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Abstract 

Key Words Core modules, Workflow management, Data fusion, Real time data 

Acquisition, AI, Big Data, Quality, TOSCA 

interTwin co-designs and implements the prototype of an interdisciplinary Digital 

Twin Engine (DTE). The developed DTE will be an open source platform that includes 

software components for modelling and simulation to integrate application-specific 

Digital Twins. InterTwin WP6 will provide the core DTE modules to be integrated by 

WP7 and to be executed on infrastructure and components delivered by WP5. 

 

The current document consists of a report on the high-level description of WP6 

components and the related design based on the C4 model. Additionally, this 

deliverable includes the set of requirements derived from the analysis of the use cases. 
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Terminology / Acronyms 

Term/Acronym Definition 

DT Digital Twin, a digital representation of an actual physical 

product, system, or process that serves as the effectively 

indistinguishable digital counterpart of it for practical 

purposes, such as simulation, integration, testing, monitoring, 

and maintenance 

DTE Digital Twin Engine, a platform to build DTs 

CLI Command line interface 

GUI Graphical user interface 

API Application Programming Interface, aka programmatic 

interface of a computer system through which other computer 

systems can interact with it 

REST API API that conforms to the design principles of REST, or 

representational state transfer architectural style 

SQL Structured Query Language is a domain-specific language used 

in programming and designed for managing data held in 

relational database management systems 
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CI/CD In software engineering, CI/CD is the combined practices of 

continuous integration and continuous delivery 

AI Artificial Intelligence 

ML Machine Learning is a branch of AI and computer science which 

focuses on the use of data and algorithms to imitate the way 

that humans learn, gradually improving its accuracy 

Terminology / Acronyms: https://confluence.egi.eu/display/EGIG 
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Executive summary 
This deliverable provides an overview of the global requirements that the target users of 

a Digital Twin Engine (DTE) have identified, versus the available technical solutions to 

satisfy them. The requirements have been matched with the core modules of the 

solutions that can fulfil those requirements, at least in a first approximation. Obviously 

this being an early deliverable we expect that both requirements and core modules 

available are refined in the course of the project. 

The first part of the document is a summary of the high-level goals and general 

features/modules required by each application. The subsequent sections of the 

document will detail the DTE core components that will provide these features.  

The first core feature of a DTE is the ability to define and execute a workflow that will take 

advantage of the other components to build out the functionalities the application 

requires. Regarding workflow composition modules, there are two very general features 

demanded by most DTE developers: support for AI workflows, and data acquisition & 

event-driven triggering of workflows, which also supports data fusion capabilities. 

The general architecture to support AI-based workflows in the DTE engine differentiates 

between two roles, the DTE developer, focusing on training and validation of the models, 

and the end-user who can exploit those pre-trained models, for example to re-training 

them for specific modelling. As for the event-driven architecture, it leverages Apache 

Kafka as event-ingestion system, and OSCAR as serverless event-processing system, to 

build a comprehensive solution able to use common file and object storage systems and 

the PaaS orchestrator as a back-end to the infrastructure (Cloud) required to actually 

perform data processing. 

The DTE features a specific module as well for quality assurance aiming to tackle the early 

validation of the DTs, before being deployed as a “living DT”. The main component is the 

Software Quality Assurance as a Service (SQAaaS), which provides graphical and 

programmatic interfaces to compose CI/CD pipelines. The DTE developer will be able to 

choose among a set of special-purpose libraries to assess QA criteria relative to models 

and to data. The list of criteria will act as quality gates during the validation of a given DT 

workflow.  

The components to support Big Data analytics aim to provide support for the deployment 

of data analytics environments, on top of cloud resources. The deployment layer requires 

a set of topology templates and recipes (a TOSCA templates repository) that will contain 

the definition of the data analytics software components and the underlying 

infrastructure required to execute them. The main modules include the possibility to 

deploy elastic Kubernetes clusters on demand, support to Daskhub environments to 

execute JupyterHub data analytics, and Volcano to support the deployment of batch 

systems on top of HPC resources. Additionally, Horovod will be available to support 

distributed learning frameworks based on common tools such as, among others, 

Tensorflow, Keras, and PyTorch. 
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1 Introduction 

1.1 Scope 

The general objective of the WP6 is enhancing Digital Twins with horizontal capabilities 

for exploiting generic workflows able to link observational and model data. 

Progressing towards this goal requires tackling a number of technological challenges. For 

example, we need to expand the paradigm of “serverless” computing to Digital Twins by 

implementing a generic framework for real-time data acquisition and processing that 

builds on event-triggered execution of workflows. This is a generic capability required by 

(most) Digital Twins aiming at performing automated validation of models using real-time 

observational data. 

The usage of Artificial Intelligence techniques such as Machine Learning, for a variety of 

purposes (from optimisation of simulations to model building) requires a significant push 

on distributed training and the related advanced optimization (such as Hyper Parameter 

Optimization). A generic framework needs to be devised to plug in ML models and data 

pipelines that can be interfaced to the computing and data resources in the backend.  

In turn, the computing and data resources need to support a number of components and 

best practices to efficiently run data analytics. In the framework of WP6, this implies the 

implementation of recipes for general-purpose data analytic environments to be 

deployed on demand on top of the Cloud resources, or the provision of a seamless HPC 

and Cloud resources interface with container workload management services that are 

able to interact with HPC resources. One of the main challenges (and source of 

innovation) is on the “on-demand” provisioning, horizontal scaling and integration of the 

workflow mechanisms. 

A general model quality validation strategy needs to be developed as well, to enhance 

Digital Twins with the capability to implement best practices and standard quality 

measures to support model validation. The work here is inspired by DevOps practices, to 

exploit automation, Continuous Integration and Delivery (CI/CD) to create a 

comprehensive environment for model quality assessment and validation, together with 

the evaluation of FAIR data quality integrated, in the pipeline for observed and simulated 

data. The final objective here is the implementation of Model Quality Validation “as a 

Service”.  

1.2 Document Structure 

This deliverable is structured as follows. Section 2 contains a very high level summary of 

the main applications used to derive the requirements and a list of the required 

functionalities that fall in the scope of “core” services; Section 3 describes the core 

components that will be implemented for advanced workflow composition and  the 

components that deliver data fusion capabilities; Section 4 describes the architecture 

and components related to Artificial Intelligence workflows; Section 5 describes the core 
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components dedicated to support quality assurances; Section 6 describes the 

components dedicated to support data analytics. Finally, we conclude with the 

description of the next steps towards the first release of the DTE core modules, to take 

place by fall of 2023. 
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2 Requirements 

2.1 Astrophysics - Noise detector DT  

2.1.1 Description 

The discovery of gravitational waves was one of the main scientific results in recent years 

and was awarded the Nobel Prize in 2017, opening a new era in the study of the cosmos 

and paved the way to multi-messenger astronomy. Besides getting ready for their next 

observation runs, the gravitational-wave community is designing a next-generation 

observatory, the Einstein Telescope, which was recently included in the EU ESFRI 

roadmap. 

The sensitivity of Gravitational Waves interferometers is limited by noise; its reduction 

and subtraction are one of the most important and challenging activities in this research 

area. The Digital Twin of an interferometer is meant to realistically simulate the noise in 

the detector, in order to study how it reacts to external disturbances and, in the 

perspective of the Einstein Telescope, to be able to detect noise “glitches” in quasi-real 

time, which is currently not possible. This will allow the low-latency search pipelines to 

veto or de-noise the signal, sending out more reliable triggers to observatories for multi-

messenger astronomy. 

2.1.2 Requirements in terms of core capabilities 

● Notebook platform: JupyterLab is currently used. Notebooks will be used during 

R&D, but the DT pipeline should have a microservices architecture. 

● ML architecture: Generative Adversarial Networks. Particular attention will 

need to be paid to the training stability, especially regarding the with regard to 

online learning. 

● ML dataset: 2D images (frequency-time heatmap). Size is in the order of 10s of 

TB. 

● ML framework: Pytorch and Tensorflow should be made available in the 

Notebooks and in the pipeline environment (Linux containers). 

● Distributed ML: For training heavy models or large datasets on HPC resources 

a distributed Training Framework (e.g., Horovod, PyTorch DDP) is necessary. 

● Streaming platform: the detector pushes data using Apache Kafka 

○ Input consists of about 50 AUX channels for a total of 2 MB/s plus the Strain 

channel at 160 kB/s  

○ Output is a stream of denoised data to low-latency search pipelines (year 2), 

rate comparable to the strain channel (160 kB/s)  

● ML model storage: only the most recent trained model (and the previous one 

for rollbacks) is needed by the DT pipeline, most likely on a POSIX filesystem. A 
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database or online service for retrieval of model history will be beneficial for 

offline analysis.  

● ML monitoring tools: plan to use Tensorboard to monitor the behaviour of the 

training process (accuracy, convergence…). Notifications to the DT operator 

would be interesting to have, as well as monitor processing in general (e.g., 

Prometheus + Grafana). 

● Event-based platform: trigger retraining when experimental conditions 

(detector) change and the simulated data start to deviate from the input stream. 

● User notifications: user intervention might be needed when the conditions for 

re-training are met. Would be interesting having online notifications (not just 

emails). 

2.2 Noise simulation for Radio Astronomy 

2.2.1 Description    

The Digital Twin of the MeerKAT radio telescope is meant to better separate the 

background signals from the (usually weak) astrophysical effects, especially considering 

the ever-increasing amount of data streams delivered by the antennas. A major challenge 

is to identify the large amount of man-made noise signals (mostly from satellites and 

mobiles). Radio Astronomy sensors collect increasing amounts of data requiring massive 

parallel computing both in the online and offline phases. This requires dynamic filtering 

of data in a real-time manner via ML from huge data streams amounting to several 

Petabytes per day, and a feedback loop from analysis to sensor control.  

The above goals will be achieved by harmonisation of real-time and near-real-time 

streams, such as earth observation data or radio telescopes with AI and ML modelling 

workflows, and effective detection of noise signals in real-time with continuous training 

of ML algorithms for immediate and optimised control of the physical twin. 

2.2.2 Requirements in terms of core capabilities 

● Tools to transfer input data: we need to push and/or pull to/from an archive (of 

the observatory that operates the telescope or other institutes interested in the 

data), which differs for each telescope and project. Given the size of the data 

(hundreds of TBs) it would be beneficial having UDP-based protocols to transfer.  

● ML architecture: Convolutional/recurrent Neural Networks, long short-term 

memory networks, neural ODE (computational speed needs to be evaluated in 

case of online learning) 

● ML dataset: 2D images (frequency-time heatmap). Size is in the order of 10s of 

TB. 

● ML framework: Tensorflow should be made available in the Notebooks and in 

the pipeline environment (Linux containers). 
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● Distributed ML: For training heavy models or on large datasets using HPC 

resources a distributed Training Framework (e.g., Horovod, PyTorch DDP) is 

necessary. 

○ For the future we aim at implementing in a more computationally efficient 

way (e.g., C++) using distributed training on a HPC cluster (multiple GPUs at 

once, e.g., as the model does not fit on a single GPU). An approach to 

multithreaded computation will be needed, such as MPI or in-memory 

frameworks such as Apache Spark. 

2.3 High Energy Physics - Detector simulation  

2.3.1 Description 

Particle detectors measure different particle properties when interacting with the 

materials that the detectors consist of, at the Large Hadron Collider (LHC) experiments. 

More specifically, the detectors called calorimeters are key parts of the detectors’ set up, 

which are responsible for measuring the energy of the particles. In a collider, the 

emerging particles travel through the detector and interact with the materials either 

electromagnetically or hadronically. During this interaction cascades of secondary 

particles are created. The modelling of these matter interactions is performed by Monte 

Carlo calculations, which in order to produce an instance of the interactions of a particle 

with the detector, depend on repeated random sampling. These simulations have a 

crucial role in High Energy Physics (HEP) experiments, and at the same time are slow and 

resource intensive. 

Therefore, there is a need for faster simulations. The main motivation for fast simulations 

is to incorporate other faster alternative simulation techniques. For this purpose, 

machine learning has been utilised as a fast simulation technique to speed up detector 

simulations. Our use case leverages a variant of a GAN developed for HEP applications 

called 3DGAN, where the detector output was generated employing three dimensional 

convolutions, a powerful approach for retaining correlations in all three spatial 

dimensions. 

2.3.2 Requirements in terms of core capabilities 

● The use case aims at comparing simulated data generated with the ML model with 

previously generated based simulated data using MonteCarlo methods (by 

GEANT4). The format file is different (HDF5 vs ROOT) but the accompanying 

metadata are the same. CI/CD pipelines to automate the comparison and check 

the integrity of the metadata can be interesting. 

● The current case is meant as a static synthetic model of a detector. We could think 

of extending this to an application capable of modelling in real time the behaviour 

of a detector in different operation conditions (beams and accelerator 

configurations) and therefore include continuous retraining on real data. That 

would require event-driven execution. 
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● ML architecture: 3D Generative Adversarial Networks. The envisioned model will 

have ~5 million parameters, leading to at least 8 GPUs necessary. Computational 

costs can be high; therefore attention needs to be paid to sufficient per-GPU 

performance next to the number of total GPUs available.  

● ML dataset: 3D images (energy deposition in 3D). Size is in the order of 10s of GB. 

● ML framework: Pytorch and Tensorflow should be made available in the 

Notebooks and in the pipeline environment (Linux containers). 

● Distributed ML: For training heavy models or large datasets on HPC resources a 

distributed Training Framework (e.g., Horovod, PyTorch DDP) is necessary. 

2.4 High Energy Physics - Lattice QCD Simulations  

2.4.1 Description 

The aim of Lattice QCD is shedding light on the properties of Quantum Chromodynamics 

in the limit of low energies/strong couplings, where perturbation theory breaks down, 

and numerical approaches become mandatory. In interTwin are exploring two use cases 

addressing the status of Lattice QCD simulations: a classical scenario, with large scale 

simulations in HPC; and a second scenario, Machine Learning-based simulations, an area 

under development in the community, at the proof of concept level, therefore requiring 

few resources. 

