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Abstract: One of the essential components of Recommender 
Systems in Software Engineering is a static analysis that is 
answerable for producing recommendations for users. There are 
different techniques for how static analysis is carried out in 
recommender systems. This paper drafts a technique for the 
creation of recommendations using Cosine Similarity. Evaluation 
of such a system is done by using precision, recall, and so-called 
Dice similarity coefficient. Ground truth evaluations consisted of 
using experienced software developers for testing the 
recommendations.  Also, statistical T-test has been applied in 
comparing the means of the two evaluated approaches. These tests 
point out the significant difference between the two compared sets. 

Keywords: Recommender Systems, Cosine Similarity, Software 
Engineering.  

I. INTRODUCTION 

Today recommendation engines are used in many fields, 
starting from mini news headlines on various social media 
pages, online articles from various news portals, providing 
streaming services with watchable content, friendly requests 
to join groups or individuals, all the way to various 
e-commerce sites with their products available for purchase 
[1, 2]. During daily use, recommendation engines can play an 
important role in users’ decision-making regarding whether 
they like the platform that serves the data [3, 4].  

In the sector of healthcare, there are a lot of systems that 
help medical staff with decision-making based on the 
recommendations provided by the system. These systems 
will be able to predict patients health based on their lifestyle 
or health issues from their relatives [5, 6]. In the field of 
Software Engineering, usually, most software developers 
want to reuse their functional code or other developer’s code 

in their daily development activity. This reduces 
development time and uses proven functional code. 
Therefore, a lot of developers when searching for useful 
code, they also get served by background applications that 
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utilize some machine learning algorithms that increase their 
chances of finding the correct code [1]. One such approach is 
to use Recommendation Systems in Software Engineering 
(RSSEs). The RSSEs are useful in some dimensions, like 
improving system quality, helping developers with better 
decision-making, increasing efficiency, and decreasing 
expenses during the development processes and maintenance 
phase [7]. RSSE can be useful in any phase of the 
development process i.e. requirement engineering, designing, 
programming, and testing [8]. There are different approaches 
and techniques for modeling recommender systems, like 
collaborative filtering, content-based filtering, and 
knowledge-based recommendation [9]. This paper model a 
recommender system for secure software engineering using 
cosine similarity measurements continued from the datasets 
produced during our previous paper in [10]. 

II.  RELATED WORK 

Data analysis for recommendation engines is mainly 
statistical analysis [11] and those most relevant to this paper 
are mentioned below. Adaptation of the cosine similarity 
method as described by [12] was used to create product 
similarity evaluation leading to the creation of customer 
recommendation score applied for content-based filtering. 
Their model was applied to both the customers and products. 
Using customer’s transaction behavior they proposed new 
products that the customer would more likely purchase. 
Authors calculated the accuracy of their recommendations 
through precision and recall for scores on product similarity, 
achieving 100% and 93.47%, respectively.  In [13] it was 
presented a similarity function by using weighted distance 
similarity to find similarities between users in the Movie 
Lens dataset.  

Three different algorithms (K-means clustering, 
hierarchical clustering, and cosine similarity) are used in [14] 
to find similarities between the description of movies and 
books. Furthermore, in [15] cosine similarity has been 
applied to classifying Economic Journal Articles in the 
Indonesian Language.  

Authors used only the content from titles and abstracts. 
Similarly, authors in [16] have applied cosine similarity to 
the cancer category extracted from website-based news 
articles. In the programming area for code recommendations 
for C and C++, the authors of [17] used machine learning in a 
data-driven approach, extracting features at two levels of 
granularity to create their build. Functional level usage of 
Control Flow Graph (CFG) allowed them to extract features 
from various operations that appear in basic blocks, variable 
definition, and usage.  Measuring and identifying similar 
documents/reports by authors in [18] is based on class-based 
indexing term weighting schemes such as TFIDF and TFICF. 
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III. RECOMMENDER MODEL USING COSINE 
SIMILARITY MEASURE 

