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Abstract

Recent developments allowed generating multiple high-quality ‘omics’ data that could increase the predictive performance of genomic
prediction for phenotypes and genetic merit in animals and plants. Here, we have assessed the performance of parametric and nonpara-
metric models that leverage transcriptomics in genomic prediction for 13 complex traits recorded in 478 animals from an outbred mouse
population. Parametric models were implemented using the best linear unbiased prediction, while nonparametric models were
implemented using the gradient boosting machine algorithm. We also propose a new model named GTCBLUP that aims to remove
between-omics-layer covariance from predictors, whereas its counterpart GTBLUP does not do that. While gradient boosting machine
models captured more phenotypic variation, their predictive performance did not exceed the best linear unbiased prediction models for
most traits. Models leveraging gene transcripts captured higher proportions of the phenotypic variance for almost all traits when these
were measured closer to the moment of measuring gene transcripts in the liver. In most cases, the combination of layers was not able to
outperform the best single-omics models to predict phenotypes. Using only gene transcripts, the gradient boosting machine model was
able to outperform best linear unbiased prediction for most traits except body weight, but the same pattern was not observed when using
both single nucleotide polymorphism genotypes and gene transcripts. Although the GTCBLUP model was not able to produce the most
accurate phenotypic predictions, it showed the highest accuracies for breeding values for 9 out of 13 traits. We recommend using the
GTBLUP model for prediction of phenotypes and using the GTCBLUP for prediction of breeding values.
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Introduction
Predicting complex traits is a fundamental aim of quantitative
genetics. The use of whole-genome single nucleotide polymor-
phisms (SNPs) considerably improved the prediction of breeding
values, resulting in the process widely known as genomic predic-
tion (Meuwissen et al. 2001). A number of statistical approaches
are now applied routinely in breeding programs, such as genomic
best linear unbiased prediction (GBLUP) (VanRaden 2008), ridge
regression (Whittaker et al. 2000), or methods from the “Bayesian
Alphabet” (Gianola et al. 2009). More recently, machine learning
algorithms have been tested in the context of genomic prediction
(González-Recio et al. 2013; Pook et al. 2020; Zingaretti et al. 2020).
These models may have several advantages when compared
with the linear models routinely used in animal breeding pro-
grams, such as capturing interactions between predictors (non-
additive effects), automatic variable selection, and for making
fewer assumptions regarding the underlying genetic architecture
of phenotypes (Nayeri et al. 2019; Pérez-Enciso and Zingaretti
2019). However, compared to the routinely used models, predic-
tion performance from machine learning methods has shown
mixed results (Azodi et al. 2019; Abdollahi-Arpanahi et al. 2020;

Perez et al. 2022). There seems to be no “one-size-fits-all” model,
as results are dependent on trait genetic architecture, size of the
data, and fine-tuning of hyperparameters.

Recent development of low-cost high-throughput molecular
technologies allowed multiple high-quality ‘omics’ data to be
measured with high accuracy (Fernie and Schauer 2009; Tohge
and Fernie 2015; Chawade et al. 2016). This has led to interest in
utilizing these as new layers of information to improve the pre-
dictive performance of genomic prediction models, ultimately
contributing to improve efficiency of breeding programs (Guo
et al. 2016; Li et al. 2019). For example, gene expression levels mea-
sured in tissue samples by direct RNA sequencing (RNA-seq) are
now readily available to animal and plant breeders (Stark et al.
2019). To incorporate these new sources of information into ge-
nomic prediction models requires new strategies for integration
with the already widely used genome-wide marker data.
Although most of the literature focusing on the inclusion of gene-
expression data into genomic models to improve predictive per-
formance aimed at predicting phenotypes (Takagi et al. 2014; Guo
et al. 2016; Schrag et al. 2018; Azodi et al. 2019; Li et al. 2019;
Morgante et al. 2020), fitting gene transcript levels as an
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additional layer of information into genomic models could indi-
rectly improve the prediction of breeding values. Christensen
et al. (2021) presented a 2-step method to incorporate such inter-
mediate omics into genomic evaluations considering complete
and incomplete omics-data scenarios. Results were validated us-
ing simulated data and suggested superiority of the single-step
method including both the intermediate omics and genomics
data over the traditional GBLUP using only genomics data.
Similar results were observed by Michel et al. (2021) when investi-
gating the integration of gene expression into genomic prediction
for disease resistance in wheat by using a hybrid relationship ma-
trix for merging both layers of omics data.

After observing much less variation in the gene expression
among monozygotic twins than among siblings or unrelated indi-
viduals, Cheung et al. (2003) suggested a strong association be-
tween genotypes and the level of gene expression in humans.
This finding is an indication that SNP genotypes and gene tran-
scripts might contain redundant information which turns into a
challenge when these are used as predictors in genomic models.
Therefore, an adequate handling of these associations is neces-
sary to prevent inflated relative contributions of individual layers
(Holm et al. 2010; Christensen et al. 2021). In the same line of
thought, Wade et al. (2022) have emphasized that the benefits of
multiomics integration models over single-omic models are
achieved once redundancy of predictors is decreased.
Consequently, multiomics models should either automatically or
through adequate parametrization be able to identify and man-
age information redundancy across multiple omics layers.