2.4.2 Requirements in terms of core capabilities 

● HPC simulations require access to HPC resources with Infiniband. Data sharing in 

a Data Lake requires mainly infrastructure services from WP5. In order to connect 

to the services, Jupyter notebooks are becoming a useful tool. 

● For the Machine Learning based simulations the requirements in terms of tools 

are ML libraries such as Tensorflow, pytorch, etc. CI/CD pipelines to automate the 

checking of the convergence of the simulations towards the target acceptance 

rate. 

2.5 Climate Change Future Projections of Extreme 

Events (storms & fire) 

2.5.1 Description 

This Digital Twin application is related to the prediction of Extreme Weather Events 

(EWEs), in particular storms and fires, in future projection scenarios (e.g., CMIP6) with the 

aim of giving an indication about the temporal trend and the geographical occurrence of 

such events across the globe due to climate change. ML models (e.g., Convolutional 

Neural Networks, Graph Neural Networks and Generative Adversarial Networks) will be 

adopted as modelling tools for learning the underlying mapping between drivers and 
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outcomes in the past and generalising it to future projection data, where a strong climate 

change signal is emerging.  

As the use case is quite data-driven, besides the actual ML models, pre-processing 

pipelines will play a relevant role in order to prepare the data for the training and 

inference phases. What-if scenarios will be made available for the end-users (e.g., climate 

scientists) for highlighting relevant changes of such EWEs in future projections. 

2.5.2 Requirements in terms of core capabilities 

● Workflow composition: Support for execution of large-scale data cube-based 

workflows, parallel multi-model workflows and workflows integrating community-

based climate tools (e.g., Ophidia); 

● Provenance: climate workflows should be also documented in terms of 

provenance metadata to enable full tracking of lineage information; 

● ML architecture: Generative Adversarial Networks, Convolutional Neural 

Networks, Graph Convolutional Networks 

● ML dataset: 4D climate time series. Size is in the order of 2TB. 

● ML framework: Tensorflow should be made available in the Notebooks and in 

the pipeline environment (Linux containers). 

● Distributed ML: For training heavy models or on large datasets on HPC resources 

a distributed Training Framework (e.g., Horovod, PyTorch DDP) is necessary. 

● CI/CD validation pipelines: for trained ML models. 

2.6 Climate Change Impacts of Extreme Events 

(storms, fire, floods, drought) 

2.6.1 Description 

The Digital Twin application for Climate Change Impacts of Extreme Events on Floods 

(hereafter referred to as FloodAdapt Climate Change Impact) uses the same process-

based models as the Digital Twin application for Flood Early Warning in coastal and inland 

regions (Section 2.7). The main addition is that in FloodAdapt Climate Change Impact, 

end-users (e.g., decision makers) can define scenarios such as building a dam wall or 

doubling the rainfall, that modify the input data for the process-based models. These 

changes are managed by the FloodAdapt backend. 

2.6.2 Requirements in terms of core capabilities 

● Workflow composition: reuse workflows already developed by CERFACS, 

Deltares, and EURAC. This will need a workflow backend that will be able to call a 

mix of processes and sub-workflows involving amongst others openEO, Delft-

FEWS, FloodAdapt, Streamflow and ecFLOW. 

● Data fusion: generic data fusion components combined with custom Python 

scripts for preprocessing forcing and boundary condition data. 
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● Container workflow management for running containerised models on 

heterogeneous computing infrastructures. 

● Batch queue system for running models at scale on HPC/HTC infrastructures. 

● Data is to be queried and processed via the openEO syntax. That includes a 

backend with openEO interface, geodata in an openEO compatible format 

● Possibility to store intermediate and final workflow results at the cloud provider. 

● Support for model sharing via Jupyter notebooks or docker containers.  

● ML framework: Tensorflow should be made available in the Notebooks and in 

the pipeline environment (Linux containers). 

● ML architecture: Kmeans, Clustering 

● ML Dataset: 4D satellite time series. Size is in the order of 100s of GB. Update 

frequency is 5-10 years. 

● Distributed ML: For training heavy models or on large datasets on HPC resources 

a distributed Training Framework (e.g., Horovod, PyTorch DDP) is necessary. 

2.7 Early Warning for Extreme Events (floods & 

drought) 

2.7.1 Description 

For Early Warning for Extreme Events, two Digital Twin applications are planned: (1) Flood 

Early Warning in coastal and inland regions (hereafter referred to as FloodAdapt Early 

Warning), and (2) Drought Early Warning in alpine regions. Process-based models will be 

combined with ML and Deep Learning models using Earth Observation data to support 

early warning of floods and droughts. This includes developments towards globally 

relocatable models which require data pre-processing pipelines similar to those needed 

by ML and Deep Learning models. 

2.7.2 Requirements in terms of core capabilities  

● Workflow composition: reuse workflows already developed by Deltares, EURAC, 

and TUW. This will need a workflow backend that will be able to call a mix of 

openEO, Delft-FEWS, FloodAdapt, and ecFLOW sub-workflows. 

● Container workflow management for running containerised models on 

heterogeneous computing infrastructures. 

● Data fusion: generic data fusion components combined with custom Python 

scripts for preprocessing forcing and boundary condition data. 

● Batch queue system for running models at scale on HPC/HTC infrastructures. 

● FAIR data quality evaluation to assess FAIRness of output from process-based 

and data-driven models 
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● ML framework: Tensorflow should be made available in the Notebooks and in 

the pipeline environment (Linux containers). PyTorch to implement the model 

architecture. Tensorboard for training analysis. 

● Distributed ML: For training heavy models or on large datasets on HPC resources 

a distributed Training Framework (e.g., Horovod, PyTorch DDP) is necessary. Also, 

Dask would be useful for distributed hyper parameter tuning. NVIDIA GPU (with 

the NVIDIA driver version 510.85.02 and CUDA version 11.6). 

● ML architecture (type of model): Recurrent Neural Networks (Long Short-Term 

Memory networks and/or Gated Recurrent Unit), encoding/decoding using 

Convolutional Neural Networks (for climate data downscaling) 

● ML Dataset: 4D satellite time series. Climate data (Copernicus European Regional 

Reanalysis, System 5 seasonal forecasts). Size is under investigation.  
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3 Components for advanced workflow 

composition 

The most important capability of a Digital Twin Engine (DTE) is the ability to organise and 

run a chained list of data acquisition and/or processing steps, into what is known as a 

workflow. At every stage in a workflow, the current step has a connection to the next one, 

which means data of earlier steps processes to the next one. Workflows may have steps 

that run in parallel. 

Workflow orchestration is the configuring, managing, and coordinating tasks 

automatically, which may contain different disparate systems. 

The DTE to be built as part of the interTwin project, and which can be used both by expert 

users (DTE developers) and regular users (Scientists), will use the following approach: 

● Create/Reuse an intuitive user interface (UI): Develop a user-friendly, web-

based UI that allows users to create, modify, and manage workflows without 

needing to understand the underlying complexity of the workflow orchestration 

solutions. The UI should provide drag-and-drop functionality, visual 

representation of tasks, and easy configuration of task parameters. Some steps 

that are part of the workflow could expose specific UI’s or APIs to the DTE user 

(e.g., to configure specific aspects of a DTE step, to collect results of a specific task, 

etc.). 

● Create a programmatic interface (aka an Application Programming Interface, or 

API): Define a programmatic interface for the DTE, as a contract between DTE 

implementers and DTE users, that allows the DTE to be triggered by other software 

components, most notably by data-related events. 

● Adopt a top-level workflow orchestration technology: Reusing existing work 

as steps in a DTE’s workflow is a crucial capability of the DTE. The challenge is that 

most of this work is in the form of existing workflows, based on different workflow 

composition and/or workflow execution frameworks. Therefore, picking any single 

workflow orchestration and execution technology for the interTwin DTE would 

mean asking researchers to redo most of this work. At the same time, the top-level 

entry point into the DTE should be well defined. Pick a single workflow description 

language, and workflow orchestration tool that supports that language, which can 

then accommodate existing research work/tools as is, as sub-workflows. 

● Abstract workflow orchestration solutions: Develop a set of reusable 

components or modules that encapsulate the functionality of the various 

workflow orchestration solutions supported by the project. These components 

should provide a consistent interface for interacting with the underlying systems, 

making it easier for users to incorporate different workflow solutions without 

needing to understand their specific implementation details. Additional 

components, supporting additional workflow orchestration frameworks can be 

added in the future, as needed. 
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● Provide pre-built templates: Offer a collection of pre-built workflow templates 

that cover common use cases and can be easily customised by users. These 

templates should include examples of how to call complex sub-workflows from 

different workflow orchestration solutions and provide best practices for 

structuring and organising workflows. 

● Ensure scalability and flexibility: Design both the high-level entry point, and the 

components that can be used as steps in this top-level workflow, to be scalable 

and flexible, allowing users to create workflows that can grow in complexity and 

size over time. This may involve providing support for parallel execution, 

distributed computing environments, and cloud platforms. 

● Offer documentation and support: Provide comprehensive documentation, 

tutorials, and support resources to help users get started with the high-level entry 

point and learn how to create and manage workflows. This should include guides 

for working with different workflow orchestration solutions and examples of how 

to call complex workflows. 

By following the approach described above, we can create a high-level entry point that 

makes it easy for users with different expertise levels to compose workflows using 

various workflow orchestration solutions. This will enable users to focus on the high-level 

logic and structure of their workflows, without needing to understand the intricacies of 

the underlying systems. 

Data acquisition and how to kick off the DTE workflow in reaction to data-driven events 

is described in Section 3.1. The solution adopted for DTE workflow composition is 

covered by Section 3.2, while provenance in workflows is addressed by Section 3.3 and 

data fusion by Section 3.4. 

3.1 Data acquisition & event-driven triggering of 

workflows 

The goal of this component is to implement a generic framework for real-time data 

acquisition and processing that builds on event-triggered execution of workflow engines. 

3.1.1 General description and functionalities 

The real-time data acquisition and processing framework for the DTE that supports event-

triggered execution of workflow engines has to satisfy the following requirements: i) 

detect when new data that requires processing is made available; ii) perform data stage 

and pre-processing (e.g. to perform data cleansing or data quality assessment) and iii) 

delegating the complex data processing into external workflow management systems in 

charge of enacting the execution on resources that can be dynamically provisioned from 

a Cloud-based infrastructure. 
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Figure 1 - General architecture for data ingestion and event-driven triggering of workflows 

To this aim, Figure 1 shows the overall architecture for data acquisition and event-driven 

triggering of workflows, including the high-level components described below. 

File/Object Storage System 

The file/object-storage system provides a solution for the storage of data to be analysed, 

whether it is temporary or long-term storage, as is the case of data lakes. For fault-

tolerance and high-availability reasons, the data is typically stored in a distributed 

approach among a large number of heterogeneous servers, while providing a unified 

vision of a virtual filesystem that can be accessed through a variety of protocols.  

There are many file-storage systems such as dCache or Onedata. There are also a wide 

variety of object-storage systems such as MinIO, OpenStack’s Swift or NextCloud.  We 

plan to use dCache as an exemplary file storage system due to its support for the Server-

Sent Events (SSE) specification, a server push technology that allows a client to receive 

updates from a server through an HTTP-based connection. It supports several transfer 

protocols such as WebDav and authentication mechanisms such as OIDC, which 

facilitates the integration with use cases’ technologies. 

Event-Ingestion System 

The event-ingestion system is responsible for receiving the notification events from the 

file/object-storage system and provides the ability to execute simple transformation data 

flows using the built-in components supported by the system.  

There are several event-ingestion systems such as those in the category of 

Publication/Subscribe (i.e., Pub/Sub) systems, as is the case of Apache Kafka, which allows 

developers to connect programs to each other in different languages and across a large 

number of nodes. We plan to use Apache Nifi as an exemplary event-ingestion system, 

since it allows us to craft flows that will take data from a large variety of different sources, 

enrich the data, and route it to several destinations. In particular, dCache can be used as 

a source for events via a client for the SSE support. The benefits of an event-ingestion 

system lie, among others, in decoupling the rate at which files can be uploaded to the file-
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storage system to the one used for data processing. This acts as an infinite message 

queue that elastically grows to manage the asymmetry between data producer and 

consumer.  

Serverless Event-Processing System 

The serverless event-processing system is in charge of receiving data pre-processing 

requests from the event-ingestion system to perform additional data transformations 

that may not be performed within the event-ingestion system itself. This can be due to 

lack of support for certain operations or the dependency on external tools that may be 

packaged as Docker images, which may not be able to run directly within the event-

ingestion system. 

There are different serverless event-processing systems such as OpenFaaS, Knative, or 

Nuclio. We plan to use OSCAR as an exemplary serverless event-processing system since 

it leverages the high scalability provided by elastic Kubernetes clusters which are 

dynamically provisioned via the Infrastructure Manager on multi-Clouds and uses the 

CLUES elasticity manager to achieve a two-level elasticity (in terms of the number of pods 

and the number of nodes) and provide efficient execution of asynchronous requests. 

OSCAR also leverages Knative under the hood to support low-latency synchronous 

requests. OSCAR services are triggered in response to events and execute user-defined 

scripts on dynamically provisioned containers out of user-defined Docker images, thus 

facilitating the integration with external workflow engines where the actual complex 

processing can take place. 

3.1.2 Interfaces 

The interfaces vary for the different subcomponents, as follows: 

● File/Object-Storage System: These systems typically support several protocols 

and interfaces to support file uploading/downloading. For example, dCache 

supports FTP (File Transfer Protocol), NFS (Network File System) and WebDav (Web 

Distributed Authoring and Versioning) an extension of HTTP (Hypertext Transfer 

Protocol). 

● Event-Ingestion System: These components support several specifications to 

comply with the Publish/Subscribe (Pub/Sub) approach to gather the events. In 

particular, Apache Nifi relies on HTTP to create an SSE client and the 

corresponding subscription into dCache in order to receive the file upload events 

into the file-storage system. 