Today exists different algorithms for similarity 
measurements in text mining applications or information 
retrievals, such as Euclidean distance-based metric, Jaccard, 
Dice, Jensen- Shannon Divergence, and Cosine Similarity are 
one of the most used [19,20]. By applying this technique, 
different models can be generated with each different 
measure based on the distance was chosen or distance 
measure [21]. Based on the definition of the techniques of 
Cosine similarity, the measure is a result of the cosine of the 
angle between two vectors of an inner product space [22]. 
Two cosine vectors that can be aligned inside the identical 
orientation can have a similarity size of 1, while vectors 
aligned perpendicularly can have a similarity of 0 [23]. The 
cosine similarity for two vectors given is defined as: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝐴 ∙ 𝐵

‖𝐴‖ ‖𝐵‖
=

∑ 𝐴𝑖
𝑛
𝑖=1 𝐵𝑖

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

 
(1) 

Documents in datasets usually are long vectors that have a 
consideration of variables or attributes. In [11] to explain the 
measure of two vectors it was given a simple example with 
two vectors consisting of the following attributes: X 
(1,2,0,0,3,4,0) and Y (5,0,0,6,7,0,0). 

Calculation of the cosine similarity index for the given 
example above is shown in Fig. 1, below 

 

Fig. 1. The cosine similarity index calculation [4]. 

The following sections present a model of 
recommendation using cosine similarity. The proposed 
model will use datasets presented in [10] by our previous 
work. The model uses a dataset with three variants of them: 
▪ CFG Dataset - contains data based on Control Flow 

Graph structure 
▪ CSI Dataset - contains calculated Cosine Similarity Index 

for CFG Dataset 
▪ Class Method Dataset – contains Methods of Classes 

separated from the original dataset. 
The CFG Dataset is a dataset created by using the structure 

of Control Flow Graph (CFG). A control flow graph is a 
graph defined by the following formula: 

G = (N, E),             (2) 
Where the nodes are marked as N and represent statements 

of the procedure and the edges marked as E represents the 
transfer of the control between two statements. [24]. 

Using CFG will be able to track the flow of execution and 
variable states. A node in a CFG represents a block of code 
that will always run sequentially. Edges in a CFG represent 
possible paths of execution. We have to implement a .NET 
solution explained in detail in our previous work in [15], by 
which the dataset was transformed as a dataset with CFG 
structure The CSI Dataset is a dataset that was created after 
the calculated cosine similarity index for CFG Dataset. The 

Class Method Dataset is a dataset created by the original 
dataset after applying another .Net solution by which 
methods of the class are separated from the class body. This 
dataset structure has three columns: Class, Method Header 
and Method Body. We used a pattern based on regular 
expression or regex to identify the header of methods. A 
regular expression by definition is a pattern that the regular 
expression engine attempts to match in the input text. A 
pattern consists of one or more character literals, operators, or 
constructs. 

Fig. 2 presents the relationship between the datasets 
explained above. 

 

Fig. 2. The relationship between datasets   

The model use as an input parameter a snippet code from 
developer users and return as output a list of class methods as 
a recommendation Developer user will be able to choose 
which proposed recommendation to use in their solution, in 
the case when the recommendation engine propose more than 
one recommendation. 

 

Fig. 3. Recommender Model using Cosine Similarity 
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A. How the algorithm works 

In the following, it was the procedure of how the algorithm 
works. To explain how the algorithm of the model generates 
recommendations let’s use as input parameter this value 

‘aesDecrypt’. At the same time, this value can be considered 

as developer user snippet code: 
▪ For this value algorithm first search in ‘CFG Dataset’ to 

find the most similarity value.  
▪ The next step is searching in ‘CSI Dataset’ to find data 

with the highest cosine similarity index.  
▪ Because the algorithm will return a lot of values, we 

decide to get the top five selected values with the highest 
CSI. For these data, the algorithm will search in ‘Dataset 

with methods class’ to give the user full methods of 

classes as a recommendation. In this case, the 
recommender engine will propose a recommendation as it 
is shown in the figure below. 

 

Fig. 4. Results after applying the algorithm for 
recommendation   

IV. RECOMMENDER EVALUATION OF OUR 

MODEL   

The great challenge from a software engineering point of 
view is addressing the relevance of recommendations for a 
programmer’s code by the recommendation system tools that 

will be used by the developer. Especially in cases when more 
than one recommendation is suggested for the developer.  

