may vary independently, i.e. they are set at the beginning and may be changed
during simulation). The arrays are populated with indexes in the order of appearance
in the mathematical expression. This way, the mapping between an index in the array
(the local index) and the overall index of the model variable is established. Variable
indexes are stored in the Compute Stack as ordinary byte-code instructions. This
method for storing variable indexes of kernel equations allows for partitioning of the
system of equations for simulation on distributed memory systems using the Message
Passing Interface (MPI).

Kernels source code is generated in the following way. A single expression is
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used as a basis for all equations. That expression is transformed into a form which
utilises only local indexes. The generated source code for each kernel is located in the
directory with the same name as a kernel name. For instance, in the Case Study 1, the
kernels are available in the Brusselator_u and Brusselator_v sub-directories. Each
directory contains kernel.h, kernel.cpp and kernel_c_interface.h files for compilation
into a shared library. Compilation of shared library kernels is CMake-based and
automatically performed by a generator. A set of .cmake files is generated with options
for each supported compiler. In addition, the OpenCL source code is generated in
the OpenCL and OpenCL_C99 sub-directories with the OpenCL kernels in C++
and C99, respectively. Both C++ and C99 versions are generated since some devices
support only OpenCL C specification. Each sub-directory contains kernels.cl file with
OpenCL kernels and a set of files with the user defined functions, OpenCL compiler
and linker options, preprocessor definitions, include and library directories and link
libraries. OpenCL kernels are compiled by the OpenCL run-time.

Evaluation of model equations is group/kernel-based and the modified OpenCS
interface (csComputeStackEvaluator_t) is used [21]. Each evaluator represents a
physical compute device and can evaluate a single or multiple groups of equations or
kernels. A typical equation-based model and evaluators setup is given in Fig. 1. The
model contains groups with boundary conditions, phase equilibria, connectivity equa-
tions and process performance, and multiple kernels for mass, heat and momentum
balances and multiple scalar/vector transport equations. A small number of auxil-
iary equations is evaluated on a single processor using the Compute Stack Machine.
The kernels are generated for mass, heat and momentum balance equations and addi-
tional transport equations. Mass balance kernels (i.e. the total and two components
balances) are evaluated using the OpenCL evaluator on a discrete GPU 1. The mo-
mentum balance kernels (x, y and z velocity components) are evaluated using the
OpenMP evaluator on multiple CPUs. The heat balance and additional two trans-
port equations kernels are evaluated using the OpenCL evaluator on a discrete GPU
2. The goal is to distribute the compute kernels among compute devices so that each
device receives the workload proportional to its compute capabilities. Specification of
equation evaluators is an input parameter for simulation located in the configuration
file (simulation_options.json). A sample specification for the typical equation-based
model is given in the Listing 1.

An API for specification of model equations using the kernel concept is very
simple. In the existing concept, all equations are placed into a single array and added
to a model. In the new kernel concept, each equation must be placed into a group
of equations or into a kernel. These two concepts are illustrated in Listings 2 and 3.
They show excerpts from the Case Study 1 for two approaches, respectively.

To illustrate the concept, a very simple one-dimensional Laplace equation (heat
conduction problem) can be used:

(1) dT

dt
− k

∂2T

∂x2
= 0, ∀i ∈ [1, Nx − 1]

where T is the temperature, k is thermal conductivity and Nx is the number of points
in the x domain.
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Figure 1: A typical equation-based model and setup of Compute Stack Evaluators.
The model contains: (1) multiple kernels for mass (three components), heat and mo-
mentum balances (x, y and z components) and two scalar transport equations, and
(2) groups of equations for boundary conditions, phase equilibria, connectivity equa-
tions and process performance. Groups and kernels are evaluated using different
compute devices and the workload is approximately equally distributed.