In this study, we used data from the Diversity Outbred (DO)
mouse population (Churchill et al. 2012; Svenson et al. 2012) to
evaluate the utility of gene expression in addition to genome-
wide genetic markers for genomic prediction using different
modeling strategies. To this end, the objectives of this study were
to: (1) estimate the proportions of phenotypic variance explained
by genetic markers and gene transcripts in complex traits
recorded in at least 2 time points to assess sampling time depen-
dency; (2) evaluate the predictive accuracy for phenotypes using
transcripts and/or marker information for the traits investigated
using linear models and machine learning approaches; and (3)
evaluate how the inclusion of transcripts affects estimation of ge-
nomic breeding values (GEBV) from linear models. We considered
best linear unbiased prediction (BLUP) as a representative of lin-
ear models, while the gradient boosting algorithm was used as
the machine learning representative. The BLUP models tested
here vary in number of components, how interactions were mod-
eled, and conditioning of one component on another. In addition
to more traditionally used models, we developed and tested a
new model called GTCBLUP with the objective to reduce redun-
dancy between genomics and transcriptomics layers. The gradi-
ent boosting algorithm is a nonparametric machine learning
method and was chosen for its ability to automatically control re-
dundancy and implicitly account for nonlinear effects in predic-
tion, while the BLUP models tested comprise parametric
approaches to incorporate genomics and transcriptomics, consid-
ering or ignoring the interactions between them.

Materials and methods
Data
Phenotypes
Data used for this study were obtained from The Jackson
Laboratory (Bar Harbor, ME, USA) and comprise a subset of the

dataset used in Perez et al. (2022). The 478 DO mice originated
from 4 nonoverlapping generations (4, 5, 7, and 11) with males
and females represented equally. The total number of animals
per generation was 47, 47, 192, and 192 for generations 4, 5, 7,
and 11, respectively, with slight variation in the numbers of miss-
ing records across traits (Table 1). The mice were maintained on
either standard high-fiber (chow, n¼ 239) or high-fat diet (n¼ 239)
from weaning until 23 weeks of age. The proportion of males and
females within each diet category was close to 50–50 for all gen-
erations, as well as within each litter-generation combination (2
litters per generation). This population is maintained under a sys-
tematic mating scheme, designed to limit population structure
and relatedness. On average, the animals were related to each
other at a level equivalent to first cousins, which is by design
(Svenson et al. 2012). More elaborate description of population
structure, husbandry and phenotyping methods can be found in
Svenson et al. (2012) and Tyler et al. (2021).

Table 1 gives for each trait a brief description, the numbers of
observations, and the estimated heritability. We considered 6
traits based on range of heritability and presumed genetic archi-
tectures. The chosen traits were measured 2 or 3 times during
the animal’s life, resulting in 13 distinct traits in total. The ana-
lyzed traits were bone mineral density at 12 (BMD12) and 21
(BMD21) weeks; body weight at 10, 15, and 20 weeks (BW10,
BW15, and BW20); circulating cholesterol at 8 (CHOL8) and 19
(CHOL19) weeks; adjusted body fat percentage at 12 (FATP12) and
21 (FATP21); circulating glucose at 8 (GLUC8) and 19 (GLUC19)
weeks; and circulating triglycerides at 8 (TRGL8) and 19 weeks
(TRGL19). These traits can be categorized into measurements of
body composition (bone mineral density, body weights, and fat
percentage) and clinical plasma chemistries (circulating glucose
and triglycerides). To allow a fair comparison between paramet-
ric and nonparametric models compared in this study, pheno-
typic records were precorrected for fixed effects of diet,
generation, litter, and sex (Perez et al. 2022). Therefore, the pre-
corrected phenotypes (y�Þ analyzed here comprise the sum of the
additive genetic effect and residual terms.

Genotypes
The genotype data used for the animals in this study were
obtained from their derived founder haplotypes (for details see
Perez et al. 2022). The complete genotype file used for the analy-
ses included 64,000 markers on an evenly spaced grid, and the av-
erage distance between markers was 0.0238 cM. The full
genotype dataset was cleaned based on the following criteria:
variants with minor allele frequency <0.05, call rates <0.90, and
linear correlation between subsequent SNPs >0.80 were removed.
After quality control, a total of 50,122 SNP markers were available
for the mice with phenotypic, genotypic, and transcriptomic
records.

Transcript levels
Transcriptome-wide expression levels were measured from
whole livers as previously described (Munger et al. 2014; Chick
et al. 2016) for 478 animals at 26 weeks of age. The RNA sample
was sequenced using single-end RNA-Seq (Munger et al. 2014)
and aligned transcripts to strain-specific genomes from the DO
founders (Chick et al. 2016). Read counts were estimated using an
expectation–maximization algorithm (EMASE, https://github.
com/churchill-lab/emase). Read counts were previously cor-
rected for the effects of sex, diet, and batch by normalizing in
each sample using upper quantile normalization and applying a
rank Z transformation across samples. After quality control,
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quantification of transcripts was available for 11,770 genes (Tyler
et al. 2017).

Best linear unbiased prediction
GBLUP
Below we introduce 5 BLUP models and 3 gradient boosting ma-
chine (GBM) models with their acronyms and key features sum-
marized in Table 2. The statistical model of GBLUP is:

y� ¼ 1lþ gþ e;

where y� is the vector of precorrected phenotypes, 1 is a vector of
ones, l is the intercept, and g is the vector of random additive ge-
netic values, where g � Nð0; Gr2

gÞ, G is the additive genomic re-
lationship matrix between genotyped individuals, and r2

g is the
additive genomic variance. The matrix G is constructed following
the second method described by VanRaden (2008) as ZZ0

m , where Z
is the matrix of centered and standardized genotypes for all indi-
viduals and m is the number of markers. Finally, e is the vector of
random residual effects, where e � Nð0; Ir2

e Þ with r2
e being the

residual variance, and I is an identity matrix.

TBLUP
To evaluate the performance of transcriptomic data for predict-
ing complex traits, we used a Transcriptomic Best Linear
Unbiased Predictor (TBLUP) model. This model is similar to
GBLUP, but using a transcriptomic relationship matrix, which
evaluates the similarity among animals based on gene expression
levels (Guo et al. 2016).

The statistical model of TBLUP is:

y� ¼ 1lþ t þ e;

where y�, 1, and l are defined as above, t is the vector of random
transcript level effects, where t � Nð0; Tr2

t Þ and T is the tran-
scriptomic relationship matrix built according to the formula
WW0

k , where W is the matrix of centered and standardized expres-
sion levels for all animals and k is the number of genes, and r2

t is
the variance explained by gene transcripts.

