
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-5, June 2022

144

Retrieval Number: 100.1/ijeat.E36280611522
DOI: 10.35940/ijeat.E3628.0611522
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Abstract: One of the essential components of Recommender
Systems in Software Engineering is a static analysis that is
answerable for producing recommendations for users. There are
different techniques for how static analysis is carried out in
recommender systems. This paper drafts a technique for the
creation of recommendations using Cosine Similarity. Evaluation
of such a system is done by using precision, recall, and so-called
Dice similarity coefficient. Ground truth evaluations consisted of
using experienced software developers for testing the
recommendations. Also, statistical T-test has been applied in
comparing the means of the two evaluated approaches. These tests
point out the significant difference between the two compared sets.

Keywords: Recommender Systems, Cosine Similarity, Software
Engineering.

I. INTRODUCTION

Today recommendation engines are used in many fields,
starting from mini news headlines on various social media
pages, online articles from various news portals, providing
streaming services with watchable content, friendly requests
to join groups or individuals, all the way to various
e-commerce sites with their products available for purchase
[1, 2]. During daily use, recommendation engines can play an
important role in users’ decision-making regarding whether
they like the platform that serves the data [3, 4].

In the sector of healthcare, there are a lot of systems that
help medical staff with decision-making based on the
recommendations provided by the system. These systems
will be able to predict patients health based on their lifestyle
or health issues from their relatives [5, 6]. In the field of
Software Engineering, usually, most software developers
want to reuse their functional code or other developer’s code

in their daily development activity. This reduces
development time and uses proven functional code.
Therefore, a lot of developers when searching for useful
code, they also get served by background applications that

Manuscript received on 30 May 2022.
Revised Manuscript received on 01 June 2022.
Manuscript published on 30 June 2022.
* Correspondence Author

Astrit Desku*, Faculty of Contemporary Sciences and Technologies,
South East European University, Tetovo, North Macedonia. Email:
ad23613@seeu.edu.mk

Bujar Raufi, Faculty of Contemporary Sciences and Technologies,
South East European University, Tetovo, North Macedonia. Email:
b.raufi@seeu.edu.mk

Artan Luma, Faculty of Contemporary Sciences and Technologies,
South East European University, Tetovo, North Macedonia. Email:
a.luma@seeu.edu.mk

Besnik Selimi, Faculty of Contemporary Sciences and Technologies,
South East European University, Tetovo, North Macedonia. Email:
b.selimi@seeu.edu.mk

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

utilize some machine learning algorithms that increase their
chances of finding the correct code [1]. One such approach is
to use Recommendation Systems in Software Engineering
(RSSEs). The RSSEs are useful in some dimensions, like
improving system quality, helping developers with better
decision-making, increasing efficiency, and decreasing
expenses during the development processes and maintenance
phase [7]. RSSE can be useful in any phase of the
development process i.e. requirement engineering, designing,
programming, and testing [8]. There are different approaches
and techniques for modeling recommender systems, like
collaborative filtering, content-based filtering, and
knowledge-based recommendation [9]. This paper model a
recommender system for secure software engineering using
cosine similarity measurements continued from the datasets
produced during our previous paper in [10].

II. RELATED WORK

Data analysis for recommendation engines is mainly
statistical analysis [11] and those most relevant to this paper
are mentioned below. Adaptation of the cosine similarity
method as described by [12] was used to create product
similarity evaluation leading to the creation of customer
recommendation score applied for content-based filtering.
Their model was applied to both the customers and products.
Using customer’s transaction behavior they proposed new
products that the customer would more likely purchase.
Authors calculated the accuracy of their recommendations
through precision and recall for scores on product similarity,
achieving 100% and 93.47%, respectively. In [13] it was
presented a similarity function by using weighted distance
similarity to find similarities between users in the Movie
Lens dataset.

Three different algorithms (K-means clustering,
hierarchical clustering, and cosine similarity) are used in [14]
to find similarities between the description of movies and
books. Furthermore, in [15] cosine similarity has been
applied to classifying Economic Journal Articles in the
Indonesian Language.

Authors used only the content from titles and abstracts.
Similarly, authors in [16] have applied cosine similarity to
the cancer category extracted from website-based news
articles. In the programming area for code recommendations
for C and C++, the authors of [17] used machine learning in a
data-driven approach, extracting features at two levels of
granularity to create their build. Functional level usage of
Control Flow Graph (CFG) allowed them to extract features
from various operations that appear in basic blocks, variable
definition, and usage. Measuring and identifying similar
documents/reports by authors in [18] is based on class-based
indexing term weighting schemes such as TFIDF and TFICF.