Listing 1: Evaluator options for a typical equation-based model
"Evaluators " : {

"Device_0" : {
" Library " : " Sequent i a l " ,
"Name" : " s e qu en t i a l " ,
"Groups" : [

"BoundaryConditions " , " PhaseEqu i l ib r i a " ,
" Connect iv i ty " , "ProcessPerformance "

]
} ,
"Device_1" : {

" Library " : "Kernels_OpenCL" ,
"Name" : "kOpenCL1" ,
"Parameters " : {

"platformID" : 0 ,
" deviceID" : 0

} ,
"Kerne ls " : [

"MassBalance_C1" , "MassBalance_C2" , "MassBalance_total "
]

} ,
"Device_2" : {

" Library " : "Kernels_OpenMP" ,
"Name" : "kOpenMP" ,
"Parameters " : {

"numThreads" : 0
} ,
"Kerne ls " : [

"MomentumBalance_x" , "MomentumBalance_y" , "MomentumBalance_z"
]

} ,
"Device_3" : {

" Library " : "Kernels_OpenCL" ,
"Name" : "kOpenCL2" ,
"Parameters " : {

"platformID" : 1 ,
" deviceID" : 1

} ,
"Kerne ls " : [

"HeatBalance" , "TransportEquation_1" , "TransportEquation_2"
]

}
}
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Listing 2: Specification of model equations in the existing concept (Case Study 1)
std : : vector<csNumber_t> equat ions ;
f o r ( i n t x = 0 ; x < Nx ; x++)

f o r ( i n t y = 0 ; y < Ny ; y++)
i f ( x == 0 | | x == Nx−1 | | y == 0 | | y == Ny−1)
{

// Boundary po in t s :
csNumber_t bc = du_dx(x , y ) − u_flux_bc ;

equat ions . push_back ( bc ) ;
}
e l s e
{

// I n t e r i o r po in t s :
csNumber_t u_pde = du_dt(x , y )

− eps1 ∗ (d2u_dx2(x , y ) + d2u_dy2(x , y ) )
− (u(x , y )∗u(x , y )∗v (x , y ) − (B+1)∗u(x , y ) + A) ;

equat ions . push_back (u_pde ) ;
}

. . .
modelBui lder . SetModelEquations ( equat ions ) ;

Listing 3: Specification of model equations in the kernel concept (Case Study 1)
std : : vector<csEquation_t> equat ions ;
std : : vector<csKernel_t> ke rn e l s ;
csGroup_t group_BCs( "BoundaryConditions " , 1 ) ;
csKernel_t kernel_u ( "Brusselator_u" , 2 ) ;

f o r ( i n t x = 0 ; x < Nx ; x++)
f o r ( i n t y = 0 ; y < Ny ; y++)

i f ( x == 0 | | x == Nx−1 | | y == 0 | | y == Ny−1)
{

// Add boundary po in t s to the "BoundaryConditions " group :
csEquation_t equat ion(&group_BCs ) ;

csNumber_t bc = du_dx(x , y ) − u_flux_bc ;

equat ion [ u(x , y ) ] = bc ;
equat ions . push_back ( equat ion ) ;

}
e l s e
{

// Add i n t e r i o r po in t s to the "Brusse lator_u" ke rne l :
csEquation_t equation_u(&kernel_u ) ;

csNumber_t u_pde = du_dt(x , y )
− eps1 ∗ (d2u_dx2(x , y ) + d2u_dy2(x , y ) )
− (u(x , y )∗u(x , y )∗v (x , y ) − (B+1)∗u(x , y ) + A) ;

equation_u [ u(x , y ) ] = u_pde ;
kernel_u . AddEquation ( equation_u ) ;

}

k e rn e l s . push_back ( kernel_u ) ;
. . .
modelBui lder . SetModelEquations ( equat ions , k e rn e l s ) ;

The discretised form of the equation is presented in the Listing 4 (in pseudo-
code). The generated kernel is given in the Listing 5, where k and dx are floating
point constants (values specified in the simulation) and x_t, x and y are arrays of
variable values, time derivatives and degrees of freedom appearing in the equation,
respectively. The generated index arrays in this example are [[2, 1, 0], [3, 2, 1],
..., [Nx-1, Nx-2, Nx-3]] for variables and [[1], [2], ..., [Nx − 1]] for time derivatives.
During evaluation, the values of variables, time derivatives and degrees of freedom are
obtained from the solver data arrays using the stored overall indexes.
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Listing 4: The discretised form of the heat conduction equation (pseudo-code)
f o r x in range (1 , Nx−1):