GTBLUP and GTIBLUP
The GTBLUP model fitted the g and t as independent random
effects, each with their own variance component (Guo et al. 2016;
Li et al. 2019). The model is y� ¼ 1lþ gþ t þ e; where all the
parameters are as defined above.

The GTIBLUP model fitted g, t, and the interaction between g
and t with an additional variance component (Morgante et al.
2020). This model is y� ¼ 1lþ gþ t þ gt þ e, where y�, 1l, g, t;
and e are as defined above, and gt is the vector of interaction (be-
tween genomic and transcriptomic) effects, where gt �
Nð0; G#Tr2

gtÞ and # is the Hadamard product.

GTCBLUP
The newly developed GTCBLUP model was similar to GTBLUP in
that the g and t that were fitted as independent random effects,
each with their own variance component. However, for this model,
the transcript levels were conditioned on SNP genotypes, yielding
a matrix Wc computed as: Wc ¼ ðI� Z Z0Zþ Ikð Þ�1

Z0ÞW, where
Z Z0Zþ Ikð Þ�1

Z0 is the so-called “smoother matrix” (Hastie et al.
2009), Z is the matrix of centered and standardized genotypes as
before, I is an identity matrix, and k ¼ m �r2

e
r2

g
, r2

e is the residual vari-
ance, and r2

g is the additive genomic variance, both variances esti-
mated with the GBLUP model (including only g). Using the
smoother matrix, i.e. including Ik rather than using I� Z Z0Zð Þ�1

Z0,
reflects that the effects associated with the SNPs are estimated as
random rather than fixed effects. The aim of this model is to re-
move any variance from transcripts that is correlated to variance
in genotypes, such that any phenotypic variance both associated
with variance in genotypes and transcripts automatically will be
associated with the genotypes only. Our hypothesis is that when
using the GTCBLUP model for genomic prediction, any overlapping
information contained between SNP genotypes and gene tran-
scripts is removed, allowing the model to perform a more accurate
partition of variance for the genetic component, and ultimately,

Table 1. Number of available observations (N), the extended description of traits, age of the animals at phenotype measurement, and
estimated heritability.

Trait N Trait description Age at measurement (wk) Estimated heritabilitya

BMD12 471 Bone mineral density 12 0.39
BMD21 471 Bone mineral density 21 0.41
BW10 478 Body weight 10 0.42
BW15 478 Body weight 15 0.35
BW20 478 Body weight 20 0.37
CHOL8 474 Circulating cholesterol 8 0.38
CHOL19 474 Circulating cholesterol 19 0.45
FATP12 471 Body fat percentage 12 0.35
FATP21 471 Body fat percentage 21 0.32
GLUC8 425 Circulating glucose 8 0.31
GLUC19 425 Circulating glucose 19 0.22
TRGL8 473 Circulating triglycerides 8 0.36
TRGL19 473 Circulating triglycerides 19 0.31

a Standard errors for the heritability ranged from 0.07 to 0.09.

Table 2. Overview of models applied to SNP genotypes and/or
individual levels of gene transcripts.

Model acronym Explanatory variables

SNP genotypes Gene
transcripts

Interaction
modeled

GBLUP Yes No No
GGBM Yes No Yes (implicitly)

TBLUP No Yes No
TGBM No Yes Yes (implicitly)

GTBLUP Yes Yes No
GTCBLUP Yes Yes No
GTIBLUP Yes Yes Yes (explicitly)

GTGBM Yes Yes Yes (implicitly)
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increase prediction accuracy for GEBV. The model is y� ¼
1lþ gþ tc þ e; where tc � Nð0; Tcr2

t Þ and Tc is computed as
WcW0

c
k , and all other parameters are as defined above.

Gradient boosting machine models
GBM is an ensemble learning technique that applies an iterative
process of assembling “weak learners” into a stronger learner, be-
ing largely used for both classification and regression problems
(Friedman 2001). In the scope of this investigation, the GBM algo-
rithm represents a nonparametric approach capable of implicitly
fitting not only the additive effects of SNP and gene transcripts
but also the within- and between-omics layers interactions. The
GBM is also capable of performing automatic feature selection,
prioritization of important variables, and discarding variables
containing irrelevant or redundant information. A detailed de-
scription of the GBM algorithm and its application in genomic
prediction can be found in Friedman (2002), González-Recio et al.
(2010, 2013), and Perez et al., (2022).

To obtain the best possible results from the GBM algorithm, a
grid search approach was used to determine the combination of
hyperparameters that minimized the mean squared error of pre-
diction within the inner training set for each trait. Details of the
hyperparameter search method used are found in Perez et al.
(2022). We implemented the GBM model using the “gbm” R pack-
age (Ridgeway 2020).

We tested 3 different GBM models. The first model considered
only SNP genotypes as predictors (GGBM), the second model con-
sidered only (standardized) gene transcript levels as predictors
(TGBM), and a third model that considered both genetic markers
and transcript levels together as predictors (GTGBM). Our objec-
tive was to investigate if GBM models could capture within- and
between-omics layers associations, while also reducing within-
and between-omics layers redundancy by performing automatic
variable selection. It is important to note here that although here
we used “G” and “T” letters to refer to genomics and transcrip-
tomics data in the GBM model’s acronyms, predictors were fit di-
rectly in the model and not as relationship matrices.