Recommender Model for Secure Software
Engineering using Cosine Similarity Measures

Astrit Desku, Bujar Raufi, Artan Luma, Besnik Selimi

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:b.raufi@seeu.edu.mk
mailto:a.luma@seeu.edu.mk
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E3628.0611522&domain=www.ijeat.org

Recommender Model for Secure Software Engineering using Cosine Similarity Measures

145

Retrieval Number: 100.1/ijeat.E36280611522
DOI: 10.35940/ijeat.E3628.0611522
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

III. RECOMMENDER MODEL USING COSINE
SIMILARITY MEASURE

Today exists different algorithms for similarity
measurements in text mining applications or information
retrievals, such as Euclidean distance-based metric, Jaccard,
Dice, Jensen- Shannon Divergence, and Cosine Similarity are
one of the most used [19,20]. By applying this technique,
different models can be generated with each different
measure based on the distance was chosen or distance
measure [21]. Based on the definition of the techniques of
Cosine similarity, the measure is a result of the cosine of the
angle between two vectors of an inner product space [22].
Two cosine vectors that can be aligned inside the identical
orientation can have a similarity size of 1, while vectors
aligned perpendicularly can have a similarity of 0 [23]. The
cosine similarity for two vectors given is defined as:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝐴 ∙ 𝐵

‖𝐴‖ ‖𝐵‖
=

∑ 𝐴𝑖
𝑛
𝑖=1 𝐵𝑖

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

(1)

Documents in datasets usually are long vectors that have a
consideration of variables or attributes. In [11] to explain the
measure of two vectors it was given a simple example with
two vectors consisting of the following attributes: X
(1,2,0,0,3,4,0) and Y (5,0,0,6,7,0,0).

Calculation of the cosine similarity index for the given
example above is shown in Fig. 1, below

Fig. 1. The cosine similarity index calculation [4].

The following sections present a model of
recommendation using cosine similarity. The proposed
model will use datasets presented in [10] by our previous
work. The model uses a dataset with three variants of them:
▪ CFG Dataset - contains data based on Control Flow

Graph structure
▪ CSI Dataset - contains calculated Cosine Similarity Index

for CFG Dataset
▪ Class Method Dataset – contains Methods of Classes

separated from the original dataset.
The CFG Dataset is a dataset created by using the structure

of Control Flow Graph (CFG). A control flow graph is a
graph defined by the following formula:

G = (N, E), (2)
Where the nodes are marked as N and represent statements

of the procedure and the edges marked as E represents the
transfer of the control between two statements. [24].

Using CFG will be able to track the flow of execution and
variable states. A node in a CFG represents a block of code
that will always run sequentially. Edges in a CFG represent
possible paths of execution. We have to implement a .NET
solution explained in detail in our previous work in [15], by
which the dataset was transformed as a dataset with CFG
structure The CSI Dataset is a dataset that was created after
the calculated cosine similarity index for CFG Dataset. The

Class Method Dataset is a dataset created by the original
dataset after applying another .Net solution by which
methods of the class are separated from the class body. This
dataset structure has three columns: Class, Method Header
and Method Body. We used a pattern based on regular
expression or regex to identify the header of methods. A
regular expression by definition is a pattern that the regular
expression engine attempts to match in the input text. A
pattern consists of one or more character literals, operators, or
constructs.

Fig. 2 presents the relationship between the datasets
explained above.

Fig. 2. The relationship between datasets

The model use as an input parameter a snippet code from
developer users and return as output a list of class methods as
a recommendation Developer user will be able to choose
which proposed recommendation to use in their solution, in
the case when the recommendation engine propose more than
one recommendation.

Fig. 3. Recommender Model using Cosine Similarity

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-5, June 2022

146

Retrieval Number: 100.1/ijeat.E36280611522
DOI: 10.35940/ijeat.E3628.0611522
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

A. How the algorithm works

In the following, it was the procedure of how the algorithm
works. To explain how the algorithm of the model generates
recommendations let’s use as input parameter this value

‘aesDecrypt’. At the same time, this value can be considered

as developer user snippet code:
▪ For this value algorithm first search in ‘CFG Dataset’ to

find the most similarity value.
▪ The next step is searching in ‘CSI Dataset’ to find data

with the highest cosine similarity index.
▪ Because the algorithm will return a lot of values, we

decide to get the top five selected values with the highest
CSI. For these data, the algorithm will search in ‘Dataset

with methods class’ to give the user full methods of

classes as a recommendation. In this case, the
recommender engine will propose a recommendation as it
is shown in the figure below.