● Serverless Event-Processing System: These systems rely on HTTP-base requests 

and events from the underlying object-storage system. For example, OSCAR allows 

receiving events from MinIO buckets to perform event-driven processing. It can 

also receive triggering requests via HTTP into the OSCAR Manager’s API. 

3.1.3 Technology stack 

The technology stack to support the deployment and execution of this component is: 
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● A Cloud Management Platform (e.g., OpenStack or OpenNebula) or a public or 

federated Cloud on which to perform the automated provisioning of these 

components via the PaaS Orchestrator and the Infrastructure Manager (IM). 

● The PaaS Orchestrator, an open-source TOSCA-based engine to provide Cloud 

resource selection, and infrastructure provision and customization through the 

Infrastructure Manager. 

● The Infrastructure Manager, an Infrastructure as Code (IaC) tool to support the 

deployment of TOSCA-based description of complex application architectures 

(e.g., Kubernetes clusters) on multiple Cloud back-ends. 

● Kubernetes, a container orchestration platform which allows to coordinate the 

execution of multiple container-based services on a distributed infrastructure. 

This will facilitate the automated deployment of the subcomponents in an 

automated fashion. 

● A Container Registry (e.g., Docker Hub, GitHub Container Registry) to host the 

Docker images required to deploy the subcomponents within a Kubernetes 

cluster. 

Of course, this component also involves the corresponding packages to provision Apache 

Nifi, OSCAR clusters and the corresponding workflow management solution. 

3.1.4 Interaction with other components 

These components provide the ability to trigger the execution of workflows upon certain 

file events in an external storage system.  The workflow composition and workflow 

enactment and execution will be described in Section 3.2. 

3.2 Workflow composition 

The workflow composition subsystem is devoted to facilitating the definition of complex 

workflows. The challenge is to support the definition of workflows whose steps might 

already have been implemented or which require specific workflow engines. This need 

has emerged from the requirements analysis included in Section 2,  therefore it is 

important to allow reuse of existing workflows as building blocks (sub-workflows) in the 

DTE’s workflow. 

The workflow composition solution adopted for the interTwin DTE, as described in 

Section 3, is to have a high-level entry point for users to compose workflows that in turn 

can call complex sub-workflows built with any of the workflow orchestration technologies 

supported by the project. The adopted high-level entry point should have both an easy-

to-use user interface, as well as an API to trigger the workflow. 
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When choosing the technology to be adopted for the top-level workflow of the DTE, 

openEO1 process graphs and Common Workflow Language (CWL)2 were considered as 

possible options. It was debated if multiple choices should be offered, and the consensus 

was that that would complicate the DTE architecture and implementation, without adding 

much benefit, as either solution still allows for the flexibility needed to reuse existing work 

as sub-workflows with disparate technological stacks. In the end, CWL was selected as the 

language in which to describe the top-level workflow of the interTwin DTE, on these 

considerations: 

● openEO is primarily designed for Earth observation data processing and would 

need to be adapted and extended with additional concepts to accommodate the 

broader scope of workflows in a general purpose DTE. 

● CWL supports open consensus-based standards for command line data analysis 

workflows and tools, and also provides a reference implementation (the cwltool3) 

which can be used to describe portable reusable workflows.  

● CWL has gained much traction and is currently widely supported in practice by 

popular workflow management systems and engines such as Streamflow or 

Apache Airflow (CWL-Airflow4 in particular). 

3.2.1 General description and functionalities 

For the purpose of defining the top-level Digital Twin Engine (DTE) workflow the usage of 

Common Workflow Language (CWL) as a glue to execute isolated workflow steps which 

eventually will run in different workflow engine backends is envisaged. Please note that 

workflow composition is highly dependent on the application at hand, therefore the most 

sensible approach is adopting a neutral standard such as CWL as the requirement for the 

general architecture of the DTE.  

When selecting the software to orchestrate and execute the top-level CWL-based 

workflows of the interTwin DTE, multiple platforms that include CWL support were 

analysed, including Snakemake5, Streamflow6, Apache Airflow7, and ecFlow8 . Apache 

Airflow was selected as the tool to orchestrate and execute the top-level workflow of the 

interTwin DTE, based on these arguments: 

 

1 https://openeo.org  

2 https://www.commonwl.org  

3 https://github.com/common-workflow-language/cwltool  

4 https://cwl-airflow.readthedocs.io/en/latest/  

5 https://snakemake.readthedocs.io/en/stable/  

6 https://streamflow.di.unito.it/  

7 https://airflow.apache.org  

8 https://www.ecmwf.int/en/newsletter/166/computing/ecflow-5-brings-benefits-member-states  

https://openeo.org/
https://www.commonwl.org/
https://github.com/common-workflow-language/cwltool
https://cwl-airflow.readthedocs.io/en/latest/
https://snakemake.readthedocs.io/en/stable/
https://streamflow.di.unito.it/
https://airflow.apache.org/
https://www.ecmwf.int/en/newsletter/166/computing/ecflow-5-brings-benefits-member-states
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● User-friendly web interface: Airflow comes with a built-in, easy-to-use web 

interface that allows users to manage, monitor, and visualise their workflows. This 

interface can be extended and customised to provide a more intuitive experience 

for users who are composing workflows with different orchestration solutions. 

● Extensibility: Airflow has a plugin system that enables users to create custom 

operators, sensors, and other extensions to add new functionality or integrate 

with other systems. This feature allows you to develop custom wrappers for other 

workflow orchestration solutions and incorporate them seamlessly into Airflow. 

● Strong community and support: Airflow has a large and active community of 

users and developers, making it easier to find help, examples, and resources for 

integrating it with other workflow orchestration solutions. Additionally, the project 

is backed by the Apache Software Foundation, which provides long-term stability 

and support.  

● Wide range of built-in operators: Airflow includes a wide range of built-in 

operators for various tasks and integrations, making it easier for users to create 

complex workflows without needing to develop custom code. 

● Scalability and flexibility: Airflow is designed to be scalable and can handle large-

scale, distributed workflows. It supports parallel task execution, dynamic task 

creation, and execution on various distributed computing environments, including 

Kubernetes and Apache Mesos. 

● Language and platform support: Airflow supports Python as its primary 

scripting language, which is widely used and accessible to users with varying 

expertise levels. It also runs on multiple platforms, including Linux, macOS, and 

Windows. 

As an example, the case of HEP Machine Learning workflows, whose requirements have 

been captured in Section 2.3,  can be supported by Apache-Airflow.   
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Figure 2 - Example of workflow composition for EO applications. 

 

Figure 2 shows the generic usage model of workflow composition for the EO machine 

learning where the end-user defines the workflow following the standard of CWL. 

3.2.2 Interfaces 

The workflow composition tool will have to provide CLI tools and a GUI so that DT 

Developers could set up and execute Workflows for the definition of DT applications, by 

integrating thematic modules tailored to their needs (developed by WP7).  

Therefore, from one side the Workflow composition tool will need to deliver interfaces 

for DT Developers and eventually DT User willing to execute DT Application workflows. 

On the other side the component should be responsible for the execution of the 

workflows delegating its execution to the backends that are deployed via the PaaS 

Orchestrator and the interfaces/API that are made available by WP5. 
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3.2.3 Technology stack  

In this section we list the possible entrypoint for definitions of the Workflows to be 

executed and Workflow Management engines requested/suggested by the user 

communities. 

Apache Airflow  

One of the most promising solutions for the definition and execution of the CWL workflow 

is Apache Airflow. Airflow comes with a built-in, easy-to-use web interface that allows 

users to manage, monitor, and visualise their workflows. This interface can be extended 

and customised to provide a more intuitive experience for users who are compositing 

workflows with different orchestration solutions. 

Apache Airflow has a plugin system that enables users to create custom operators, 

sensors, and other extensions to add new functionality or integrate with other systems. 

This feature allows you to develop custom wrappers for other workflow orchestration 

solutions and incorporate them seamlessly into Airflow. Airflow includes a wide range of 

built-in operators for various tasks and integrations, making it easier for users to create 

complex workflows without needing to develop custom code. Airflow is designed to be 

scalable and can handle large-scale, distributed workflows. It supports parallel task 

execution, dynamic task creation, and execution on various distributed computing 

environments, including Kubernetes and Apache Mesos. Airflow supports Python as its 

primary scripting language, which is widely used and accessible to users with varying 

expertise levels. It also runs on multiple platforms, including Linux, macOS, and Windows. 

ecFlow 

ecFlow9 is a workflow management system developed and maintained by the European 

Centre for Medium-Range Weather Forecasts (ECMWF). It is designed to handle complex 

workflows, particularly in the field of weather forecasting and numerical weather 

prediction. ecFlow has several features that make it suitable for managing large-scale, 

compute-intensive workflows: 

● Dependency management: ecFlow allows to define complex dependencies 

between tasks, ensuring that they are executed in the correct order. 

● Scalability: ecFlow can manage workflows that consist of thousands of tasks 

running across a distributed computing environment. 

● Fault tolerance and error handling: ecFlow provides mechanisms for handling 

errors, retries, and failure recovery to ensure that your workflows continue 

running even in the presence of failures. 

● Monitoring and visualisation: ecFlow includes a web-based user interface 

(ecFlowUI) that allows you to monitor the progress of your workflows, visualise 

dependencies, and perform various management tasks. 

● Extensibility: ecFlow supports custom scripting using Python, which allows it to 

extend its functionality and integrate it with other tools and platforms. 

 

9 https://ecflow.readthedocs.io/en/latest/  

https://ecflow.readthedocs.io/en/latest/
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● Environment agnostic: ecFlow can be used on various platforms, including Linux, 

macOS, and Windows. 

ecFlow is particularly well-suited for use cases involving large-scale, compute-intensive 

workflows, such as weather forecasting, climate modelling, and other scientific 

simulations. 

openEO 

openEO10 is an API specification11 to discover, access and process earth observation data 

and define abstract processing workflows. It has grown into an independent open source 

community12 standard in the earth observation community and is steered through the 

openEO project steering committee13. 

The core API is defined following open API version 3 for the setup of a RestFul http-based 

API. The main concept is to have openEO as middleware between clients and back-end 

implementations. It exposes virtual views on data independent of the actual organisation 

of it. It implements the concept of virtual data cubes that can represent gridded or vector 

data. Also, the definition of processing is defined on an implementation agnostic process 

graph, allowing for very different implementations of processing frameworks in any kind 

of compute environment. 

The main features of openEO are: 

● Decoupling of data model and physical storage through virtual data cubes; 

● Decoupling of process model and processing infrastructure through graph-based 

workflow descriptors; 

● Workflows in openEO are described through the so called openEO process graph. 

The process graph follows the principles of a directed acyclic graph (DAG); 

● Processes make the nodes in this graph and are pre-defined14. Custom processes 

can be added however to extend the functionality; 

● Metadata catalogues functionality for data discovery and querying; 

● Metadata functionality for description of available processes for the graph-based 

processing; 

● Synchronous processing of graphs; 

● Asynchronous processing of graphs through batch jobs and management of jobs; 

● Authentication and authorization of any exposed micro service; 

 

10 https://openeo.org/  

11 https://api.openeo.org/  

12 https://github.com/open-eo  

13 https://openeo.org/psc.html#members  

14 https://processes.openeo.org/  

https://openeo.org/
https://api.openeo.org/
https://github.com/open-eo
https://openeo.org/psc.html#members
https://processes.openeo.org/
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● Integration of custom user data; 

● Integration of custom user processing scripts in R or python through so called User 

Defined Functions; 

● Definition of higher-level processes based on simple processes based on User 

Defined Processes; 

● Dynamic execution of workflows based on web service request, through 

secondary web services such as WM(T)S, XYZ, WCS or OGC API tiles. 

Apart from the main features and capabilities of the openEO API itself, it should be mentioned 

that openEO has a set of open source implementations, both on the client and server side, by very 

active user communities. Extensive documentation for all components is available especially for 

the user facing resources in form of the client libraries in R15 and Python16, as well as the JavaScript 

based web-editor.  

Streamflow 

StreamFlow17 is a workflow management system that focuses on the parallel and 

distributed execution of complex scientific applications. It is designed to handle both 

cloud and edge computing environments and aims to provide an easy-to-use framework 

for developing, deploying, and managing scientific workflows. StreamFlow offers a 

flexible framework for developing and managing complex workflows for applications that 

require high levels of parallelism, distributed computing, and cross-domain 

interoperability.  

Some of the key features of StreamFlow include: 

● Hierarchical Workflow Composition: Enables modular and reusable workflow 

components by allowing sub-workflows as tasks in higher-level workflows. 

● Resource Abstraction: Simplifies resource management by defining resources 

independently of tasks, making it easy to switch configurations. 

● Cross-Domain Interoperability: Supports various application domains and 

integrates with domain-specific languages (DSLs) and tools. 

● Fault Tolerance and Recovery: Automatically detects and retries failed tasks, 

with checkpointing to resume execution from the last saved state. 

● Scalability: Optimises resource utilisation with parallel and distributed 

computing, suitable for cloud and edge environments. 

 

15 https://openeo.org/documentation/1.0/r/  

16 https://open-eo.github.io/openeo-python-client/  

17 https://streamflow.di.unito.it/  

https://openeo.org/documentation/1.0/r/
https://open-eo.github.io/openeo-python-client/
https://streamflow.di.unito.it/
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Delft-FEWS 

Delft-FEWS18 (Flood Early Warning System) is an advanced software system designed to 

provide early warning and forecast capabilities for hydrologic hazards such as floods, 

droughts, and other water-related events. It is developed and maintained by Deltares and 

has been used globally in numerous countries. 

Delft-FEWS is highly flexible and can be tailored to specific needs of a local, regional, or 

national water system. It integrates a wide range of water level, flow, and rainfall data 

(from both real-time monitoring and forecast models) into a single, cohesive platform. 

This data can be used to run simulations and generate forecasts, helping decision-makers 

take timely action in response to developing hydrologic events. 