Variance explained by genetic markers, transcript
levels, and combinations of both
To understand how much of the phenotypic variance can be
explained by using SNP genotypes, gene transcript levels and the
combinations of both sources of information, we estimated vari-
ance components using the GBLUP, TBLUP, GTBLUP, GTIBLUP,
and GTCBLUP models. Estimates of variance components along
with the residual variance (r2

e ) were obtained from a Bayesian ap-
proach analysis, using the BGLR R package (Pérez and de los
Campos 2014). The residual variance and variances from random
effects included in the models were assigned a scaled-inverse v2

density p r2
h

� �
¼ v�2ðr2

h jSh; dfhÞ, where h represent the variance
component (g; t; tc; gt; or eÞ; S and df are the scale and degree
of freedom parameters. The value of 5 was used for df in
all models. The parameter S was calculated for r2

e as
Se ¼ r2

p � ð1� R2Þ � dfe � 2
� �

, where r2
p is the phenotypic variance

and R2 is the prior expectation for the proportion of variance to
be explained by the model. For all other variance components, S

was calculated as Sh ¼ r2
p � R2 � dfhþ2ð Þ

mean diag Kð Þð Þ, where K represents

the relationship matrix assigned to the respective variance com-
ponent (hÞ. For all models, the Gibbs sampler was run for 60,000
iterations, with a 20,000 burn-in period and a thinning interval of
10 iterations. Consequently, inference was based on 4,000 poste-
rior samples.

For the GTIBLUP model, we calculated the proportion of
variance explained by SNP genotypes (h2 ¼ r2

g

r2
gþr2

t þr2
gtþr2

e
Þ, gene

transcripts (t2 ¼ r2
t

r2
gþr2

t þr2
gtþr2

e
), and from the interaction between

effects from genetic markers and gene transcripts

(gt2 ¼ r2
gt

r2
gþr2

t þr2
gtþr2

e
). Consequently, the sum of h2, t2; and gt2 repre-

sent the proportion of the phenotypic variance explained by 2

layers of omics data (h2 and t2Þ and by the between-omics-layer

interactions (gt2Þ. The parameters h2, t2; and gt2 were calculated
similarly for the other models but omitted any variance compo-
nents associated with effects not included in the model.

Predictive performance for phenotypes
Performance of predictions from the models was measured by the
accuracy, computed as the Pearson correlation (ry� ;ŷ ), and the rela-
tive root-mean-squared error of prediction (RRMSE) between predic-
tions (ŷÞ and precorrected phenotypes ðy�Þ: RRMSE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1
ðy� � ŷÞ2

s
=rp, where rp is the phenotypic standard deviation.

In all analyses, we used a forward prediction validation scheme in
which animals from older generations (4, 5, 7) were used as the ref-
erence and animals from the younger generation (11) as the valida-
tion subset. The standard error (SE) around the ry� ;ŷ estimates was

obtained by calculating the standard deviations from 10,000 boot-
strap samples (Davison and Hinkley 1997). The bootstrapping pro-
cedure was implemented using the “boot” R package (Canty and
Ripley 2021). Statistical difference between prediction accuracies
from different models was tested using the Hotelling–Williams test
for dependent correlations (Steiger 1980). We have also assessed
prediction bias by obtaining the regression coefficient from the lin-
ear regression of corrected phenotypes on model predictions. For
these results, values above 1 indicate deflation, while values below
1 indicate inflation of predicted values.

To assess the proportion of variance explained by the models
tested, we have calculated the coefficient of determination (R2)
from the regression of corrected phenotypes on model predic-
tions for all traits. For the GBM models, we have used results
from the model using the previously obtained best hyperpara-
meter set from the standard grid-search procedure to assess the
model R2 for prediction within the reference set.

Predictive performance of different model
components
For the BLUP models proposed to integrate SNP genotypes and
gene transcripts (GTBLUP, GTIBLUP, and GTCBLUP), in addition to
ry� ;ŷ we have also calculated the correlations between the solutions
for each random effect included in the model (g, t, tc; or gt) and ŷ,
as well as pairwise comparisons between all components in the
model. Noting that the model component g in fact are GEBV, also
the predictive performance for GEBV for any of the models was
evaluated as the Pearson correlation between g and ŷ. We did not
divide those by the square root of the heritability, which would
transform them into accuracies of GEBV with an interpretation of
being the correlation between estimated and true breeding values,
but instead evaluated the predictive performance of each model
component in terms of the accuracy of predicting phenotypes.
This enabled direct comparison across the different model compo-
nents. Evaluating solutions from the additive genetic component
from these models enabled to assess if the prediction of GEBV can
be improved by using models capable of integrating SNP genotypes
and gene transcripts for genomic prediction.
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Results
Variance components estimation percentage of
variance explained within the reference set
Genomic heritabilities (h2) obtained with GBLUP ranged from 0.08 to
0.44, representing a wide range of magnitudes across traits (Figs. 1
and 2). The estimated values for each variance component for all
traits is presented in Supplementary Tables 1 and 2. When only fitting
transcript levels as predictors (TBLUP), the percentage of variance
explained (t2) ranged from 0.22 to 0.75 and in general, it was higher
than h2 when comparing within the same trait. The exceptions to
that were observed for BMD12 (h2 ¼ 0.39 and t2 ¼ 0.35) and GLUC8
(h2 ¼ 0.30 and t2 ¼ 0.22). When comparing the same trait measured
at different time points, t2 from TBLUP was higher for phenotypes col-
lected closer to 26weeks of age (i.e. the age at mRNA data sampling).

In terms of the total phenotypic variance explained, GTBLUP
and GTIBLUP showed similar results (Figs. 1 and 2). For body
weights (BW10, BW15, and BW20) and fat percentage (FATP12
and FATP21) traits, the variance explained by genetic markers (in
GTBLUP and GTIBLUP) was drastically lower when compared
with GBLUP for the same traits. For the remaining traits also a de-
crease in genetic variance captured by markers was observed, al-
beit that the decrease was much lower. For the interaction
component in GTIBLUP (gt2), results observed varied according to
the trait analyzed but in general, it was low compared to both h2

and t2. The only exception to that was observed for TRGL8, in
which gt2 was higher than h2 and t2. For CHOL8, GLUC19, and
TRGL19, gt2 was either similar to h2 or t2.