dT_dt [ x ] + k ∗ (T[ x+1] − 2∗T[ x ] + T[ x−1]) / (dx∗dx ) = 0

Listing 5: Generated C++ kernel functions for the heat conduction equation
double res idual_Conduction ( double time , double ∗ x_t , double ∗ x , double ∗ y )
{

return x_t [ 0 ] − k ∗ ( x [ 0 ] − 2 ∗ x [ 1 ] + x [ 2 ] ) / (dx∗dx ) ;
}

adouble deriv_Conduction ( double time , adouble ∗ x_t , adouble ∗ x , adouble ∗ y )
{

return x_t [ 0 ] − k ∗ ( x [ 0 ] − 2 ∗ x [ 1 ] + x [ 2 ] ) / (dx∗dx ) ;
}

3. Case Studies. The performance of the kernels approach has been evaluated
by benchmarking two large-scale models: (Case 1) a process of auto-catalytic chemical
reaction with oscillations known as the Brusselator PDE, and (Case 2) the Chapman
mechanism for ozone kinetics arising in atmospheric simulations.

3.1. Case 1: transient two-dimensional diffusion-reaction equations,
structured grid. The model describes the process of auto-catalytic chemical reaction
with oscillations known as the Brusselator PDE. The net reaction is A+B → D+E
with transient appearance of intermediates X and Y, where A and B are reactants and
D and E are products [33]. The model is originally implemented using SUNDIALS
IDAS suite [30]. Under conditions where components A and B are in vast excess dur-
ing the chemical reaction the system dynamics is described by the following equations
(DAE system):

(2)

du

dt
− k1

(
∂2u

∂x2
+

∂2u

∂y2

)
−Ru(u, v, t) = 0

dv

dt
− k2

(
∂2v

∂x2
+

∂2v

∂y2

)
−Rv(u, v, t) = 0

where the reaction rates Ru and Rv are defined as:

(3)
Ru(u, v, t) = u2v − (B + 1)u+A

Rv(u, v, t) = −u2v +Bu

Here, k1 and k2 are diffusion constants, A and B are the concentrations of components
A and B, and u and v are concentration of intermediaries X and Y. The equations are
distributed on a square domain x ∈ [0, 10] and y ∈ [0, 10] and discretised by central
differences on a uniform 1000x1000 spatial mesh resulting in 2,000,000 unknowns.
The boundary conditions are homogeneous Neumann (no normal flux at boundaries).
The initial conditions are given by: u(x, y, t0) = 1.0 − 0.5 cos (πy) and v(x, y, t0) =
3.5 − 2.5 cos (πx). The concentrations of components A and B and the diffusion
constants are held constant (A = 1, B = 3.4, k1 = k2 = 0.002). The relative and
absolute tolerances for all unknowns are set to 10−5. The system is simulated for 10
seconds and the outputs are taken every 0.1 second. The C++ source code and the
compilation and usage instructions are given in the Supplemental Listing SM1.
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The DAE system is integrated in time using the variable-step variable-order back-
ward differentiation formula from SUNDIALS IDAS solver [12]. Systems of linear
equations are solved using the SUNDIALS GMRES solver and the IFPACK ILU
[26] preconditioner from Trilinos suite (in the original IDAS model the band-block-
diagonal preconditioner has been applied). The input parameters for the IFPACK
preconditioner are k = 3, ρ = 1.0, α = 0.1 and ω = 0.5 where k is the fill-in factor, ρ
is the relative threshold, α is the absolute threshold and ω is the relax value.