The system includes a sophisticated suite of data handling and visualisation tools, 

enabling users to interactively explore and analyse their data. Advanced warning and 

alerting features can automatically notify users when certain hydrologic conditions or 

thresholds are exceeded. 

Delft-FEWS is an open data handling platform, meaning it is not tied to any specific 

models. Instead, it can interface with a wide range of third-party hydrological and 

hydraulic models, allowing for considerable flexibility in the way it is used. 

Delft-FEWS offers several workflow management features, designed to support its users 

in managing, executing, and tracking the complex tasks associated with forecasting and 

early warning processes, including: 

● Automation of tasks: Delft-FEWS can be set up to automatically run data imports, 

model simulations, and data exports at specified intervals. This is important in 

operational settings where timely, regular forecasts are needed. 

● Workflows: Users can define a series of steps, known as a workflow, that should 

be executed in a specific order. These workflows may include data retrieval, model 

execution, post-processing, forecast visualisation, etc. Once set up, workflows can 

be run manually or automatically or can be triggered when certain messages are 

logged, or thresholds are crossed. 

● Tracking and auditing: Delft-FEWS records the execution of all tasks, allowing 

users to track when certain tasks were completed, who completed them (in case 

of manual intervention), and whether there were any errors or issues. 

● Manual intervention: While Delft-FEWS can automate a lot of tasks, it also 

provides capabilities for users to manually intervene in workflows. For example, 

users might want to manually adjust forecast parameters or inspect and modify 

model inputs/outputs before they are used in further steps of the workflow. 

● Alerts and notifications: Delft-FEWS can be set up to notify users when certain 

conditions are met, such as a forecasted water level exceeding a certain threshold. 

This is an integral part of the early warning functionality of the system. 

 

18 https://www.deltares.nl/en/software-and-data/products/delft-fews-platform  

https://www.deltares.nl/en/software-and-data/products/delft-fews-platform
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● Distributed forecasting: Delft-FEWS supports distributed forecasting, where 

different parts of a workflow are run on different machines. This can be used to 

distribute computational load or to ensure that certain tasks are executed on 

machines that have the necessary software or hardware requirements. 

The capabilities of Delft-FEWS can be extended and customised to meet the specific 

needs of individual users or organisations, allowing for a wide range of workflow 

management applications within the context of hydrologic forecasting and early warning.  

 

Ophidia 

Ophidia19 is a CMCC research effort addressing scientific big data challenges. It provides 

a High-Performance Data Analytics (HPDA) framework for the analysis of scientific multi-

dimensional data, targeting primarily the climate change domain, although it has been 

effectively used also with biodiversity, solid Earth, and environmental data.  

The framework exploits an array-based storage model, leveraging the datacube 

abstraction from OLAP systems, and a hierarchical storage organisation to partition and 

distribute large multi-dimensional scientific datasets over multiple nodes. It provides a 

platform for server-side in-memory computation through a large set of parallel operators 

(more than 50 currently available). Among the others it supports statistical analysis, time 

series processing, data intercomparison, subsetting, multi-model analysis, etc.  

The framework was enhanced a few years ago to target very large-scale applications 

through a new runtime environment based on the MPI+X paradigm and tighter 

integration with HPC systems. Besides running single parallel operators, Ophidia 

provides a workflow management system for running complex scientific analysis 

composed of hundreds of tasks; this engine is integrated with the Ophidia server front-

end. Different interfaces are provided to interact with the server for the submission of 

the workflow execution plan, such as OGC/WPS or WS-I.  

The workflow description request is written in JSON format according to a set of keywords 

defined in the workflow schema definition20. The workflow engine is able to handle 

complex workflow in the form of Directed Acyclic Graphs of tasks. Tasks can be defined 

using each of the Ophidia data analytics operators, including external Python/bash scripts 

or binary executables.  

From the client side, the PyOphidia module (i.e., the Ophidia Python bindings) can be 

used to interact with the engine to send and execute workflow documents with the 

defined JSON format. In addition, a Python module recently developed, named esdm-pav-

client, can also be used to create the workflow description in programmatic way, run it 

on the server and monitor its execution via a Python API.  

The workflow engine takes care of handling the whole execution flow: 

 

19 https://ophidia.cmcc.it/  

20 https://ophidia.cmcc.it/documentation/users/workflow/workflow_basic.html  

https://ophidia.cmcc.it/
https://ophidia.cmcc.it/documentation/users/workflow/workflow_basic.html
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● translates the JSON document into an “execution plan”, i.e., an ordered list of 

single tasks that are managed by the resource manager; 

● handles the scheduling of the different tasks based on their dependencies and 

available resources; 

● tracks and monitors the execution status of each task; 

● handles task failures, potentially resubmitting the same task for execution. 

The Ophidia workflow system supports different types of abstractions; besides data and 

flow dependencies and simple task definition, it provides flow control constructs to 

handle:  

● conditional execution:  one between to sub-workflows is executed according to a 

condition to be checked at run-time, similarly to an if-else statement; 

● iterative execution: a sub-workflow can be executed multiple times, similarly to a 

loop statement; 

● parallel execution: of sub-workflows: a sub-workflow can be executed in parallel 

multiple times on different input data or with different operations on the same 

dataset;  

● interactive execution:  the execution of a task is triggered by an event (e.g., the 

availability of a file/data); 

● interleaving execution: the execution of a task is triggered by another workflow. 

These constructs can also be nested to support execution of very complex and dynamic 

workflows.  

3.2.4 Interaction with other components 

The workflow composition and workflow execution will interact with the real time 

acquisition component, as it will trigger the execution of workflows upon data arrival. The 

component will also trigger SQaaS service pipelines as part of the workflow execution to 

enable Model validation and Data FAIRness. Finally, the provenance component 

described in the next section will also be integrated to support lineage metadata tracking 

of the interTwin workflows.  

3.3 Provenance in Workflows 

Workflow and provenance are two faces of the same medal. While the former addresses 

the execution of multiple computational and data tasks over a set of machines, the latter 

relates to the tracking and management of the lineage information. 

According to the National Institute of Standards and Technology (NIST)21 data 

provenance is defined as follows: “It is an equivalent term to chain of custody. It involves the 

 

21 https://csrc.nist.gov/glossary/term/data_provenance   

https://csrc.nist.gov/glossary/term/data_provenance
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method of generation, transmission and storage of information that may be used to trace the 

origin of a piece of information processed by community resources.” 

Storing information about the origin and history of a data fosters trust and re-usability. It 

represents a best practice too, as metadata in its essence contributes to data 

documentation. 

Making provenance FAIR means that such metadata information must be findable, 

accessible, interoperable, and re-usable. Interoperability is key, both in terms of service 

interfaces and data model. To this end a provenance data model (PROV-DM) has been 

provided by the W3C consortium in 2013 to represent provenance information in a 

standardised way. 

Such a formal data model describes any physical, conceptual, and virtual object. 

Specifically, at its core the PROV data model [R1] defines the use and production of 

entities by activities, which may be influenced in various ways by agents. Figure 3 shows 

the relationship between these three elements.  

 

Figure 3 - PROV Data Model 

Such a data model is adopted by the yProv service, which represents a cross-domain 

service able to track, manage, query, and mine provenance information. 

Such service consists of a RESTful interface with a persistent database in its back-end.  

The RESTful API allows the implementation of two different scenarios: 

● batch: through a document-based API to manage provenance offline, after the end 

of the workflow; 

● online: through a set of methods to manage provenance tracking at runtime. 

In the interTwin project, such a service will help tracking provenance information 

associated to climate analytics workflows both in batch and real-time workflows. Though 

its primary application domain is climate, its cross-domain and standard API definition 

enables its re-use over multiple different domains.  The service is also intended to 
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manage scenarios with multi-level provenance information. In this respect a relevant use 

case in interTwin is the climate analytics experiments based on the Ophidia, which 

represents an example of a second-level provenance workflow engine. 

3.4 Data Fusion in Workflows 

Data fusion is an important component in the implementation of workflows consisting of 

multiple heterogeneous data sources and is the output of Task 6.3. 

The main challenge in this task is the combination of domain specific datasets and tools 

in the general workflow of interTwin. Datasets need to be prepared to be used in generic 

components taking care of the analytics framework and artificial intelligence. By the end 

of processing, results from multiple model runs need to be re-integrated for visualisation 

purposes. 

In the context of the environmental use cases data from various sources need to be 

integrated covering climate model output with satellite imagery as well as various sources 

of vector data. 

In total four tasks are hence covered by this activity: 

● Definition of guidelines for the implementation of thematic modules in order to 

be interoperable with the general workflow in terms of data exchange. 

● Implementation of processes for merging datasets from different sources in 

collaboration with developers of thematic modules, including gridded and vector 

data. 

● Implementation of processes for preparing data for ingestion into AI workflows. 

● Implementation of processes preparing results for visualisation in collaboration 

with specific thematic modules for visualisation. 

The data fusion components are strongly dependent on the exact data sources used and 

will have a more detailed description in the second release of this document (Deliverable 

6.3).  
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4 Components for AI workflows 

The Artificial Intelligence (AI) subsystem in the proposed Digital Twin Engine (DTE) is 

intended for data-driven Digital Twin (DT) models and is the output of Task 6.5. This 

subsystem is mainly devoted to two macro-operations: training and deployment of 

machine learning (ML) models. In this context, the DT developer is mostly focusing on ML 

training workflows, which also include tuning and validation of ML models. The DT 

application user is generally more interested in the deployment of pre-trained ML models 

on its preferred infrastructure (e.g., Cloud services, on-premises servers), but the models 

could also be re-trained on new data, if desired. Figure 4 depicts the internals of the AI 

subsystem, showing how the ML training and deployment modules interact with other 

components, such as distributed training, metrics logger, models registry, and hyper-

parameter optimization. The component for AI workflows in digital twins does not exist 

at the moment, and it is part of the set of the innovations introduced by interTwin. 

Therefore, the proposed architecture is likely to change throughout the lifespan of the 

project, to accommodate use cases’ needs.  

Training an ML model involves loading some (pre-processed) dataset from the storage 

and splitting it into training and validation. In the case of online learning, the training 

dataset is a stream. The DT developer inputs the details of the ML model from the 

Platform-as-a-Service user interface (PaaS UI), like a thematic module, including the loss 

function, evaluation metrics, neural network architecture, optimizer type, etc. The user 

can choose among a collection of tools for both distributed training (e.g., Horovod22, 

RaySGD23), and hyper parameter optimization (HPO). Once a model is trained, its 

performances are assessed on the validation dataset (ML-level validation). ML logs, like 

metrics, are saved on disk and made available to the user for future inspection by means 

of the "metrics logger", whereas the best models are saved in the "models registry". 

Once an ML model passes domain-specific validation, performed by the "Quality and 

uncertainty tracing" DTE's module, it can be deployed. The user chooses a pre-trained ML 

model from the model registry, which is going to be served as a step in the overall DT 

inference workflow. There may be multiple versions available for the same ML model, 

and the user can choose which version to deploy as the "living" DT model. Once the full 

DT is deployed as a workflow, it can process real-time streams of data from the real world, 

and the experimenter can interact with it, like performing experiments and computing 

predictions. 

One of the main challenges of this task is to provide support for a large spectrum of users 

with different degrees of expertise with ML workflows and MLOps best practices. This 

entails a tradeoff because base users would like to have a simple interface that is easy to 

understand, whereas experienced users would like to have finer control of the underlying 

 

22 https://github.com/horovod/horovod 

23 https://docs.ray.io/en/releases-1.11.0/raysgd/raysgd.html 

https://github.com/horovod/horovod
https://docs.ray.io/en/releases-1.11.0/raysgd/raysgd.html
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ML technicalities. This can be solved by developing two different user interfaces, 

considering two levels of user profiles: 

● The DT Developer (Experienced user / ML researcher) has full control of the ML 

workflow. Custom losses and metrics, NN architectures, ensemble methods, etc. 

The user provides custom training/validation scripts, interfacing directly with 

PyTorch, TensorFlow and MLflow. Also provides the logic for loading non-standard 

data formats. 

● The Scientist (Base user) has little experience with ML workflows and provides 

only high-level definitions of ML tasks. Almost everything is automated under the 

hood, reducing the engineering effort required of the scientist. If the scientist has 

some special needs, they can outsource changes to a DT developer. 
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Figure 4 - Detailed view on the architecture of the ML component 

An overview of the ML training component and its functionalities is described in Section 

4.1. The description of the Models Registry, where pre-trained ML models are stored, is 

provided in Section 4.2, while Section 4.3 describes the metrics logger component, used 

to log ML metrics and metadata. Finally, a description of the ML model deployment 

component and its sub-components is provided in Section 4.4. For each of these AI/ML 

components an overview of the component and its functionalities, interactions with other 

AI/ML components, the required technology stack, and even the interactions with other 

tasks will be provided. 
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4.1 Training module 

This section contains a description of the different components of the training module in 

the AI workflow engine. The architecture of this module and its interaction with the other 

modules of the AI workflow component is shown in Figure 5. 

4.1.1 General Description and functionalities 

This module provides various functionalities to the DTE for training their AI models. The 

module will allow access points to local, cloud, and/or High-Performance Computing (HPC) 

resources for training the networks. The cloud and HPC resource provisioning have to be 

arranged on a use-case basis, in this regard, interaction with WP5 will be required. In 

collaboration with WP5, support will be provided for job scheduling, for example with Slurm, 

Cron, etc. JupyterLab24 is currently being investigated as a programming interface for this 

module. Furthermore, some use-cases could potentially require online training functionality, 

which means training the AI models on-the-fly with new data, perhaps from real time sensor 

outputs. In this regard, besides normally used offline training, the module will also permit 

online training. The primary components of this module are summarised here.  

Custom interTwin environment  

Requirements have been gathered in the initial phase of the project. This will be 

continued through consultation with individual use-cases from WP4 and WP7 to gather 

further elaborate requirements in terms of modules necessary to train the AI models. 