Fig. 4. Results after applying the algorithm for
recommendation

IV. RECOMMENDER EVALUATION OF OUR

MODEL

The great challenge from a software engineering point of
view is addressing the relevance of recommendations for a
programmer’s code by the recommendation system tools that

will be used by the developer. Especially in cases when more
than one recommendation is suggested for the developer.

Establishing the quality of a recommender system usually
consists of comparison from predictions from different
algorithms, performances, or various mode sizes [25, 26].
But since the RSSE are in the evolutionary stage done on
limited hardware resources such as developer’s machines,

therefore these factors should be considered also, when
evaluating these systems. Our proposed model for generation
recommendation uses a cosine similarity approach and has
two evaluation criteria. First is automatically measuring the
effectiveness of the recommendation system through the
combined use of precision, recall, and F-measure. The second
is ground truth measurement of recommendations through
the experienced developers Since the recommendation
system tries to mimic how human uses the recommendation,
from entering a query, the system returns the results in form
of a recommendation, and the human then uses one or more
recommendations based on how relevant it is for the task.
The recommendation system tool could be adapted by code
change to use the same query again and potentially get
similar, better, or worse results [25].

A. Performance measures

Assessing recommendation system effectiveness’ is done

using precision, recall, and F1 measures which are applied to
the results of the queries. This provides a) all relevant
recommendations and b) filter’s out not relevant

recommendations Precision quantifies the number of true
positive predictions that belong to the positive class, i.e.

Precision is defined as the number of useful (relevant)
recommendations over the total number of recommendations,

Precision =
Recommendations relevant

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟

 (3)

Recall quantifies the number of true positive predictions
made out of all positive examples in the dataset, i.e. Recall is
defined as the number of useful recommendations over the
expected recommendations [25, 26]

Recall =
Recommendations relevant

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠expected

 (4)

F-Measure or F-score provides a single score that balances
both the concerns of precision and recall in one number. The
F-Measure is interpreted as the harmonic mean of the
precision and recall and has been widely used by the
researchers [26, 25]:

F =
(1 + 𝛽2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5)

The F-Measure allows being put greater emphasis on

either recall or precision by varying the assigning of the β

parameter. In our case (β = 1) both precision and recall have

the same importance therefore β = 1, which is also known as.
F1 measure [27, 26].

In our case evaluating the cosine similarity for the
recommendation system was done using the following rules
for performance measures:
▪ Relevant recommendations: produced recommendations

with GitHub commit of more than five and a cosine
similarity index of more than 0.6

▪ Expected recommendations: produced recommendation
with GitHub commits of more than five

▪ A Total number of recommendations: top 5
recommendations with the highest score on the cosine
similarity index.

Fig. 5. Recommendation Performance measure

Average values of the performance measurements for data
in the Fig. 5 above: Recall = 0.94, Precision = 0.72 and
F1-measure = 0.80

B. Subjective Evaluation

As it was mentioned previously, the evaluation process of
the RSSE simulates the usage of the tool by a human user,
therefore ground truth from the user developer was used in
this case. There are dozen user developers which will be
evaluating the same cases to
calculate performance.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Recommender Model for Secure Software Engineering using Cosine Similarity Measures

147

Retrieval Number: 100.1/ijeat.E36280611522
DOI: 10.35940/ijeat.E3628.0611522
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Their response is taken with a choice of relevant values
from one to five, for each of the cases.

A value of one represents the lowest relevance, otherwise,
the value of five represents the higher relevance. Then
precision, recall, and F1-Measure are calculated for each
evaluated case and these are shown in Fig. 6 below.

Fig. 6. The performance measure for subjective
evaluation

Total average values of the performance measurements for
data in the Fig. 6 above are: Recall = 0.99, Precision = 0.89
and F1-measure= 0.93.