For GTCBLUP, differently from GTBLUP and GTIBLUP, the addi-
tive genetic variance captured was always in line with results
from GBLUP. On the other hand, the variance explained by tran-
scripts (t2) from GTCBLUP was always lower than observed by
other models including transcripts as predictors (TBLUP, GTBLUP,
and GTIBLUP).

The variance explained (represented by the R2 parameter)
within the reference data by parametric models was in general
lower than by the nonparametric counterparts (Table 3).
Independent of being a parametric or nonparametric model, the
use of gene transcripts (TBLUP and TGBM) as predictors
explained in most cases more of the variance than using exclu-
sively SNP genotypes (GBLUP and GGBM). For GTBLUP, GTIBLUP,
and GTGBM, the variance explained was at least similar to ob-
served for TBLUP and TGBM, but generally higher. For GTCBLUP,
variance explained by the model was slightly to moderately
higher than observed for GBLUP model, but always smaller than
observed for GTBLUP, GTIBLUP, and GTGBM. The average R2

when considering only traits recorded earlier (suffixes 8, 10, or
12) and later (suffixes 19, 20, or 21) moments were 76% and 83%,
respectively, when using TBLUP, being the largest difference ob-
served across models when considering these 2 groups of traits.

Prediction performance—phenotype prediction
In Table 4, accuracies are shown for predicted phenotypes for
BLUP and GBM models using either SNP genotypes, transcript lev-
els or both as predictors. Corresponding standard errors are
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Fig. 1. Percentage of variance explained by SNP genotypes (g2), gene transcripts (t2), the interaction between them (gt2), and not explained (e2) by
GBLUP, TBLUP, GTBLUP, GTIBLUP, and GTCBLUP models tested for the traits BW and FATP. For a description of the traits, see Table 1. For a description
of the models, see Table 2.
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presented in Supplementary Table 3. Here, we considered GBLUP
to be the reference method. It showed prediction accuracies rang-
ing from 0.01 to 0.29, these were highly positively correlated to
the portion of variance explained by SNP genotypes by the same

model, except for CHOL19. When comparing predictive perfor-
mance between GBLUP and GGBM models, GBLUP yielded the
highest prediction accuracies for 7 traits, while GGBM had the
best predictive performance for 6 traits out of 13.
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Fig. 2. Percentage of variance explained by SNP genotypes (g2), gene transcripts (t2), the interaction between them (gt2), and not explained (e2) by
GBLUP, TBLUP, GTBLUP, GTIBLUP, and GTCBLUP models tested for the traits BMD, CHOL, GLUC, and TRGL. For a description of the traits, see Table 1.
For a description of the models, see Table 2.
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For models that include only gene transcripts (TBLUP and
TGBM), the TBLUP approach showed predictive accuracies rang-
ing from 0.03 to 0.61, having the best performance for only 4 out
of 13 traits. The TGBM model was able to overcome TBLUP for 7
traits, with prediction accuracies ranging from 0.04 to
0.58. For BMD21 and BW15, predictive accuracy was identical be-
tween TBLUP and TGBM. The differences between accuracies
from TBLUP and TGBM were higher than between GBLUP and
GGBM.

For models that combined SNP genotypes and gene transcripts
levels (GTBLUP, GTCBLUP, GTIBLUP, and GTGBM), GTBLUP had the
highest predictive accuracy for 5 traits out of 13. The second-best
model overall was GTGBM, with the highest predictive accuracy
for 4 traits. For every trait that GTIBLUP had the highest prediction

accuracy, it was identical to the result for GTBLUP, while the
GTCBLUP never had the highest predictive accuracy (Table 4).

The prediction error (RRMSE) and bias (b) for model’s predic-
tions are presented in Supplementary Tables 4 and 5, respec-
tively. Considering single-omics models, on average BLUP models
(GBLUP and TBLUP) yielded less biased predictions than GBM
models (GGBM and TGBM). For models integrating SNP genotypes
and gene transcripts, GTBLUP and GTIBLUP showed similar bias
across traits, while GTGBM had on average less bias than the
BLUP models. For the GTCBLUP model, predictions were inflated
(b < 1Þ for all traits but BMD21. In terms of prediction error, dif-
ferences between models were smaller than observed for bias
(Supplementary Table 5) or predictive accuracies (Table 4). The
lowest RRMSE values were observed for FATP21, while the

Table 3. Model R2 (�100) for the best linear unbiased prediction (GBLUP, GTBLUP, GTCBLUP, and GTIBLUP) and gradient boosting (GGBM,
TGBM, and GTGBM) approaches within training data.

Traita Modelb

Only SNP Only gene transcripts SNP þ gene transcripts

GBLUP GGBM TBLUP TGBM GTBLUP GTIBLUP GTCBLUP GTGBM

BMD12 75 90 79 96 85 92 88 95
BMD21 84 85 88 93 87 96 92 98
BW10 78 92 93 96 91 95 90 97
BW15 75 87 91 94 93 96 94 96
BW20 80 87 92 93 95 97 95 97
CHOL8 84 85 69 97 80 93 87 98
CHOL19 82 83 85 95 88 96 92 98
FATP12 75 76 89 97 92 96 95 98
FATP21 80 82 93 97 95 97 94 98
GLUC8 77 85 66 95 81 93 87 97
GLUC19 62 80 67 96 75 90 84 98
TRGL8 65 81 62 92 80 96 88 97
TRGL19 71 86 70 96 78 95 84 98
Mean (all) 76 85 80 95 86 95 90 97
Mean (T1)c 75 85 76 96 85 94 89 97
Mean (T2)c 76 84 83 95 86 95 90 98

T1¼average R2 of the column considering only traits recorded earlier in life (suffixes 8, 10, and 12).
T2¼average R2 of the column considering only traits recorded later in life (suffixes 19, 20, and 21).

a For a description of the traits, see Table 1.
b For a description of the models, see Table 2.
c BW15 trait was ignored when calculating average performance considering exclusively T1 and T2.