3.2. Case 2: transient two-dimensional convection-diffusion-reaction
equations, structured grid. The model describes the Chapman mechanism for
ozone kinetics arising in atmospheric simulations [27]. The reaction involves three
components: ozone singlet (O), ozone (O3) and oxygen (O2), where the first two reac-
tions are photo-chemical and contain diurnal rate coefficients. The model is originally
presented in [37] and implemented using SUNDIALS CVodes suite [29]. The system
dynamics is described by the following equations (ODE system):

(4)
dci
dt

= Kh
∂2ci
∂x2

+
∂

∂y

(
Kv(y)

∂ci
∂y

)
+ V

∂ci
∂x

+Ri(c1, c2, t), ∀i ∈ {1, 2}

where the reaction rates R1 and R2 are given by:

(5)
R1(c1, c2, t) = −q1c1c3 − q2c1c2 + 2q3(t)c3 + q4(t)c2

R2(c1, c2, t) = q1c1c3 − q2c1c2 − q4(t)c2

Here, c1, c2 and c3 are concentrations of O, O3 and O2, respectively, q1, q2, q3 and q4
are reaction rate coefficients, V is velocity, and Kh and Kv are diffusion coefficients.
The numerical values of the input parameters are: V = 10−3, Kh = 4 · 10−6 and
Kv(y) = 10−8 exp(0.2y). Kv(y) is a function of the position (y coordinate) and a
special care must be taken when generating the source code for kernels. q1, q2 and c3
are constant (q1 = 1.63 · 10−16, q2 = 4.66 · 10−16, c3 = 3.7 · 1016) while q3 and q4 vary
diurnally:

(6)

q3(t) =

{
exp

(
−A3/ sin(ωt)

)
, if sin(ωt) > 0

0, otherwise

q4(t) =

{
exp

(
−A4/ sin(ωt)

)
, if sin(ωt) > 0

0, otherwise

where ω = π/43200 and A3 and A4 are coefficients (A3 = 22.62, A4 = 7.601). The
equations are distributed on a square domain: x ∈ [0, 20] km and y ∈ [30, 50] km
and discretised by central differences on a uniform 1000x500 spatial mesh resulting in
1,000,000 unknowns. In the original CVodes model the equations were also discretised
using the central differences, except for the advection term where a biased 3-point
difference formula was used. The boundary conditions are homogeneous Neumann
(no normal flux at boundaries). The initial conditions are given by:

(7)

c1(x, y, t0) = 106α(x)β(y)

c2(x, y, t0) = 1012α(x)β(y)

α(x) = 1− (0.1(x− xmid))
2 + 0.5(0.1(x− xmid))

4

β(y) = 1− (0.1(y − ymid))
2 + 0.5(0.1(y − ymid))

4
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where xmid = (0+ 20)/2 = 10 and ymid = (30+ 50)/2 = 40 are mid points of the x, y
domains. The relative and absolute tolerances for all unknowns are set to 10−5. The
system is integrated for 86,400 seconds (1 day) and the outputs are taken every 360
seconds. The C++ source code and the compilation and usage instructions are given
in the Supplemental Listing SM2.

The ODE system is integrated in time using the variable-step variable-order back-
ward differentiation formula available in SUNDIALS CVodes solver [28]. Systems of
linear equations are solved using the SUNDIALS generalised minimal residual solver
and the IFPACK ILU [26] preconditioner from Trilinos suite (in the original CVodes
model the 2x2 block-diagonal preconditioner has been applied). The input parameters
for the IFPACK preconditioner for all runs are k = 1, ρ = 1.0, α = 10−5 and ω = 0.0.

3.3. Run-time setup. The model in Case 1 (DAE system) contains one group
with boundary condition equations ("BoundaryConditions") and two kernels of equal
size with equations for interior points of transport equations for u and v reaction com-
ponents ("Brusselator_u" and "Brusselator_v"). The model in Case 2 (ODE system)
contains one group with boundary condition equations ("BoundaryConditions") and
two kernels of equal size with equations for interior points of transport equations for
C1 and C2 reaction components ("DiurnalKinetics_C1" and "DiurnalKinetics_C2").
The generated source code for all kernels is given in the Supplemental Listing SM3,
located in the directories with the same name as kernels. Four different runs were
performed for each case study:

Cx-CSM-SEQ Compute Stack Machine implementation
(evaluation on a single processor)

Cx-CSM-OMP Compute Stack Machine implementation
(evaluation using the OpenMP framework)

Cx-SEQ Kernels implementation
(the group evaluated on a single processor,
kernels evaluated one by one on another processor)