V. CONCLUSION

This paper presented an approach to generating a
recommendation for Software Engineering using
recommender systems and applying the cosine similarity
technique to a dataset composed of a Control Flow Graph
structure. The results are measured using two types of
evaluations a) automatic performance measure performed by
model and b) subjective evaluation performed by
experienced developers. Based on the results of values for
precision, recall, and F1-measure, as expected the subjective
evaluation performed better. This opens an opportunity to
further explore model creation, potentially with API using
MS Visual Studio integrated programming options.

REFERENCES

1. B. D. Vijay Kotu, "Recommendation Engines," in Data Science -
Concepts and Practice (Second Edition), Morgan Kaufmann, 2019, pp.
343-394. [CrossRef]

2. M. Bruch, M. Monperrus and M. Mezini, "Learning from Examples to
Improve Code Completion Systems," in International Symposium on
the Foundations of Software, 2009. [CrossRef]

3. M. P. Robillard, W. Maalej, R. J. Walker and T. Zimmermann,
Recommendation Systems in Software Engineering, Heidelberg New
York Dordrecht London: Springer-Verlag, 2014. [CrossRef]

4. A. Whitten and J. D. Tygar, "Why Johnny can't encrypt: a usability
evaluation of PGP 5.0," in Proceedings of the 8th conference on
USENIX Security Symposium - Volume 8, Washington, 1999.

5. Bhatti, U. A., Huang, M., Wu, D., Zhang, Y., Mehmood, A., & Han, H.
(2019). Recommendation system using feature extraction and pattern
recognition in clinical care systems. Enterprise information systems,
13(3), 329-351. [CrossRef]

6. Sahoo, A. K., Mallik, S., Pradhan, C., Mishra, B. S. P., Barik, R. K., &
Das, H. (2019). Intelligence-based health recommendation system using
big data analytics. In Big data analytics for intelligent healthcare
management (pp. 227-246). Academic Press. [CrossRef]

7. Gasparic, M., & Janes, A. (2016). What recommendation systems for
software engineering recommend: A systematic literature review.
Journal of Systems and Software, 113, 101-113. [CrossRef]

8. Pakdeetrakulwong, U., Wongthongtham, P., & Siricharoen, W. V.
(2014, December). Recommendation systems for software engineering:

A survey from software development life cycle phase perspective. In
The 9th International Conference for Internet Technology and Secured
Transactions (ICITST-2014) (pp. 137-142). IEEE. [CrossRef]

9. Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S., &
Stettinger, M. (2014). Basic approaches in recommendation systems. In
Recommendation Systems in Software Engineering (pp. 15-37).
Springer, Berlin, Heidelberg. [CrossRef]

10. Desku, Astrit, et al. "Cosine Similarity through Control Flow Graphs
For Secure Software Engineering." 2021 International Conference on
Engineering and Emerging Technologies (ICEET). IEEE, 2021.
[CrossRef]

11. M. P. Robillard, R. J. Walker and T. Zimmermann, "Development tools:
Recommendation Systems for Software Engineering," I E E E S O F T
WA R E www. c omp u t e r . o r g / s o f tw a r e.

12. Fiarni, Cut, and Herastia Maharani. "Product Recommendation System
Design Using Cosine Similarity and Content-based Filtering Methods."
IJITEE (International Journal of Information Technology and Electrical
Engineering) 3.2 (2019): 42-48 [CrossRef]

13. Huang, B. H., & Dai, B. R. (2015, June). A weighted distance similarity
model to improve the accuracy of collaborative recommender system. In
2015 16th IEEE International Conference on Mobile Data Management
(Vol. 2, pp. 104-109). IEEE. [CrossRef]

14. Nawar, A., Toma, N. T., Al Mamun, S., Kaiser, M. S., Mahmud, M., &
Rahman, M. A. (2021, October). Cross-Content Recommendation
between Movie and Book using Machine Learning. In 2021 IEEE 15th
International Conference on Application of Information and
Communication Technologies (AICT) (pp. 1-6). IEEE. [CrossRef]

15. Ristanti, Putri Yuni, Aji Prasetya Wibawa, and Utomo Pujianto. "Cosine
similarity for title and abstract of economic journal classification." 2019
5th International Conference on Science in Information Technology
(ICSITech). IEEE, 2019. [CrossRef]

16. Kohila, D. K. A. R. "Text Mining: Text Similarity Measure for News
Articles Based On Global." Glob. J. Eng. Sci. Res. Manag. 3.7 (2016):
35-42.