Based on the survey, a custom interTwin Python-based environment is currently being 

developed for the use-cases to allow training on HPC resources. For instance, at the 

moment, it is observed that the open-source Python packages, PyTorch25 and 

TensorFlow26 are widely used across multiple use-cases. Other packages will continuously 

be updated in the environment over the course of the project. Furthermore, if required 

by individual use-cases, it will also be possible to load their own custom environment and 

requisite support will be provided in this regard. 

 

24 https://jupyter.org/  

25 https://pytorch.org/ 

26 https://www.tensorflow.org/ 

https://jupyter.org/
https://pytorch.org/
https://pytorch.org/
https://www.tensorflow.org/
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Figure 5 - Detailed view on the architecture of ML training module 

Distributed training  

The training module will provide functionality for distributed training of the AI models, 

which is essential to maximise utilisation of HPC resources. Typically, training AI models 

in a distributed or parallel manner uses either data parallelism or model parallelism 

techniques. In the case of the former, batches of the dataset are distributed across the 

workers, while each worker receives a replica of the model. Subsequently, each worker 

trains the copy of the model in each training cycle (optimization step over a mini-batch), 

and after a certain number of cycles (dependent on the framework), the gradients are 

exchanged across the workers to synchronise the training. In case the AI models are too 

large to fit into one worker (e.g., GPU), a model parallelism feature will be provided, which 

distributes a single model to several workers, such that each worker only executes a 

fraction of the full model. 
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There are multiple open-source frameworks that provide distributed training 

functionality. PyTorch Distributed Data Parallel (DDP) module27, Horovod developed by 

Uber, Helmholtz Analytics Toolkit (HeAT)28 from the Helmholtz Association and 

DeepSpeed29 from Microsoft are a few of the available frameworks. In the course of the 

project and depending on the requirements, these and other possible distributed training 

frameworks will be continuously added and updated to the training module. 

Hyperparameter Optimization (HPO)  

HPO is the process of fine-tuning machine learning and deep learning models in order to 

improve their accuracy. This is increasingly being employed in training of AI models and 

is expected to be necessary for the use-cases in the interTwin project. The HPO process 

involves optimising the allocation of computational resources to various configurations 

(such as learning rate, batch size, number of filters, etc.) of the AI models. The objective 

is to minimise the total computational budget to find the optimal configuration with the 

highest accuracy. Various algorithms such as HyperBand30 and BOHB31 provide solutions 

for HPO. These will be implemented through open-source HPO frameworks such as 

RayTune32 and DeepHyper33 to provide the functionality.  

Workflow Pipeline Editor  

The AI workflow consists of multiple components which can broadly be categorised into 

three parts, namely preprocessing, training, and data processing. An AI pipeline example 

with the basic components is shown in Figure 6, which is based on the Elyra pipeline 

editor34. In the initial phase of the project, Elyra has been identified as one of the solutions 

for constructing the workflow pipeline. Elyra is available as an extension to the JupyterLab 

environment. In the requirements gathering phase, it is seen that the JupyterLab or 

notebook platform is used across multiple use-cases.  

 

27 https://pytorch.org/docs/stable/distributed.html 

28 https://github.com/helmholtz-analytics/heat 

29 https://github.com/microsoft/DeepSpeed 

30 https://arxiv.org/abs/1603.06560 

31 https://arxiv.org/abs/1807.01774 

32 https://docs.ray.io/en/latest/tune/index.html 

33 https://deephyper.readthedocs.io/en/latest/ 

34 https://elyra.readthedocs.io/en/latest/ 

https://pytorch.org/docs/stable/distributed.html
https://github.com/helmholtz-analytics/heat
https://github.com/microsoft/DeepSpeed
https://arxiv.org/abs/1603.06560
https://arxiv.org/abs/1807.01774
https://docs.ray.io/en/latest/tune/index.html
https://deephyper.readthedocs.io/en/latest/
https://elyra.readthedocs.io/en/latest/
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Figure 6 - Elyra-based example of an illustrative AI pipeline 

The preprocessing step involves operations such as data cleaning, data transformation, 

data fusion, etc. Many of these operations will be part of Data Fusion, described in 

Section 3.4 and the details on the functionalities of the preprocessor in the AI module 

will be decided over the course of the project. The training component consists of various 

modules defined concretely in Section 4.1. Finally, the post-processing component 

involves performing elementary tests on the performance of the models and updating 

the model registry. This module requires close interaction with the Quality Assurance 

components dedicated to validation and verification of the trained models, described in 

Section 5. 

Workflow Management Tool 

The solutions to launch the AI pipeline in cloud/HPC infrastructure are currently being 

investigated and in the initial phase, multiple frameworks have been identified. Apache 

Airflow35, an open-source Python-based platform, is one of the workflow management 

tools that is being considered. Airflow offers many functionalities to define and schedule 

workflows and then monitor these with a built-in User Interface (UI) platform. Airflow uses 

Directed Acyclic Graphs (DAGs) to orchestrate the workflows and executes them 

according to the specified dependencies in the pipeline. It manages the scheduling and 

execution of the workflows, which could be scheduled or triggered by external events36. 

Airflow provides a high-level interface to external platforms with Hooks37, which for 

instance will facilitate communication with external databases. Furthermore, due to the 

modular setup, Airflow should have good scalability. The Airflow deployment across the 

HPC infrastructure is also under active development at Jülich Supercomputing Centre 

(JSC), one of the partner HPC centres, which will further benefit the project in the long 

term.  

 

35 https://airflow.apache.org/ 

36 https://airflow.apache.org/docs/apache-airflow/1.10.2/scheduler.html 

37 https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/connections.html 

https://airflow.apache.org/
https://airflow.apache.org/docs/apache-airflow/1.10.2/scheduler.html
https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/connections.html
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Another workflow management tool that is being investigated is Kubeflow38, which is also 

an open-source platform. The advantage of Kubeflow is that it is an ML-oriented workflow 

manager, which makes it suitable for most interTwin use cases. In one single package, it 

provides a UI for workflow composition (similar to Elyra), Tensorboards for metrics 

logging, models registry and models versioning, and allows to serve pre-trained ML 

models as standalone services, in line with MLOps best practices. These features are 

required by interTwin use cases. On the infrastructure side, Kubeflow depends on Argo 

Workflows and Kubernetes. When a Kubeflow workflow is deployed on the infrastructure, 

its steps are deployed as separate containers and orchestrated by the Argo Workflows 

manager. 

4.1.2 Interfaces 

The user will be provided with a web-based portal or API to select training 

hyperparameters and ML models. A selection of pre-trained models will also be available 

in this portal for base users. The training module can be triggered by the advanced 

workflow composition tool with Kubernetes-like OpenStack APIs or Apache Airflow-like 

APIs. The trained models will be available for access in Model registry for other 

components such as the Quality and uncertainty tracing.  

4.1.3 Technology stack 

The AI model is trained in a Python environment. The required software stack is listed 

below, corresponding to the operations: 

● Train the AI model (e.g., PyTorch, TensorFlow, etc.)  

● Interface to metrics logger (e.g., MLflow) 

● Communicate with external environment (e.g., CLI, REST APIs) 

● Distributed AI framework (e.g., DeepSpeed, Horovod, PyTorch DDP, etc.) 

● Drivers to access (parallel) computing infrastructure (e.g., CUDA drivers) 

● Job scheduling support (e.g., SLURM) 

● Container (e.g., Docker) engine support to deploy models in infrastructure 

● Workflow orchestrator to launch training of AI models in infrastructure (e.g., 

Airflow, Kubeflow) 

4.1.4 Interaction with other components 

Model registry: During the training process, the model will be periodically stored at 

certain time intervals (e.g., stored after every 10 epochs) through checkpoints and written 

to the model registry. Firstly, this acts as a safeguard mechanism. In case the model 

training is not proceeding well, the model can be reset to a certain checkpoint to resume 

with new configurations (e.g., learning rate) without the need to completely discard the 

 

38 https://www.kubeflow.org/ 

https://www.kubeflow.org/
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model and retrain from the beginning. Secondly, this allows the convergence analysis of 

the models at different training stages. 

Metric logger: Training and validation loss, as well as visualisation during the training 

process will be fed to the metric logger.  

Workflow composition: The training component will be deployed in a container via 

Docker or Singularity. Workflow Composition will embed the container and call it once 

the previous steps have been completed. This tool will also provide a GUI or a file-based 

ML configuration (containing the model type, hyperparameters, dataset URI, etc.) setup 

that will write to a markup language file. The AI workflow component will then load the 

YAML file and set up the training module accordingly. For the DT developer, there will be 

the possibility of accessing an exposed Jupyter notebook directly, without going through 

the Workflow Composition components. 

Data fusion will provide a (preprocessed) dataset URI on disk or as object storage. The 

DT developer needs to implement the loading of the preprocessed data into _getitem_() 
for torch.utils.data.DataLoader or map() for tensorflow.data.dataset. 

Quality and uncertainty tracing: During the training procedure, the model will be 

validated with a training and a validation loss. If the loss envelope is considered bad 

according to predefined metrics (threshold, sliding window average of loss, etc.) the 

training will be stopped, and a warning message will be raised. The training module will 

monitor and visualise the training and additionally propagate this information to the 

Quality Assurance component to complement the quality assessment for a certain model. 

If a custom loss is needed, the DT developer has to define the desired loss function using 

Pytorch/Tensorflow logic exclusively in order to preserve differentiability. We envision a 

sample loss function that the DT developer can use as a guideline. 

4.2 Model Registry 

This section describes the Model Registry module of the AI workflow engine. 

4.2.1 General description and functionalities 

The Model Registry provides a central hub for storing and sharing ML models, along with 

their associated metadata, such as performance metrics, hyperparameters, and 

deployment history. 

The Model Registry allows users to register models as "production-ready" or 

"experimental", depending on their stage in the development process. Users can create 

and manage multiple versions of a model, each with its own set of metadata and 

artefacts, such as serialised model files, data preprocessing scripts, and model training 

logs. 

The Model Registry also offers collaboration features such as access control, version 

history, and model review workflows. Teams can work together to review and approve 

model changes before they are promoted to the production environment. Model serving 

and deployment can be automated using integrations with cloud platforms such as (AWS 

and Azure, or custom deployment scripts). 
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4.2.2 Interfaces 

The Model Registry offers a web-based user interface for browsing and searching models, 

as well as APIs for programmatic access and integration with other tools in the ML 

ecosystem described in Interaction with other components. 

4.2.3 Technology stack 

One of the tools that is investigated for the Model Registry is MLFlow. MLFlow is an open 

source platform for the complete ML lifecycle management, including experimentation, 

reproducibility, deployment, and monitoring. One of its core features is the MLFlow 

Model Registry, which is designed to enable teams to collaboratively manage and version 

ML models. 

4.2.4 Interaction with other components 

Training module: The Model Registry will store trained models with a certain frequency 

from the Training module. This will happen at two different frequencies each with a 

specific purpose: 

● While training is still ongoing, intermediate models will be stored regularly in order 

to have backup models in case the training is diverging, and the model behaviour 

is different than expected. This ensures than not all the training is lost and allows 

to fall back to models at previous training epochs 

● After the training has been completed models will be stored in the Model Registry 

for the purpose of evaluation from a use case perspective, i.e., the Scientist will 

compare different model types regarding e.g., architecture, number of 

parameters, datasets used with other ML and non ML model and assesses which 

model are fit to be post-processed and deployed. 

The frequencies are use case specific and will be determined either by the DT developer 

or the Scientist. 

ML model deployment: The Model Registry will provide a catalogue of post-processed 

models that can be accessed via the MLflow client. Model will be made available in the 

ML specific framework and in the Open Neural Network Exchange (ONNX) format. The 

models in the registry will be deployed in a container via the ML deployment component 

either as Tensorflow or PyTorch models according to use case preference and hosted as 

a server. 

Quality Assurance: The component can query the ML deployment server. Its Software 

Quality Assurance as a Service (SQAaaS) module will be called on models in the Model 

Registry and conduct unit tests with given corner cases provided by the use cases. It will 

certify the quality of each model in the registry according to the FAIR (Findable, Accessible, 

Interoperable and Reusable) quality assessment. The quality certification will be stored 

alongside the model itself and made visible to the DT user to enable it to easily choose 

among (pre)trained models. 
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4.3  Metric Logger 

This section describes the Metric Logger module of the AI workflow engine. 

4.3.1 General Description and functionalities 

The metric logger allows users to define and track either predefined metrics, such as 

accuracy, precision, recall, mean squared error or allow the DT developer to define 

custom use case specific metrics. It also supports the creation of experiments, which can 

group together related runs of a model training or evaluation task. DT Users can compare 

metrics across different runs and experiments, and track how metrics change as the 

model is updated or new data is added. 

4.3.2 Interfaces 

The Metric Logger provides a user-friendly web-based interface for exploring and 

visualising metric trends over time, as well as APIs for programmatic access and 

integration with other components described in Interaction with other components. 

4.3.3 Technology stack 

Under the MLFlow framework mentioned above there is the feature MLFlow Metric 

Logger. It is a flexible and scalable tool that enables users to record, visualise, and 

compare ML metrics during model training and evaluation. It integrates with popular ML 

libraries such as TensorFlow, PyTorch, and Scikit-learn, and can be used with 

programming languages like Python, Java, R or accessed via a REST API. 

4.3.4 Interaction with other components 

Training module: While training the MLFlow Metric Logger will store and visualise pre-, 

or user defined metrics described above. This will allow the DT developer to assess the 

training progress and to intervene accordingly.  

Model registry: The metrics will be stored alongside the trained models in the Model 

Registry. This preserves the whole training history and simplifies later comparisons and 

analyses of stored models. 

ML model deployment: During deployment the pre- or user defined metrics will be 

visualised in order to monitor if the deployed model is working correctly. The DT 

developer can define thresholds for the metrics and should the model above or below 

the threshold, warning messages and automatic exception handler can be triggered. 