Table 4. Accuracies of predicted precorrected phenotypes for the validation subset with the proposed models.

Traita Modelb

Only SNP Only gene transcripts SNP þ gene transcripts

GBLUP GGBM TBLUP TGBM GTBLUP GTIBLUP GTCBLUP GTGBM

BMD12 0.19a 0.16a 0.27b 0.25a,b 0.27b 0.27b 0.20a 0.25a,b

BMD21 0.29a 0.28a 0.38a,b 0.38a,b 0.42b 0.40b 0.29a 0.38a,b

BW10 0.20a 0.20a 0.48c 0.42b 0.47c 0.47c 0.19a 0.42b

BW15 0.17b 0.12a 0.52c 0.52c 0.51c 0.51c 0.22b 0.49c

BW20 0.18a 0.16a 0.61c 0.58c 0.60c 0.60c 0.30b 0.54c

CHOL8 0.14a 0.17a 0.14a 0.15a 0.18a 0.16a 0.16a 0.16a

CHOL19 0.25a,b 0.20a,b 0.19a,b 0.16a 0.26c 0.23a,b 0.22a,b,c 0.23a,b,c

FATP12 0.16a 0.15a 0.44c 0.45c 0.44c 0.44c 0.28a,b 0.46c

FATP21 0.22a 0.20a 0.54c 0.56c 0.54c 0.53c 0.35b 0.52c

GLUC8 0.10b,c 0.12b,c 0.03a 0.04a 0.08a,b 0.09a,b 0.11b,c 0.15c

GLUC19 0.01b 0.10c 0.03b 0.05b,c 0.04b 0.05b,c �0.05a 0.11c

TRGL8 0.08a 0.11a 0.06a 0.08a 0.07a 0.07a 0.05a 0.06a

TRGL19 0.15a,b 0.13a 0.17a,b 0.19b 0.17a,b 0.18a,b 0.12a 0.19b

For each group of models, the result with the highest accuracy is indicated in bold, identical results between 2 or more models are indicated in underline. For each
row, different letters indicate significant differences between models.

a For a description of the traits, see Table 1.
b For a description of the models, see Table 2.
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highest RRMSE values were observed for GLUC19. The RRMSE val-
ues for all traits analyzed were all around 1, indicating the aver-
age prediction errors were close to 1 phenotypic standard
deviation.

Predictive ability for GEBV and other model
components, and the correlation between them
in BLUP models
In Table 5, the Pearson’s coefficient correlation between model
components solutions (ĝ, t̂, t̂c , and ĝt) for the different BLUP mod-
els and corrected phenotypes (y�) are shown. Corresponding stan-
dard errors are presented in Supplementary Table 6. Overall,
results for GTBLUP and GTIBLUP were similar across traits. These
2 models had the most accurate GEBV (qĝ y� ) exclusively for
GLUC8, while for BMD12 results from these models were
matched by GTCBLUP. For GLUC19, all 4 parametric multiomics
models yielded the same accuracy for GEBV, which was the low-
est (0.01) across traits. In 8 out of 13 traits, the GEBV estimated
using GTCBLUP model was the most accurate across all models.
The correlation between t̂ and y� (qt̂ y� ) was also similar between
GTBLUP and GTIBLUP, being always higher for these 2 models
than observed for GTCBLUP. For GTCBLUP exclusively, qt̂ y� was
low and negative for CHOL19 (�0.08), GLUC19 (�0.05), and TRGL8
(�0.07). For most traits, although a slight increase in the total
variance explained was observed within the reference dataset
(Figs. 1 and 2) when comparing GTBLUP and GTIBLUP, there was
not a proportional increase in qĝ y� in the validation (Table 5). For
GTCBLUP, on the other hand, for all traits, there was an increase
in the variance explained by SNP genotypes (g2 in Figs. 1 and 2)
when compared with GTBLUP and GTIBLUP, and the same pat-
tern was observed for qĝ y� . Results for qĝ t̂ varied from þ0.14 to
þ0.29 for GTBLUP and from þ0.13 to þ0.29 for GTIBLUP. For
GTCBLUP, values for qĝ t̂c

were all negative and close to zero,
ranging from �0.13 to �0.03 (Table 5). The values for qĝ ĝt , only
calculated for GTIBLUP, were close to zero for most traits with an
exception for CHOL8 and CHOL19, for which qĝ ĝt was 0.18. A

similar pattern was observed for qt̂ ĝt , for which values varied
from �0.12 to þ0.06, with the largest differences from qĝ ĝt ob-
served for CHOL8 and CHOL19.

Discussion
Here, we investigated parametric and nonparametric approaches
to leverage transcriptomic data for the prediction of complex
phenotypes. To accomplish that, we used 478 animals from the
DO Mouse population (Svenson et al. 2012), for which information
on phenotypes (Churchill et al. 2012) for a wide range of quantita-
tive traits, SNP genotypes and gene transcript levels from liver
tissue (Tyler et al. 2017) were available on the same animals. We
used the genomic (GBLUP) and transcriptomic (TBLUP) BLUP
models to evaluate the value of these omics data to predict phe-
notypes. In addition, we evaluated models to integrate genome
and transcriptome data by modeling both layers independently
(GTBLUP) or including an interaction component between the ge-
nome and transcriptome (GTIBLUP). Finally, we developed and
tested the new GTCBLUP model that removes the between-
omics-layer information redundancy. The GBM algorithm was
investigated as a nonparametric approach potentially able to per-
form variable selection and capture nonlinear effects by fitting ei-
ther SNP genotypes (GGBM), gene transcript levels (TGBM) or to
integrate both layers implicitly modeling interactions within- and
between-omics layers (GTGBM).