17. J. A. Harer, L. Kim, R. L. Russell, O. Ozdemir, O. Ozdemir, E.
Antelman and S. Chin, "Automated software vulnerability detection
with machine learning," in ResearchGate, 2018.

18. Iriananda, Syahroni Wahyu. "Measure the Similarity of Complaint
Document Using Cosine Similarity Based on Class-Based Indexing."
International Journal of Computer Applications Technology and
Research, Volume 7–Issue 08, 292-296, 2018 [CrossRef]

19. Salton, G.: Automatic Text Processing: The Transformation, Analysis,
and Retrieval ofInformation by Computer. (1989) Addison-Wesley
Longman Publishing, Boston, MA.

20. Li M., Chen X., Li X., Ma B., and Vitanyi P. M.B. : The Similarity
Metric. IEEE Transactions on Information Theory, 50(12): 3250-3264
(2004) [CrossRef]

21. K. Vijay and D. Bala, "Classification," in Data Science (Second
Edition), organ Kaufmann, 2019, pp. 65-163. [CrossRef]

22. Li, B., & Han, L. (2013, October). Distance weighted cosine similarity
measure for text classification. In International conference on intelligent
data engineering and automated learning (pp. 611-618). Springer,
Berlin, Heidelberg. [CrossRef]

23. B. Li and L. Han, "Distance Weighted Cosine Similarity Measure for
Text Classification," in International Conference on Intelligent Data
Engineering and Automated Learning, Berlin, Heidelberg, 2013.

24. K. Ottenstein and L. Ottenstein, "The program dependence graph in a
software development environment," ACM Sigplan Notices, 1984.
[CrossRef]

25. M. Bruch, T. Schäfer and M. Mezini, "On Evaluating Recommender
Systems for API Usages," in Proceedings of the 2008 international
workshop on Recommendation systems for software engineering, 2008.
[CrossRef]

26. M. Bruch, M. Monperrus and M. Mezini, "Learning from Examples to
Improve Code Completion Systems," in International Symposium on
the Foundations of Software, 2009. [CrossRef]

27. Kohila, D. K. A. R. "Text Mining: Text Similarity Measure for News
Articles Based On Global." Glob. J. Eng. Sci. Res. Manag. 3.7 (2016):
35-42.

http://www.ijeat.org/
https://doi.org/10.1016/B978-0-12-814761-0.00011-3
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1007/978-3-642-45135-5_2
https://doi.org/10.1080/17517575.2018.1557256
https://doi.org/10.1016/B978-0-12-818146-1.00009-X
https://doi.org/10.1016/j.jss.2015.11.036
https://doi.org/10.1109/ICITST.2014.7038793
https://doi.org/10.1007/978-3-642-45135-5_2
https://doi.org/10.1109/ICEET53442.2021.9659648
https://doi.org/10.22146/ijitee.45538
https://doi.org/10.1109/MDM.2015.43
https://doi.org/10.1109/AICT52784.2021.9620432
https://doi.org/10.1109/ICSITech46713.2019.8987547
https://doi.org/10.7753/IJCATR0708.1001
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1016/B978-0-12-814761-0.00004-6
https://doi.org/10.1007/978-3-642-41278-3_74
https://doi.org/10.1145/800020.808263
https://doi.org/10.1145/1454247.1454254
https://doi.org/10.1145/1595696.1595728

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-5, June 2022

148

Retrieval Number: 100.1/ijeat.E36280611522
DOI: 10.35940/ijeat.E3628.0611522
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

AUTHORS PROFILE

Astrit Desku, currently is PhD student at the Faculty of
Contemporary Sciences and Technologies, South East
European University. Astrit does research in Software
Development, Software Engineering, Recommender
Systems in Software Engineering, Data Mining and
Databases

Bujar Raufi, currently works as Associate Professor at
the Faculty of Contemporary Sciences and Technologies,
South East European University. Bujar does research in
Adaptive User Interfaces, Semantic Web, Data Mining,
Computer Graphics and Computer Communications
(Networks)

Artan Luma, currently works as Associate Professor at
the Faculty of Contemporary Sciences and Technologies,
South East European University. Artan does research in
Algorithms, IT Security, Computer Network Security and
Cloud Computing

Besnik Selimi, currently works as Associate Professor at
the Faculty of Contemporary Sciences and Technologies,
South East European University. Besnik does research in
Software Testing, Software Architecture, IT Security,
Algorithms, Cloud Computing and Cryptography

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