4.4 Machine Learning model deployment 

This section contains a description of the different components of the machine learning 

deployment module in the AI workflow engine. The architecture of the module and its 

interaction with the other modules of the AI workflow component is depicted in Figure 

7. 
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4.4.1 General description and functionalities 

Once an ML model, like a neural network, is trained, it is served on the infrastructure as 

a standalone application, which receives unseen pre-processed data as input and 

produces the respective predictions as outputs. 

This component is responsible for providing the “living” ML model of a DT, allowing 

anyone to query it at any time, by either requesting on-line predictions (i.e., prediction on 

small data, usually encapsulated in an HTTP request, in real time), or submitting batch 

jobs (i.e. the ML model is seen as a transformation, which is applied to a large dataset, 

producing another dataset of predictions as output). A DT developer or a scientist 

chooses a pre-trained ML model from the Models Registry and the “ML deployment 

component” deploys it in a container, encapsulating the minimal Python environment 

needed by the ML model to properly function.  

 

Figure 7 - - Detailed view on the architecture of the ML deployment module 
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This component is different from ML training in that the training component has generally 

a different Python environment, which, for instance, includes libraries that are needed 

only at training time (e.g., HPO libraries). Moreover, the Python environment used with 

the deployed ML model may contain deployment-specific libraries, for instance, to allow 

users and other modules to query the ML model for predictions, like via REST APIs. 

Furthermore, differently from the ML training module, the deployment of an ML model 

can be replicated to improve its availability when multiple queries, such as HTTP requests, 

are made to the same ML model. Similarly, to ML training, the deployed ML model can 

access resources and frameworks for distributed ML (e.g. Horovod). 

A DT developer or a scientist can deploy a pre-trained ML model as a step of a broader 

DT workflow, which is orchestrated by the workflow composition tools and engine 

described in Section 3.2. For instance, a minimal DT workflow including a pre-trained ML 

model could consist of: preprocessing of satellite images with openEO, prediction of fire 

risk maps with a pre-trained generative adversarial neural network (GAN), and 

visualisation of the predictions. In this example, the pre-trained GAN can be queried by 

the visualisation tool to perform on-line predictions, or it could be applied to a dataset of 

preprocessed satellite images, in a batch processing fashion, to produce a large set of 

predictions all at once. In both situations, deploying the pre-trained ML model as a 

container allows it to be scaled up or down, according to the needs of availability for 

online queries or parallelization for batch processing. 

4.4.2 Interfaces 

The module for ML model deployment provides an API that allows the user to select and 

deploy a pre-trained model based on some goodness metrics. In the specific case of the 

selection of the pre-trained model to deploy, the DT developer can access the ML model 

deployment module via some web-based portal. 

The ML deployment can be triggered by the advanced workflow composition through 

Kubernetes-like, OpenStack APIs, or Apache Airflow-like APIs.  

4.4.3 Technology stack 

To begin with, the technology requirements for this component are the following: 

● Interaction with the infrastructure via a Kubernetes-like API abstraction layer. 

Infrastructure providers may use different container management platforms, but 

this component expects to interact with the underlying infrastructure through 

some abstraction layer developed by WP5. This abstraction layer is used to deploy 

pre-trained models in containers as standalone services. 

● On top of Kubernetes-like clusters, the deployed ML model can be triggered by 

some workflow orchestrator (such as Argo workflows or Apache Airflow). 

● The ML model is deployed in a container (e.g., Docker) with an ad-hoc Python 

environment. This requires the availability of container engines. 

● The pre-trained ML model is retrieved from the models registry, which shall be 

available on the infrastructure as part of the MLflow server (i.e. the standalone 

https://argoproj.github.io/workflows/
https://airflow.apache.org/
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MLflow tracking server). The MLflow tracking server can be deployed on the 

infrastructure using its container image. 

The technology stack of the ML deployment module can be summarised as follows: 

● Interface with the PaaS UI and thematic module. This interface allows this 

component to receive the scripts to include in the deployment container, and the 

details of the deployment, such as unique ID of the pre-trained model to deploy, 

and hardware preferences. 

● Client to communicate with the Models Registry. Fetches the desired ML model 

from the models registry using its unique ID. This could be an MLflow client. 

● APIs to access the container engine, to build and deploy the image of the ML model 

to serve. 

Once deployed, the software stack of an ML model has the following key components 

● The model is deployed in a Python environment, including libraries to: 

○ Run the pre-trained ML model (e.g., PyTorch, TensorFlow, ONNX runtime)  

○ Connect to the metrics logger, like the MLflow client to contact the MLflow 

tracking server. 

○ Communicate with the external environment (e.g., CLI, REST APIs) 

○ Distributed ML for inference, such as Horovod and PyTorch DDP 

● Drivers to access computing infrastructure (e.g., CUDA drivers) 

● Connectors to data infrastructure, like Kafka and Rucio clients 

4.4.4 Interaction with other components 

The ML model deployment interacts with the following components: 

Model registry: Retrieves a pre-trained model from the models registry using its unique 

ID. This interaction is mediated through a specific interface, which could be implemented 

via APIs or a client. Most likely, the models registry is going to be implemented using 

MLflow tracking server, therefore, the interaction with the models registry is likely to be 

mediated via the MLflow client. An alternative is the Kubeflow client/APIs in case the 

models registry is hosted on some Kubeflow instance. 

Metric logger: Saves metrics concerning the deployed ML models to the logger service, 

for monitoring reasons. Both the ML deployment instance and the deployed ML models 

can access this service to constantly update the user (e.g., the DT developer) about their 

status. 

Distributed ML: Accesses distributed ML resources to scale the inference computations 

when the deployed ML model is large, or to provide an alternative method to scale up 

when the volume of requests is large. Distributed ML provides an abstraction layer to 

scale the computation on multiple GPUs. 

Computing infrastructure (WP5): As described above, a pre-trained ML model is 

deployed on the infrastructure as a container, therefore, it has to interact with the 

https://mlflow.org/docs/latest/tracking.html#scenario-5-mlflow-tracking-server-enabled-with-proxied-artifact-storage-access


D6.1 Report on requirements and core modules definition            

 

interTwin – 101058386                          51 

infrastructure provider using Kubernetes-like APIs. Furthermore, the computing 

infrastructure will provide computing resources such as GPUs (preferably) or CPUs, to run 

the deployed ML model. 

Data infrastructure (WP5): An ML model can be deployed to transform a large dataset, 

in a batch processing manner. Alternatively, the deployed ML model can take advantage 

of (near) real-time data acquisition to perform real-time predictions on input data 

streams, producing an output stream of predictions. 

Thematic module / PaaS UI (WP7): Similarly, to the ML training component, the ML 

deployment module is instantiated by the user (e.g. the DT developer) through some UI 

provided by the DTE PaaS. The user selects the pre-trained model to deploy from the 

models registry, and defines other deployment configurations, such as the number of 

replicas, or hardware preferences. An important aspect is the definition of connectors to 

the pre-trained dataset: the DT developer shall provide a Python script to load the dataset 

items in memory, by defining the logic to parse and identify the items of the dataset 

stored on disk, like, the logic defined by extending Pytorch’s Dataset class. Another 

similarity with the ML training module is that the deployment of an ML model provides 

the user (e.g., the DT developer) with statistics concerning the ML model, through the 

metrics logger component, for real-time monitoring, 

Advanced workflow composition: The ML deployment can be triggered by the 

advanced workflow composition. Both components are likely to be deployed as 

containers on the infrastructure, thus the trigger received from the advanced workflow 

composition should be in the form of Kubernetes-like or Apache Airflow-like APIs. The 

interaction could be via HTTP requests, message queues, or other. 

Quality and uncertainty tracing. The Software Quality Assessment as a Service logic 

provided by the “Quality and uncertainty tracing” module, allows testing (micro)services 

in a black-box manner. Once a pre-trained ML model is deployed as a container as a 

standalone service, it can be easily tested in a black-box manner. The DT developer can 

provide use case-specific test cases to validate the performance of the model. 
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5 Components for Quality Assurance 

The main goal of the Quality Assurance (QA) component of the DTE is to perform domain-

specific (functional, behavioural) validation, in a black-box manner, avoiding clashes with 

any complementary evaluation task, such as the validation of performance metrics done 

as part of the AI workflows subsystem. However, based on the collected requirements 

summarised in Section 2, in addition to the compliance with FAIR principles, foreseen QA 

work shall also include criteria for data quality, e.g., check data and metadata integrity 

after data ingestion. 

5.1  Software Quality Assurance as a Service 

The DTE features a specific module for quality assurance (QA) that aims at tackling the 

early validation of the DTs, before being deployed as a “living DT”. The main module that 

provides this functionality is the Software Quality Assurance as a Service (SQAaaS). 

5.1.1 General Description and functionalities  

Software Quality Assurance as a Service (SQAaaS) provides graphical and programmatic 

interfaces to compose continuous integration and delivery (CI/CD) pipelines. These 

pipelines are then used as fail-fast systems so that any indication of a failure is reported 

promptly during the development life cycle. 

By means of the SQAaaS platform, the DT developer can choose among a set of special-

purpose, open-sourced libraries, and tools to assess QA criteria relative to models and/or 

data. The list of criteria (and their means of validation) is then wrapped into CI/CD 

pipelines, which once executed, act as quality gates during the validation of a DT 

workflow.  

Accordingly, the resultant CI/CD pipelines are meant to be triggered both on-demand, 

e.g. as the final acceptance check of a pre-trained ML model before moving it to 

production (see also the components for AI workflows), or as a response to events, 

such as those generated by data ingestion systems (integration with workflow 

composition tools) or by repository platforms as a result of new changes in the source 

code of the model. 

The architecture of the SQAaaS module is depicted in Figure 8, and its primary 

components are summarised below. 

SQAaaS API server 

This is the key component of the SQAaaS platform. It provides two main features: i) the 

composition of CI/CD pipelines, and ii) the quality assessment of three types of digital 

assets: source code, (web)services and data. Whilst the latter, known as Quality 

Assessment and Awarding, provides a more general and comprehensive analysis (and 

crediting) of a given digital object through the execution of a fixed set of criteria and tools, 

the former, coined as Pipeline as a Service, facilitates the task of tailoring CI/CD pipelines 

by selecting the required criteria and the tools to be used in each stage of the pipeline. 



D6.1 Report on requirements and core modules definition            

 

interTwin – 101058386                          53 

SQAaaS tooling & reporting 

The SQAaaS platform has built-in support for a series of open source tools that cover the 

validation of individual quality criteria. Tools are selected based on the popularity and 

adequate support within the given community. As an example, pycodestyle (Python’s 

PEP8 checker) is one of the supported tools to cover the “code style”-related criteria. The 

support for a given tool is accompanied by an associated reporting plugin that is in charge 

of validating its output. 

New libraries and tools will enrich the current catalogue in order to deal with the 

requirements of a DTE implementation, both in terms of data quality and model 

validation. These tools will assist DT developers to uncover issues in early stages with 

extended capabilities on data integrity, cleansing, formatting, profiling, and FAIR 

compliance, as well as model performance. Examples of tools already identified are FAIR-

EVA,39 DeepChecks,40 and Great Expectations.41 

Jenkins Pipeline Library 

Jenkins Pipeline Library (JePL) provides the integration with the CI solution (Jenkins) 

through YAML descriptions, where the pipeline work is defined. The file is structured 

according to the set of quality criteria being used. The library relies on containers to set 

the environment for the execution of the checks clustered in each criterion being defined. 

 

39 https://github.com/EOSC-synergy/FAIR_eva 

40 https://github.com/deepchecks/deepchecks 

41 https://github.com/great-expectations/great_expectations 

 

https://github.com/EOSC-synergy/FAIR_eva
https://github.com/deepchecks/deepchecks
https://github.com/great-expectations/great_expectations
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Figure 8 - Detailed view on the architecture of the quality assurance module 

5.1.2 Interfaces 

The SQAaaS platform provides an API that allows the composition and triggering of QA 

assessments, which shall be leveraged by this component. In the particular case of the 

composition of a customised QA assessment or CI/CD pipeline, the DT developer has the 

additional possibility of accessing the SQAaaS platform though the web portal.   

5.1.3 Technology stack 

The technology stack used to deploy and operate the SQAaaS platform is described 

below. 

CI system  

This component is where the CI/CD pipelines described through the JePL library run (i.e., 

Jenkins). The SQAaaS cloud instance already provides a Jenkins CI server with a set of 

agents to distribute the work. The SQAaaS can also be deployed on-premises via 

Kubernetes. In this case, a Kubernetes Jenkins operator is deployed in the cluster. 

Code repository platform 

The SQAaaS platform relies on a Git-based repository platform to operate (i.e., store, 

track, and access) the pipelines being created. The SQAaaS API stores each defined QA 

assessment as a JePL pipeline in an individual code repository. The API is currently 

integrated with the GitHub platform, where the InterTwin project has already an 
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organisation available42. This approach facilitates the maintenance of the QA assessment, 

acting as a catalogue of JePL pipelines so that they can be re-defined and re-triggered. 

Besides using GitHub for the operational needs of the SQAaaS platform, it can be 

additional leveraged to store workflow definitions created by the workflow composition 

tools, and thus, configure the integration with the SQAaaS’ CI server in order to validate 

them upon changes. 

Container registry 

The libraries and tools that will be used in the CI/CD pipelines, both the ones having built-

in support and/or the specifically selected by the user, shall be available as container 

images in some Docker registry. 

5.1.4 Interaction with other components 

Workflow composition: The workflow composition tool will allow the DT developer to 

add QA assessments in one or multiple steps during the workflow composition. The 

added value of following this approach is the early detection of any issue, and thus, 

having the capability to interrupt the workflow execution as soon as any of the pre-

defined quality standards are not met (quality gate). 

ML model deployment: Before performing the black-box validation, the model needs to 

be deployed. In the case of ML-based models, the AI/ML module will provide the “ML 

model deployment component” that fetches the appropriate version of the model from 

the registry and deploys it for further validation. 