Using data from 6 distinct traits measured at 2 or 3 time points
(resulting in 13 traits in total), we first assessed the proportion of
phenotypic variance explained by each variance component in-
cluded in the parametric models (Figs. 1 and 2). When using tran-
scripts as predictors, 2 main patterns were observed. For 10 out of
13 traits (Figs. 1 and 2), the TBLUP model explained much a larger
portion of the phenotypic variance than GBLUP. The observation
that the portion of variance explained by gene transcripts is
strongly trait-specific is in line with results observed when
assessing the proportion of variance from gene transcripts for

Table 5. Pearson’s coefficient correlation (qÞ between model’s components (ĝ, t̂, t̂c , and ĝt) solutions and corrected phenotypes (y�Þ for
BLUP models proposed.a

Traitb Modelc

GTBLUP GTIBLUP GTCBLUP GBLUP

qĝ y� qt̂ y� qĝ t̂ qĝ y� qt̂ y� qĝ t̂ qĝ ĝt qt̂ ĝt qĝ y� qt̂c y� qĝ t̂c
qĝ y�

BMD12 0.20a 0.24u 0.22 0.20a 0.22u 0.21 �0.04 0.06 0.20a 0.04v �0.10 0.19a

BMD21 0.29a 0.38u 0.28 0.30a 0.37u 0.29 0.04 �0.03 0.31a 0.08v �0.03 0.29a

BW10 0.19a 0.46u 0.27 0.19a 0.47u 0.27 0.04 0.02 0.19a 0.03v �0.13 0.20a

BW15 0.16a 0.52u 0.29 0.16a 0.51u 0.28 0.02 �0.02 0.18a 0.08v �0.06 0.17a

BW20 0.17a,b 0.61u 0.25 0.17a,b 0.60u 0.26 �0.09 �0.02 0.21b 0.16v �0.10 0.18a

CHOL8 0.14a 0.13u 0.16 0.14a 0.13u 0.15 0.18 �0.01 0.15a 0.04v �0.08 0.14a

CHOL19 0.24a 0.14u 0.16 0.25a 0.12u 0.15 0.18 �0.02 0.27b �0.08v �0.09 0.25a

FATP12 0.18a,b 0.43u 0.14 0.18a,b 0.42u 0.13 �0.03 �0.12 0.20b 0.15v �0.05 0.16a

FATP21 0.22a,b 0.52u 0.16 0.22a,b 0.53u 0.16 �0.09 �0.10 0.26b 0.16v �0.10 0.22a

GLUC8 0.12a 0.02u 0.22 0.12a 0.01u 0.20 0.02 0.06 0.11a 0.04u �0.09 0.10a

GLUC19 0.01a 0.04u 0.19 0.01a 0.02u 0.18 �0.04 0.05 0.01a �0.05v �0.11 0.01a

TRGL8 0.08a 0.05u 0.16 0.09a 0.05u 0.15 0.04 0.03 0.09a �0.07v �0.07 0.08a

TRGL19 0.14a 0.15u 0.15 0.14a 0.15u 0.14 0.03 �0.05 0.17b 0.03v �0.09 0.15a,b

The numbers in bold (per row) show the best GEBV accuracies (qĝ y� ) across models, identical results between 2 or more models are underlined. Superscripts were
used to identify significant differences among qĝ y� (letters a and b) and among qt̂ y� (letters u and v) obtained with the different models.

a qĝ y� ¼ correlation between additive genetic effect and corrected phenotypes; qt̂ y� ¼ correlation between gene transcripts effect and corrected phenotypes;
qĝ t̂ ¼ correlation between the additive genetic and gene transcripts effects; qĝ ĝt ¼ correlation between the additive genetic effect and the interaction between
genetic and gene transcript effects; qt̂ ĝt ¼ correlation between the additive genetic effect and the interaction between genetic and gene transcript effects; qt̂c y� ¼
correlation between gene transcripts conditioned on SNP genotypes and corrected phenotypes; qĝ t̂c

¼ correlation between the additive genetic effect and gene
transcripts conditioned on SNP genotypes.

b For a description of the traits, see Table 1.
c For a description of the models, see Table 2.
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complex traits in Drosophila (Morgante et al. 2020). Ehsani et al.
(2012) have analyzed data from an F2 mice population using
models integrating genotype markers and liver transcriptomics
data. The authors reported that transcripts explained 79%, while
genotypes explained 36% of the phenotypic variance for body
weight at 8 weeks of age. It is important to emphasize that in
Ehsani et al. (2012), RNA samples were measured at the same
time point as phenotypes were collected. On the other hand,
studies have observed that genetic markers always explained a
larger portion of variance than transcripts in maize (Guo et al.
2016; Azodi et al. 2019) and Drosophila (Li et al. 2019). The conflict-
ing results found in literature may reflect the transient nature of
how genes are expressed (Kleyman et al. 2017). Differently from
genotypes, transcripts are affected by many factors such as the
tissue from where samples are collected, the moment in life of
sampling and the environmental conditions that the animal was
exposed to. These variables most likely impact the variance
explained (and concomitantly prediction performance) by tran-
scripts.