Establishing the quality of a recommender system usually 
consists of comparison from predictions from different 
algorithms, performances, or various mode sizes [25, 26].  
But since the RSSE are in the evolutionary stage done on 
limited hardware resources such as developer’s machines, 

therefore these factors should be considered also, when 
evaluating these systems.  Our proposed model for generation 
recommendation uses a cosine similarity approach and has 
two evaluation criteria. First is automatically measuring the 
effectiveness of the recommendation system through the 
combined use of precision, recall, and F-measure. The second 
is ground truth measurement of recommendations through 
the experienced developers Since the recommendation 
system tries to mimic how human uses the recommendation, 
from entering a query, the system returns the results in form 
of a recommendation, and the human then uses one or more 
recommendations based on how relevant it is for the task.  
The recommendation system tool could be adapted by code 
change to use the same query again and potentially get 
similar, better, or worse results [25].  

A. Performance measures 

Assessing recommendation system effectiveness’ is done 

using precision, recall, and F1 measures which are applied to 
the results of the queries. This provides a) all relevant 
recommendations and b) filter’s out not relevant 

recommendations Precision quantifies the number of true 
positive predictions that belong to the positive class,  i.e. 

Precision is defined as the number of useful (relevant) 
recommendations over the total number of recommendations,  

 

Precision =
Recommendations relevant 

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟

 (3) 

Recall quantifies the number of true positive predictions 
made out of all positive examples in the dataset, i.e. Recall is 
defined as the number of useful recommendations over the 
expected recommendations [25, 26] 

 

Recall =
Recommendations relevant 

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠expected

 (4) 

F-Measure or F-score provides a single score that balances 
both the concerns of precision and recall in one number. The 
F-Measure is interpreted as the harmonic mean of the 
precision and recall and has been widely used by the 
researchers [26, 25]: 

 

F =
(1 + 𝛽2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 

𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5) 

 
The F-Measure allows being put greater emphasis on 

either recall or precision by varying the assigning of the β 

parameter. In our case (β = 1) both precision and recall have 

the same importance therefore β = 1, which is also known as. 
F1 measure [27, 26]. 

In our case evaluating the cosine similarity for the 
recommendation system was done using the following rules 
for performance measures: 
▪ Relevant recommendations: produced recommendations 

with GitHub commit of more than five and a cosine 
similarity index of more than 0.6 

▪ Expected recommendations: produced recommendation 
with GitHub commits of more than five 

▪ A Total number of recommendations: top 5 
recommendations with the highest score on the cosine 
similarity index. 

 

Fig. 5. Recommendation Performance measure   

Average values of the performance measurements for data 
in the Fig. 5 above: Recall = 0.94, Precision = 0.72 and 
F1-measure = 0.80 

B. Subjective Evaluation 

As it was mentioned previously, the evaluation process of 
the RSSE simulates the usage of the tool by a human user, 
therefore ground truth from the user developer was used in 
this case. There are dozen user developers which will be 
evaluating the same cases to 
calculate performance.   
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Their response is taken with a choice of relevant values 
from one to five, for each of the cases.  

A value of one represents the lowest relevance, otherwise, 
the value of five represents the higher relevance. Then 
precision, recall, and F1-Measure are calculated for each 
evaluated case and these are shown in Fig. 6 below.  

 

Fig. 6. The performance measure for subjective 
evaluation 

Total average values of the performance measurements for 
data in the Fig. 6 above are: Recall = 0.99, Precision = 0.89 
and F1-measure= 0.93. 

V. CONCLUSION 

This paper presented an approach to generating a 
recommendation for Software Engineering using 
recommender systems and applying the cosine similarity 
technique to a dataset composed of a Control Flow Graph 
structure. The results are measured using two types of 
evaluations a) automatic performance measure performed by 
model and b) subjective evaluation performed by 
experienced developers. Based on the results of values for 
precision, recall, and F1-measure, as expected the subjective 
evaluation performed better. This opens an opportunity to 
further explore model creation, potentially with API using 
MS Visual Studio integrated programming options.  
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