Cx-OMP Kernels implementation
(the group evaluated on a single processor,
kernels evaluated one by one using OpenMP)

where Cx is C1 for Case Study 1 and C2 for Case Study 2. Simulation runs for Case
Studies 1 and 2 are given in Table 1:

Table 1: Simulation runs for Cases 1 and 2

Run Simulation Evaluation of model equations
C1-CSM-SEQ 1 CPU CS Machine, Sequential
C1-CSM-OMP 16 CPUs CS Machine, OpenMP
C1-SEQ 1 CPU Kernels, Sequential
C1-OMP 16 CPUs Kernels, OpenMP
C2-CSM-SEQ 1 CPU CS Machine, Sequential
C2-CSM-OMP 16 CPUs CS Machine, OpenMP
C2-SEQ 1 CPU Kernels, Sequential
C2-OMP 16 CPUs Kernels, OpenMP

In addition, the performance of OpenCS kernels were compared to tailor-made C
kernel implementations for both case studies (single processor runs only). The source
code of the C implementations are adapted from the original idasBruss_kry_bbd_p.c
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IDAS example implementation [12] and cvsDiurnal_kry.c CVodes example implemen-
tation [28] and given in Supplemental Listing SM4. The simulation setup, compilation
and run options are given in the Supplementary Materials SM1 and SM2.

The simulations were carried out in 64-bit Windows 11, compiled using the vc++
19.34 compiler and run using OpenCS 2.1.0. The hardware configuration consists of
the AMD Ryzen CPU with 8 cores/16 threads at 4GHz and 16 GB of RAM.

4. Results. The number of equations (Neq), the number of non-zero items in
the Jacobian matrix (the total number Nnz =

∑Neq

i=1 Nnz[i]), the number of Compute
Stack items (the total number Ncs =

∑Neq

i=1 Ncs[i] and the average number per equa-
tion Ncs/equation) and the average number of Compute Stack items for evaluation of
a single row of the Jacobian matrix (Ncs/jacob_row = 1

Neq

∑Neq

i=1 Nnz[i]Ncs[i]) for the
sequential runs in both cases are given in Table 2. Since only variable indexes are
stored in the Compute Stack, its size in kernel versions is significantly lower: 3.76
times in Case 1 and 8.42 times in Case 2.

Four main phases of the numerical solution are analysed:
1. EvalEqns – evaluation of equations (residuals or right-hand side).
2. EvalDerivs – evaluation of derivatives (for a preconditioner).
3. LinSysSetup – evaluation of derivatives + compute preconditioner
4. LinSysSolve – apply preconditioner
5. Integration – integration of the system of equations in time.

In SUNDIALS the difference quotient approximation is used in the LinSysSolve phase
and requires an additional call to the EvalEqns function.

The total integration time, the duration of individual phases of the numerical
solution and the number of function calls of each phase are presented in Table 3 for
Case 1 and Table 6 for Case 2. The duration of individual phases given as a percentage
of the duration of the total integration time are presented in Table 4 for Case 1 and
Table 7 for Case 2. The speed-ups of individual phases of the numerical solution, the
maximum theoretical overall speed-ups and the achieved overall simulation speed-ups
are given in Table 5 for Case 1 and Table 8 for Case 2. The number of linear solver
iterations and the number of evaluate function calls is different for Compute Stack
Machine and Kernel versions since the equations are differently arranged in kernel
versions. The equations are grouped and sorted by a group ID producing different
linear systems. However, the numerical results are identical.

The maximum theoretical speed-up for evaluation of model equations is 16 for
both cases (the number of cores). The maximum theoretical overall simulation speed-
ups can be calculated from the Amdahl’s law using the data from Tables 3 and 6:
1/
(
1− p+ p/s

)
, where p is the portion of the solution that can be parallelised and

s is the maximum theoretical speed-up. The sequential runs C1-CSM-SEQ and C2-
CSM-SEQ are used as a basis. In both cases only the evaluation of model equations
and derivatives can be performed in parallel. Combined, they amount to 68.5% (Case
1) and 89.1% (Case 2) of the total integration time in sequential runs. Hence, the
maximum theoretical overall speed-ups are: 2.79 for Case 1 and 6.07 for Case 2.