Data acquisition and event-driven triggering of workflows: The event-driven 

architecture implemented by Task 6.1 can be leveraged to perform QA work on the data 

to be used to train and operate the DT (DataOps-like approach). For instance, if 

connected with a data lake or registry (aka Data Computation and Abstraction) it would 

facilitate the quality attributes of the data stored there. Polling-based solutions can also 

be considered.  

 

42 https://github.com/interTwin-eu 

https://github.com/interTwin-eu
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6 Components for Big Data Analytics 

An overview of the deployment of the Data Analytics tools is provided in Section 6.1, 

while subsequent sections will detail the specific tools that are involved in Big Data 

Analytics. Specifically, Section 6.2 describes Kubernetes clusters, Section 6.3 presents 

Daskhub environments, Section 6.4 covers Volcano and Horovod environments, Section 

6.5 covers Hadoop and Spark, while Section 6.6 deals with Kubeflow clusters. Finally, 

Section 6.7 covers Ophidia. 

6.1  Deployment of Big Data Analytics tools 

This section describes the deployment module of the Big Data Analytics subsystem. 

Figure 9 shows how the modules of the Big Data Analytics deployment work together. 

Each of these modules is described in more details below. 

6.1.1 General description and functionalities  

The goal of the deployment layer is to create a set of topology templates and recipes for 

general-purpose data analytic environments to be deployed on demand on top of the 

cloud resources.  

The cloud topology templates will be created using the OASIS TOSCA Simple YAML 

specification [R2]. They will describe all the virtual resources and the software 

components required to deploy the final application. Furthermore, they will provide the 

user with a set of input parameters enabling them to customise the application 

configuration. 

All the defined templates will be stored in a public repository that will be made available 

to the users by the Orchestrator Dashboard. It will render the templates, enabling the 

users to set the defined input parameters and will contact the PaaS Orchestrator that will 

be in charge of processing the TOSCA template and creating all the required cloud 

resources, configuring the selected big analytics tool, and making it available for the final 

user. Finally, the Dashboard will show the TOSCA specified output values with the 

required information to connect with the application (endpoints, credentials, etc.). 

The artefacts with the recipes to configure the desired big analytics tools will be described 

using the Ansible Language (in Ansible terms, “playbooks”). All the ansible playbooks 

referenced in the TOSCA templates will also be stored in a public repository. Moreover, 

the main installation recipes will be packaged as Ansible roles thus enhancing their 

reusability in different playbooks. Also, all the defined Ansible roles will be stored in public 

repositories and made available for the playbooks using the ansible galaxy tool. 
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Figure 9 - General architecture of the data analytics tools 

PaaS Orchestrator 

The Platforms as a Service (PaaS) Orchestrator allows federating heterogeneous resource 

providers and orchestrates the deployment of TOSCA templates, selecting the best 

provider according to criteria like the data location, the SLA and monitoring information. 

It provides a set of APIs to create, monitor and manage the deployments. 

Orchestrator dashboard 

The PaaS Orchestrator dashboard is a web application that enables users to easily 

interact with the services of the PaaS, particularly the Orchestrator, to create TOSCA-

based deployments. The dashboard provides a user-friendly interface for managing and 

monitoring deployments. 

Big Data Analytics TOSCA templates repository 

This repository will store the set of TOSCA templates with the definition of the software 

component and the underlying virtual infrastructures needed to execute the Big Data 

Analytics tools. Some of these TOSCA templates will require the creation of new TOSCA 

custom types to define particular elements (mainly software components) of the cloud 

topology. These new custom types will also be defined in a separate YAML file but stored 

in the same repository. 

Configuration artefacts repository 

TOSCA templates define the topology and the set of components needed to fully deploy 

an application, but these templates refer to a set of artefacts with the recipes needed to 

install/configure every software component needed. These artefacts will also be stored 
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in a public repository (or set of them). These artefacts will be defined using the Ansible 

DSL language. 

Ansible roles repositories 

The artefacts defined to install/configure software components may also use Ansible 

roles. Ansible roles are ways of getting content contributions from various Ansible 

Developers, they are similar to libraries in programming languages. These roles use a 

central service provided by Ansible (Ansible Galaxy) to search for the required roles to be 

used in an Ansible playbook, but the actual recipes are stored in public GitHub 

repositories. 

6.1.2 Interfaces 

For the final user the Orchestrator Dashboard offers a graphical web UI where any user 

without knowledge about TOSCA can easily deploy their own Big Data Analytics tools with 

the underlying virtual infrastructure required. 

The PaaS Orchestrator also offers a REST API (https://indigo-

dc.github.io/orchestrator/) that can be used programmatically to create the required 

virtual infrastructures. 

6.1.3 Technology stack 

The PaaS Orchestrator needs the presence of the following services: 

SLA Manager 

The SLA Manager (SLAM) stores all Service Level Agreements (SLAs) of the user and allows 

for their programmatically retrieval. 

Configuration Management DataBase 

The Configuration Management DataBase (CMDB) is where the Cloud sites store the 

necessary information for delivering their services and/or resources. Information like 

service endpoints, contact emails, people responsible for the services, 

planned/unplanned interventions, and downtime, etc. The information stored in the 

CMDB is regularly reviewed and validated. 

Monitoring System 

The monitoring system collects and generates Availability and Reliability metrics for the 

services registered in CMDB, via monitoring probes deployed at each Cloud site. It allows 

querying monitoring metrics through a REST interface. 

Cloud Provider Ranker 

Cloud Provider Ranker (CPR) receives all the information retrieved from the 

aforementioned services and provides the ordered list of the best sites. 

https://indigo-dc.github.io/orchestrator/
https://indigo-dc.github.io/orchestrator/


D6.1 Report on requirements and core modules definition            

 

interTwin – 101058386                          59 

Infrastructure Manager 

Infrastructure Manager43 (IM) is the component that actually deploys and configures the 

virtual infrastructure once the site has been selected. 

6.1.4 Interaction with other components 

The PaaS orchestrator by means of the Infrastructure Manager will interact with the set 

of cloud providers (either resources of the testbed infrastructure, the EGI Federated 

cloud, on–premises cloud or public cloud offerings) to deploy the virtual resources 

needed. 

The PaaS orchestrator also allows the deployment of dockerized services and jobs on 

Mesos and Kubernetes clusters on HPC providers. 

6.2 Elastic Kubernetes clusters on demand 

This section describes the Kubernetes clusters as part of the Big Data Analytics 

subsystem. Figure 10 shows the architecture for deployment of Big Data Analytics tools 

using on-demand Kubernetes clusters. 

6.2.1 General Description and functionalities  

One of the main components required for deploying other data analytic environments is 

a container orchestration platform based on Kubernetes (K8s). This will facilitate the 

deployment of containerised data analytic components. The innovative aspect of this 

component will be the ability to extend and shrink the number of nodes of the K8s cluster 

according to the workload. This way the number of nodes in the cloud infrastructure will 

be minimised and adjusted to the real need. 

The variation in the number of nodes of a Kubernetes cluster is performed according to 

two criteria: 

● Powering on new nodes and adding them to the Kubernetes cluster. This is 

triggered when an object that has indicated a request on resources and it entered 

in the “pending” state due to the lack of resources. After a period of time defined 

in the configuration of CLUES, the deployment of a new node is triggered so the 

object can be scheduled. 

● Powering off nodes and removing them from the Kubernetes clusters. Idle nodes 

that remain without processing objects allocated are powered off after a given 

time threshold. Powered off nodes automatically disappear from the available 

nodes of Kubernetes.  

 

43 https://www.grycap.upv.es/im/index.php 

https://www.grycap.upv.es/im/index.php
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6.2.2 Interfaces 

Kubernetes objects are managed through the Kube apiserver using the Kubernetes API44. 

This API permits the management of any type of Kubernetes object coded into JSON or 

YAML formats. Authentication can be performed by means of tokens, which could be 

defined on the instantiation of the cluster. 

In order to facilitate the management of Kubernetes objects, two additional applications 

can be optionally deployed with the Kubernetes cluster (supported by the TOSCA recipe). 

On the one hand, the Kubernetes Dashboard45 is a Graphical User Interface (GUI) that can 

manage any type of K8s object and provides a monitoring system to explore the usage of 

resources. This interface facilitates the management of K8s objects especially if a 

Command Line Interface (e.g., kubectl) is not available. On the other hand, the TOSCA 

recipe is enabled to install Helm and Kubeapps, so Helm charts46 can be deployed from 

the GUI of Kubeapps. 

6.2.3 Technology stack 

The cluster will be described as a TOSCA Infrastructure as Code blueprint, which could be 

deployed on top of the infrastructure through either the PaaS orchestrator or the 

Infrastructure Manager. The infrastructure recipe is available in GitHub47. This recipe 

comprises the following components: 

Kubernetes 

Kubernetes (K8s) is an open source platform for automating the deployment, scaling, and 

management of containerized applications.48 

Elastic Cloud Computing Cluster 

The Elastic Cloud Computing Cluster (EC3)49 is a platform that allows creating elastic 

virtual clusters on top of Infrastructure as a Service (IaaS) providers, either public (such 

as Amazon Web Services, Google Cloud, or Microsoft Azure) or on-premises (such as 

OpenStack or OpenNebula). It uses CLUES as the elasticity management component of 

EC3. The CLUES system integrates with the cluster management middleware, such as 

container orchestrators, batch-queuing systems, or cloud infrastructure management 

systems, by means of different connectors. 

 

 

44 https://kubernetes.io/docs/concepts/overview/kubernetes-api/  

45 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/  

46 https://helm.sh/es/docs/topics/charts/  

47 https://github.com/grycap/im-dashboard/blob/master/tosca-templates/kubernetes_elastic.yaml  

48 https://kubernetes.io/es/  

49 https://eosc-portal.eu/news-and-events/news/elastic-cloud-compute-cluster-ec3  

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://helm.sh/es/docs/topics/charts/
https://github.com/grycap/im-dashboard/blob/master/tosca-templates/kubernetes_elastic.yaml
https://kubernetes.io/es/
https://eosc-portal.eu/news-and-events/news/elastic-cloud-compute-cluster-ec3
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Figure 10 - General architecture for deploying data analytics tools on Kubernetes clusters 

6.2.4 Interaction with other components 

The on-demand elastic Kubernetes cluster module acts as the framework using which 

Daskhub environments (see Section 6.3),  Volcano and Horovod environments (see 

Section 6.4), Kubeflow clusters (see Section 6.6), and Ophidia clusters (see Section 6.7) 

will be deployed. 

6.3 Daskhub environment 

This section describes how Daskhub environments can be as part of the Big Data 

Analytics subsystem, and Figure 11 illustrates the involved architecture. 

6.3.1 General description and functionalities  

DaskHub is a Helm chart that deploys both Dask Gateway and JupyterHub on a 

Kubernetes cluster50. DaskHub is an evolution of the Pangeo Helm chart, which came out 

 

50 https://artifacthub.io/packages/helm/dask/daskhub 

 

 
Use

Cloud 
Provid

PaaS 
OrcheInfrast

ructur

Elastic Config
K8s 

CLUE

PaaS 

Read 
Templat
es 

Deploy 

Referen
ces 

Uses 
Referen
ces 

Customi
ze 
Templat
e 

Elastic 
K8s 
Compon
ent 

Orchestr
ate 
Deploy
ment 

Use 

Kubea KubeA
PI Manage 

Applicati
on 

Kuber
netes Mana

ge 
K8s 
Objec
t 

Kuberne
tes 
Deploy
ment 

Manage 
K8s 
Object 

Helm 
Provide 
specification 

Monit
or 
queue
s 

(un)d
eploy 
node 

Kuber

Deploy 
applicati
on 

Mana
ge 
Artifac
ts 

https://artifacthub.io/packages/helm/dask/daskhub


D6.1 Report on requirements and core modules definition            

 

interTwin – 101058386                          62 

of that community’s attempts to do big data geoscience on the cloud. DaskHub provides 

a scalable and flexible environment for data analysis and processing. With DaskHub, 

users can easily launch and scale Dask clusters within a JupyterHub environment, 

allowing for seamless integration of interactive computing and parallel processing. 

Dask Gateway is an option for deploying Dask clusters51. A Dask cluster is a set of Dask 

workers that are managed by a Dask scheduler. The workers are responsible for 

executing tasks and the scheduler is responsible for coordinating the execution of those 

tasks across the workers. It is centrally managed, meaning that administrators do the 

heavy lifting of configuring the Gateway, while users simply connect to the Gateway to 

get a new cluster. Dask workers can execute any Python function. As such, Dask, an open-

source library for parallel computing in Python52, can be utilised to parallelize and 

distribute the execution of any Python code. However, it should be noted that using 

Dask’s high-level APIs can facilitate the parallelization and distribution of computations. 

JupyterHub is a multi-user server that brings the power of notebooks to groups of users53. 

It gives users access to computational environments and resources without burdening 

them with installation and maintenance tasks. Users, including students, researchers, 

and data scientists, can get their work done in their own workspaces on shared resources. 

6.3.2 Interfaces 

Once deployed, users can interact with DaskHub through the JupyterHub interface. 

JupyterHub provides a web-based interface where users can launch Jupyter notebooks 

and access computational resources. From within a Jupyter notebook, users can launch 

and scale Dask clusters to perform parallel computations. 

6.3.3 Technology stack 

The DaskHub environment can be deployed on a Kubernetes cluster using a Helm chart. 

To do this, first add the repository by running the command helm repo add dask 

https://helm.dask.org, then install the chart with the command helm install my-daskhub 

dask/daskhub --version 2023.1.0.  

This chart will deploy a standard Dask Gateway deployment using the Dask Gateway helm 

chart and a standard JupyterHub deployment using the JupyterHub helm chart. The Dask 

Gateway is configured to use JupyterHub for authentication and JupyterHub is configured 

to proxy Dask Gateway requests and set Dask Gateway-related environment variables. 

Chart configurable parameters can be modified on installation in config.yaml. JupyterHub 

will be available at the proxy-public external IP. 

 

51 https://gateway.dask.org/ 

52 https://www.dask.org/ 

53 https://jupyter.org/hub 

 

https://gateway.dask.org/
https://www.dask.org/
https://jupyter.org/hub
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Figure 11 - General architecture for using Daskhub environments for data analytics 

6.3.4 Interaction with other components 

Elastic Kubernetes clusters: This module will be deployed on top of the Elastic 

Kubernetes framework described earlier. It requires the PaaS orchestrator or the 

Infrastructure Manager for being deployed on the resource provider (either resources of 

the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or 

public cloud offerings). 
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6.4 Volcano and Horovod environment 

This section details how Volcano and Horovod environments can be as part of the Big 

Data Analytics subsystem, while Figure 12 illustrates the involved architecture. 

6.4.1 General Description and functionalities  

Together, Volcano and Horovod can be used to run distributed deep learning workloads 

on a Kubernetes cluster. Volcano provides the infrastructure for managing the compute 

resources while Horovod provides the framework for scaling the deep learning training 

jobs. This combination allows users to efficiently train large deep learning models on big 

data sets. 

Volcano 

Volcano is a batch system built on Kubernetes that provides a platform for running high-

performance workloads54. It can be used to run big data analytics jobs and other 

compute-intensive tasks. Volcano provides features such as job scheduling, resource 

management, and job management to help users efficiently run their workloads on a 

Kubernetes cluster. 

Horovod 

Horovod is a distributed deep learning training framework for TensorFlow, Keras, 

PyTorch, and Apache MXNet55. It provides an easy-to-use interface for scaling deep 

learning training jobs across multiple nodes and GPUs. Horovod can be used to train large 

deep learning models on big data sets. 

6.4.2 Interfaces 

Once deployed, users can interact with the Volcano and Horovod environment by 

submitting a script written in Python that includes the Horovod libraries. The Volcano 

system would then be in charge of running the workload and adjusting the resources 

accordingly. This allows users to efficiently run distributed deep learning workloads on a 

Kubernetes cluster. 

6.4.3 Technology stack 

Volcano can be installed through its Helm chart on top of Kubernetes, provided that the 

version of Kubernetes is 1.13 or greater and includes support for custom resource 

definitions56. This is supported by the TOSCA recipe of Kubernetes described in section 

6.1. This can be performed by selecting the support of Helm charts and indicating as the 

name of the Helm Chart to install “volcano-sh/volcano” and https://volcano-

sh.github.io/charts as the URL to the Helm repository.  

 

54 https://volcano.sh/en/ 

55 https://horovod.ai/ 

56 https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/  

https://volcano-sh.github.io/charts
https://volcano-sh.github.io/charts
https://volcano.sh/en/
https://horovod.ai/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
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Figure 12 - General architecture for using Volcano and Horovod environments for data analytics 

6.4.4 Interaction with other components 

Elastic Kubernetes clusters: This module will be deployed on top of the Elastic 

Kubernetes framework described earlier. It requires the PaaS orchestrator or the 

Infrastructure Manager for being deployed on the resource provider (either resources of 

the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or 

public cloud offerings). 

6.5 Apache Hadoop and Apache Spark clusters 

This section describes how Apache Hadoop and Apache Spark clusters can be used as a 

core part of the Big Data Analytics subsystem. Figure 13 shows the architecture of the 

Big Data Analytics component with Hadoop and Spark. 

6.5.1 General description and functionalities  

The Apache Hadoop software library is a framework that allows for the distributed 

processing of large data sets across clusters of computers using programming models 

such as Map Reduce. It is designed to scale up from single servers to thousands of 

machines, each offering local computation and storage. It provides a distributed storage 

capability to split and replicate fractions of files so distributed workloads can efficiently 
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process concurrently data analytic tasks. Hadoop can be used as a backend for other data 

analytic tools such as Spark. 

Apache Spark57 is a multi-language engine for executing data engineering, data science, 

and machine learning on clusters. It provides high-level APIs in Java, Scala, Python, and R, 

and an optimised engine that supports general execution graphs. It also supports a rich 

set of higher-level tools including Spark SQL58 for SQL and structured data processing, 

pandas API on Spark59 for pandas workloads, MLlib60 for machine learning, GraphX61 for 

graph processing, and Structured Streaming62 for incremental computation and stream 

processing. 

6.5.2 Interfaces 

As Apache Hadoop is a collection of open-source software utilities that facilitate using a 

network of many computers to solve problems involving massive amounts of data and 

computation, it does not have a single interface. Instead, the interfaces of Hadoop are: 

● The Hadoop libraries and utilities contained in Hadoop Common, these are 

needed by other Hadoop modules; 

● The API of the Hadoop Distributed File System (HDFS), which is a distributed file 

system that stores data on commodity machines, providing very high aggregate 

bandwidth across the cluster; 

● The Hadoop YARN API63 allows for managing computing resources in Hadoop 

clusters and using them for scheduling applications; 

● The MapReduce programming model for large-scale data processing. 

Apache Spark, the unified analytics engine for large-scale data processing, provides 

multiple interfaces for programming clusters with implicit data parallelism and fault 

tolerance. The most important of these are: 

● The Spark Core API is the foundation of Spark, as it provides distributed task 

dispatching, scheduling, and basic I/O functionalities. Libraries in multiple 

programming languages, including Java, Python, Scala, and R, are available; 

● Spark SQL is a component on top of Spark Core that introduced a data abstraction 

called DataFrames, which provides support for structured and semi-structured 

 

57 https://spark.apache.org/docs/latest/ 

58 https://spark.apache.org/docs/latest/sql-programming-guide.html 

59 https://spark.apache.org/docs/latest/api/python/getting_started/quickstart_ps.html 

60 https://spark.apache.org/docs/latest/ml-guide.html  

61 https://spark.apache.org/docs/latest/graphx-programming-guide.html  

62 https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html  

63 https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WebServicesIntro.html  

https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/api/python/getting_started/quickstart_ps.html
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/latest/graphx-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WebServicesIntro.html
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data. Spark SQL provides a domain-specific language (DSL) to manipulate 

DataFrames in Scala, Java, Python, or .NET. 

Additional Spark libraries can offer other capabilities and interfaces, notable mentions 

include the MLib distributed machine-learning framework, and the GrapX distributed 

graph-processing framework. 

6.5.3 Technology stack 

The TOSCA template that codes this virtual application is available in GitHub64. It 

comprises the template for a Spark working node and a Spark master, both inheriting 

from the Hadoop Working Node and Hadoop server specifications of the Hadoop cluster 

TOSCA template65. Subsequently, the Hadoop cluster TOSCA template could be 

instantiated separately by specifying the Hadoop Master and Hadoop Working nodes. In 

the case of the Spark cluster, the nodes implement both specifications (Spark and 

Hadoop) so only the Spark nodes need to be deployed. The number of nodes should be 

defined at deployment time. 

Apache Spark 

Apache Spark is installed through an Ansible Playbook stored in Ansible Galaxy66. 

Apache Hadoop 

The definition of the Hadoop Master is one of the custom types of the TOSCA recipes67. It 

uses an Ansible Playbook stored in Ansible Galaxy68. 

 

64 https://github.com/grycap/im-dashboard/blob/master/tosca-templates/spark_hadoop.yaml  

65 https://github.com/grycap/im-dashboard/blob/master/tosca-templates/hadoop_cluster.yaml  

66 https://galaxy.ansible.com/grycap/spark  

67 https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/custom_types.yaml  

68 https://galaxy.ansible.com/grycap/hadoop  

https://github.com/grycap/im-dashboard/blob/master/tosca-templates/spark_hadoop.yaml
https://github.com/grycap/im-dashboard/blob/master/tosca-templates/hadoop_cluster.yaml
https://galaxy.ansible.com/grycap/spark
https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/custom_types.yaml
https://galaxy.ansible.com/grycap/hadoop
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Figure 13 - General architecture for using Apache Hadoop and Apache Spark for data analytics 

6.5.4 Interaction with other components 

Elastic Kubernetes clusters: This module will be deployed on top of the Elastic 

Kubernetes framework described earlier. It requires the PaaS orchestrator or the 

Infrastructure Manager for being deployed on the resource provider (either resources of 

the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or 

public cloud offerings). 

6.6 KubeFlow clusters 

This section details how Kubeflow clusters are being used in the Big Data Analytics 

subsystem. Figure 14 shows the generic view of the architecture needed to us KubeFlow 

clusters. 

6.6.1 General Description and functionalities  

Kubeflow69 is a free, open-source machine learning platform that allows machine learning 

pipelines to orchestrate complicated workflows running on Kubernetes. Kubeflow is a 

collection of cloud native tools for all stages of the machine learning lifecycle, including 

 

69 https://www.kubeflow.org/ 

https://www.kubeflow.org/
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data exploration, feature preparation, model training/tuning, model serving, model 

testing, and model versioning. Each component of Kubeflow can be deployed separately. 

The Kubeflow project is dedicated to making deployments of machine learning (ML) 

workflows on Kubernetes simple, portable, and scalable. Its goal is not to recreate other 

services, but to provide a straightforward way to deploy best-of-breed open-source 

systems for ML to diverse infrastructures. 

Kubeflow translates steps in the data science workflow into Kubernetes jobs. It is a 

platform for data scientists who want to build and experiment with ML pipelines. 

Kubeflow is also for ML engineers and operational teams who want to deploy ML systems 

to various environments for development, testing, and production-level serving. 

It includes services to create and manage interactive Jupyter notebooks. You can 

customise your notebook deployment and your compute resources to suit your data 

science needs. 

Kubeflow provides training operators for several ML frameworks such as TensorFlow 

(TFJob), PyTorch (PyTorchJob), MXNet (MXJob), XGBoost (XGBoostJob), and PaddlePaddle 

(PaddleJob). Furthermore, it supports a TensorFlow Serving container to export trained 

TensorFlow models to Kubernetes. Kubeflow is also integrated with Seldon Core, an open 

source platform for deploying machine learning models on Kubernetes, NVIDIA Triton 

Inference Server for maximised GPU utilisation when deploying ML/DL models at scale, 

and MLRun Serving, an open source serverless framework for deployment and 

monitoring of real-time ML/DL pipelines. Kubeflow Pipelines is a comprehensive solution 

for deploying and managing end-to-end ML workflows. 

6.6.2 Interfaces 

Once Kubeflow has been deployed, users can interact with it through the Kubeflow 

Dashboard. The dashboard provides a central user interface for managing and 

monitoring Kubeflow resources such as notebooks, pipelines, and experiments.  

Users can also use the Kubeflow command line interface (CLI) to interact with Kubeflow 

resources. 

6.6.3 Technology stack 

KubeFlow is installed through an Ansible recipe70 on top of an elastic Kubernetes cluster. 

 

70 https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/artifacts/kubeflow.yml  

https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/artifacts/kubeflow.yml
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Figure 14 - General architecture for using Kubeflow for data analytics 

6.6.4 Interaction with other components 

Elastic Kubernetes clusters: This module will be deployed on top of the Elastic 

Kubernetes framework described earlier. It requires the PaaS orchestrator or the 

Infrastructure Manager for being deployed on the resource provider (either resources of 

the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or 

public cloud offerings). 

6.7 Ophidia Cluster 

This section covers Ophidia clusters as part of the Big Data Analytics subsystem. 

6.7.1 General description and functionalities  

Ophidia provides support for data-intensive analysis exploiting advanced parallel 

computing techniques and smart data distribution methods. It exploits an array-based 

storage model and a hierarchical storage organisation to partition and distribute 

multidimensional scientific datasets over multiple nodes. The Ophidia analytics 

framework can be exploited in different scientific domains (e.g., Climate Change, Earth 

Sciences, Life Sciences) and with very heterogeneous sets of data. 

Ophidia is offered using a JupyterLab instance, deployed on top of a Kubernetes cluster, 

jointly with a large set of pre-installed Python libraries and a ready-to-use Ophidia HPDA 

framework instance for running data manipulation, analysis, and visualisation. 
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6.7.2 Interfaces 

Once deployed, users can interact with the JupyterHub interface. JupyterHub provides a 

web-based interface where users can launch a Jupyter server where the user can use 

notebooks and access computational resources. From within a Jupyter notebook, users 

can launch the Ophidia HPDA framework to perform computations.  

PyOphidia, the Ophidia Python bindings, can be used together with other libraries from 

the scientific Python ecosystem for implementing data analytics applications. 

6.7.3 Technology stack 

Ophidia is installed through an Ansible recipe71 on top of an elastic Kubernetes cluster. 

 

Figure 15 - General architecture for using Ophidia clusters for data analytics 

6.7.4 Interaction with other components 

Elastic Kubernetes clusters: This module will be deployed on top of the Elastic 

Kubernetes framework described earlier. It requires the PaaS orchestrator or the 

Infrastructure Manager for being deployed on the resource provider (either resources of 

the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or 

public cloud offerings).  

 

71 https://github.com/grycap/ec3/blob/tosca/tosca/artifacts/enes/enes.yml  

https://github.com/grycap/ec3/blob/tosca/tosca/artifacts/enes/enes.yml
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Provenance: Ophidia will also interact with the provenance module (deployed as a 

containerized module) to track lineage metadata during (or at the end of) the analytics 

workflow execution.  
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7 Conclusions 

The first version of the interTwin Digital Twin Engine (DTE) core modules has been 

designed taking into consideration the requirements from the Digital Twin applications 

in the initial nine months of the project. The design of the modules was guided by the C4 

methodology [R2], providing clear insights into the Containers, Components and 

Connectors that make up the DTE core modules. 

The design also includes a list of technologies that have been analysed and selected for 

integration and extension/customisation. This Design will be updated following the first 

release of the component and early adopter from the DT applications, DTE thematic 

module integrations and requirements also from the DTE infrastructure.  

The next deliverables on WP6 include in October 2023 the description of the first release 

of the core components (D6.2). An update on the core requirements addressing more 

specifically questions such as Data Fusion, and also the requirements arising from the 

feedback on the first release of the core services will be provided in D6.3 already during 

the project second reporting period. 
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