The simulation results for the comparison of OpenCS kernels with the tailor-
made C implementations for both case studies (single processor runs only) are given
in Tables SM1 and SM2 in the Supplementary Materials, respectively.
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Table 2: Workload-related properties for Case 1 and Case 2.

Neq Nnz Ncs Ncs/equation Ncs/jacob_row

C1-CSM 2,000,000 11,976,024 67,832,168 33.92 203.09
C1 2,000,000 11,976,024 18,039,960 9.02 54.01
C2-CSM 1,000,000 5,988,000 69,928,000 69.93 418.73
C2 1,000,000 5,988,000 8,305,496 8.31 58.03

Table 3: Case 1: duration of individual phases in seconds and the number of function
calls (given in the brackets).

Phase C1-CSM-SEQ C1-CSM-OMP C1-SEQ C1-OMP
EvalEqns 710.20 (2449) 145.74 (2449) 44.14 (2446) 29.91 (2446)
EvalDerivs 49.77 (19) 13.60 (19) 16.34 (19) 7.56 (19)
LinSysSetup 89.79 (19) 52.50 (19) 51.59 (19) 42.39 (19)
LinSysSolve 647.03 (973) 307.96 (973) 267.45 (973) 250.09 (973)
Integration 1093.60 (973) 497.89 (973) 414.96 (973) 386.09 (973)

Table 4: Case 1: duration of individual phases in percents.

Phase C1-CSM-SEQ C1-CSM-OMP C1-SEQ C1-OMP
EvalEqns 64.00 28.76 10.41 7.59
EvalDerivs 4.49 2.68 3.85 1.92
LinSysSetup 8.09 10.36 12.17 10.75
LinSysSolve 58.31 60.78 63.08 63.43

Table 5: Case 1: Speed-ups for individual phases and the achieved overall speed-up.

Phase C1-CSM-SEQ C1-CSM-OMP C1-SEQ C1-OMP
EvalEqns 1.00 4.87 16.07 23.72
EvalDerivs 1.00 3.66 3.05 6.59
LinSysSetup 1.00 1.71 1.74 2.12
LinSysSolve 1.00 2.10 2.42 2.59
Overall (achieved) 1.00 2.21 2.64 2.83

Table 6: Case 2: duration of individual phases in seconds and the number of function
calls (given in the brackets).

Phase C2-CSM-SEQ C2-CSM-OMP C2-SEQ C2-OMP
EvalEqns 1661.35 (4046) 286.33 (4046) 264.95 (3783) 54.12 (3783)
EvalDerivs 339.29 (135) 78.30 (135) 105.37 (115) 36.15 (115)
LinSysSetup 388.42 (135) 128.18 (135) 158.97 (115) 90.27 (115)
LinSysSolve 1084.95 (1753) 300.38 (1753) 308.28 (1432) 168.55 (1432)
Integration 2244.07 (1756) 612.31 (1756) 619.22 (1435) 328.94 (1435)
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Table 7: Case 2: duration of individual phases in percents.

Phase C2-CSM-SEQ C2-CSM-OMP C2-SEQ C2-OMP
EvalEqns 73.98 46.64 42.67 16.37
EvalDerivs 15.11 12.75 16.97 10.93
LinSysSetup 17.30 20.88 25.61 27.30
LinSysSolve 48.31 48.93 49.65 50.98

Table 8: Case 2: Speed-ups for individual phases and the achieved overall speed-up.

Phase C2-CSM-SEQ C2-CSM-OMP C2-SEQ C2-OMP
EvalEqns 1.00 5.80 5.86 28.70
EvalDerivs 1.00 4.33 2.74 7.99
LinSysSetup 1.00 3.03 2.08 3.67
LinSysSolve 1.00 3.61 2.87 5.26
Overall (achieved) 1.00 3.66 2.96 5.58

5. Discussion. For sequential runs, the observed speed-ups in evaluation of
model equations in kernel versions in the EvalEqns phase are 16.07 and 5.86 for Case
1 and Case 2, respectively. On the other hand, the observed speed-ups in evaluation of
model equations in kernel versions in the EvalDerivs phase are 3.05 and 2.74 for Case
1 and Case 2, respectively. Therefore, the compiled C++ kernels are approximately
an order of magnitude faster for evaluation of model equations and three times faster
for evaluation of derivatives.

Regarding the benchmarks with the tailor-made C implementation for single
processor runs, the performance is significantly higher in the C implementations.
In average, in Case 1, Brusselator u and v kernels are 3.0 and 3.7 times faster, and
in Case 2, DiurnalKinetics C1 and C2 kernels are 26.6 and 32.6 times faster in the
C implementation, respectively. In both cases the better performance is due to the
hand-made code optimisations (in particular for Case 2). Also automatic compiler
code optimisations can be more aggressive and more effective since the loop counts
are known in advance. In both cases, the code is auto-vectorised by the compiler, too.
The full analysis for both case studies are given in the Supplementary Materials SM1
and SM2.

In parallel OpenMP runs, the observed speed-ups in evaluation of model equations
using Compute Stack Machine are as follows: 4.87 in Case 1 and 5.80 in Case 2 (the
EvalEqns phase), and 3.66 in Case 1 and 4.33 in Case 2 (the EvalDerivs phase). Speed-
ups in kernel versions are: 23.72 in Case 1 and 28.70 in Case 2 (the EvalEqns phase),
and 6.59 in Case 1 and 7.99 in Case 2 (the EvalDerivs phase). Theoretically, since
there are no dependency nor data exchange between processing elements, evaluation
of equations should scale linearly with the increase in the number of threads (16 in
this work). The observed speed-ups are somewhat lower than expected.

The achieved overall simulation speed-ups in Case 1 are: 2.21, 2.64 and 2.83, and
in Case 2: 3.66, 2.96 and 5.58 for runs CSM-OMP, SEQ and OMP, respectively. The
maximum theoretical overall simulation speed-ups are 2.79 for Case 1 and 6.07 for
Case 2. The achieved overall speed-ups are approaching the maximum theoretical
ones for OpenMP kernel versions.
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6. Conclusions. A methodology for efficient evaluation of model equations in
equation-based simulation programs has been presented in this work. The main idea
and implementation details of the kernel equations concept have been described. Ker-
nel equations represent a homogeneous group of identical expressions operating on
different variable values and can be efficiently evaluated on both general purpose pro-
cessors and streaming processors / accelerators. The methodology has been imple-
mented as a part of the Open Compute Stack (OpenCS) framework and provides: (a)
an API for specification of kernel equations, (b) a method for generation of the source
code for kernels in multiple languages targeting different APIs/frameworks, and (c)
a method for evaluation of coupled kernels and auxiliary equations on multiple com-
puting devices / architectures. Kernel equations can generate C/C++ source code
for compilation into a shared library, and OpenCL C/C++ source code for stream-
ing processors / accelerators. The code is automatically compiled by the framework.
To perform simulation, the OpenCS framework can utilise multiple compute devices
where each device evaluates one or more kernels. Setup of compute devices to be used
for simulation is an input parameter.

The capabilities of the framework have been illustrated using two large scale
problems. The concept of equation kernels offers a significant improvement in the
simulation performance. The compiled C++ kernels are an order of magnitude faster
for evaluation of model equations (6 – 16 times) and three times faster for evaluation
of derivatives compared to the Compute Stack Machine. The achieved overall speed-
ups are approaching the maximum theoretical ones for parallel kernel versions using
the OpenMP framework.

Performance of OpenCS C++ kernels have been compared to the tailor-made C
implementations. The tailor-made models provide significant performance gains (more
than an order of magnitude in some cases) with some limitations such as difficulties
to obtain analytical derivatives, a difficult and error-prone procedure and simulations
limited to general-purpose processors only.

The future work will focus on further improvements of the performance (i.e. us-
ing vector extensions such as AVX512 and SVE2), reduction of memory requirements,
support for additional architectures used in HPC (such as ARM64), and kernel genera-
tors and Compute Stack Evaluator implementations for additional types of computing
devices (such as FPGA and other accelerators).
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