The stability of gene transcripts over time has been a topic of
interest as it might affect the genotype-to-phenotype link
(Karlovich et al. 2009). Bryois et al. (2017) have analyzed transcrip-
tomics data from whole-blood samples in unrelated human indi-
viduals collected at 2 time points, separated by 22 months. The
authors reported correlations between transcriptomics data of
individuals at both time points ranging from �0.50 to 1.00, with
an average of 0.31 across the approximately 18,000 genes consid-
ered. This indicates that while genome-wide there is a huge vari-
ation in stability of expressions across genes, the expression of
some genes is highly stable between time points as far as
22 months apart. In this study, transcripts were measured when
the mice were 26 weeks of age, while all phenotypes were
recorded at younger ages (from 8 to 21 weeks of age). Phenotypes
recorded closer to 26 weeks of age had a larger proportion of phe-
notypic variance explained by transcripts than measurements
made earlier in the animal’s life for the same phenotype (Figs. 1
and 2). For BW and FATP the transcripts explained a larger pro-
portion of phenotypic variance than genotypes at all time points.
For BMD, CHOL, GLUC, and TRGL, this was the case when there
was 4 (BMD) to 6 weeks (CHOL, GLUC, and TRGL) in-between
measuring phenotypes and transcripts, while genomics
explained more phenotypic variance when this time frame in-
creased to 14 (BMD) or 18 weeks (CHOL, GLUC, and TRGL) in-
between. In Azodi et al. (2019), gene transcripts were quantified
from whole seedlings, while phenotypes were recorded at a much
older age and authors have observed limited predictive ability of
transcriptomics data. Together with results from literature, our
findings seem to confirm that the magnitude of the association
of phenotypes with gene expressions may be time dependent. It
is important to emphasize here that although this outcome could
have been expected beforehand, to our knowledge it is the first
time that this link between amount of variance explained by
transcript vs the time difference between measuring transcripts
and phenotypes has been shown empirically. The relationship
between the tissue from where RNA samples are taken and the
phenotype being analyzed can also be detrimental to omics mod-
el’s performance. The gene expression from whole maize seed-
lings considered in Azodi et al. (2019) showed no consistent
improvement in predictive accuracy when compared with mod-
els considering only genomics data. Whole maize seedlings are
probably less related to traits collected later in life than the gene
expression from liver tissue available for the DO mouse dataset.
It is widely known that the liver is strongly linked to many

metabolic pathways (Ponsuksili et al. 2019), and therefore likely
also especially to the BW and FATP traits used here, while the
variation contained in a sample collected from whole seedlings
do not reflect a specific tissue but a pool of all tissues in this or-
ganism. This could potentially mask any informative tissue-
specific signals that could improve predictive accuracy for pheno-
types. In general terms, it looks like although in many cases the
variation in gene transcripts may capture higher proportions of
variance from phenotypes than genetic markers, although this is
dependent on the tissue and time of sampling, and these depen-
dencies are likely to be trait specific.

When fitting both SNP genotypes and gene transcripts as pre-
dictors the portion of variance explained by SNP genotypes was
drastically lower than for the GBLUP model. Ehsani et al. (2012)
and Takagi et al. (2014) observed a reduction in captured genetic
variance by SNP genotypes of around 50% when fitting genotypes
together with transcripts compared to models fitting only geno-
types as predictors for complex traits in other mice populations.
This seems to confirm the hypothesis that there is redundant in-
formation between the genome and transcriptome layers (Wade
et al. 2022), as also shown to be the case in Drosophila (Morgante
et al. 2020). In our experience, it seems that the closer the pheno-
type analyzed is to the moment of RNA sampling, the higher the
decrease in genetic variance captured by SNP genotypes in
GTBLUP and GTIBLUP. This was observed for almost all traits we
analyzed in different magnitudes. Takagi et al. (2014) analyzed
circulating cholesterol at 10 weeks of age in mice and reported a
large decrease in the genetic variance captured from SNP geno-
types from models including only SNP genotypes (g2 ¼ 46%) and
together with liver transcripts (g2 ¼ 19%) also measured at
10 weeks of age. In this study, we observed only a smaller de-
crease in genetic variance estimated when comparing GTBLUP
(g2 ¼ 28%) and GBLUP (g2 ¼ 38%) for CHOL8. This seems to con-
firm that for the same phenotype, measurements made closer to
the RNA sampling are prone to exhibit this pattern in a higher
magnitude than when measured farther from the RNA sampling.
This was further substantiated by the results observed for
GTCBLUP. By conditioning the transcripts on the genotypes, the
portion of variance explained by SNP genotypes was similar to
the GBLUP model, while the variance explained by gene tran-
scripts was much lower than estimated with TBLUP, GTBLUP,
and GTIBLUP.

The formal variance partitioning achieved with the BLUP mod-
els cannot be achieved with the nonparametric GBM models. To
compare the performance of GBM and BLUP in terms of explained
variance we investigated the model R2 within the reference set.
For the GBM models, the model R2 was almost always higher
than for the BLUP models (Table 3). From our results, this pattern
is recognizable for almost all traits analyzed, in which the GBM
algorithm is able to capture a higher portion of variance than the
parametric counterpart within the reference dataset (Table 3) but
fails to outperform these models when predicting in the valida-
tion set (Table 4). The presence of noise in the data, limited size
of the training set and the underlying complexity of the event be-
ing modeled are often cited as common causes of overfitting in
machine learning models (Vabalas et al. 2019; Ying 2019). Here,
we used a training dataset of approximately 286 animals and the
high number of predictors in the models, coupled with the un-
avoidable presence of collinearity within- and between-omics
layers may have caused GBM models to overfit (Shalev-Shwartz
and Ben-David 2014). We have observed a big impact of hyper-
parameters on the predictive accuracies of the GBM models
(results not shown). Having access to larger datasets could help
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to elucidate the magnitude of this impact for the models ana-
lyzed here since it would decrease the impact of hyperparameter
definition in predictive performance, improving strength of evi-
dence for any differences found between GBM and other models
tested.

Prediction performance for phenotypes can be improved by
adding transcripts in addition to genotypes in the model; how-
ever, our results suggested that the magnitude of improvement is
dependent on the trait analyzed (Table 4). In line with the ob-
served differences in variance explained by model components,
TBLUP showed a better predictive ability than GBLUP for most
traits except CHOL19, GLUC8, and GLUC19. In contrast, Takagi
et al. (2014) reported higher predictive accuracies for circulating
glucose and cholesterol when using liver transcripts as predictors
when compared with using genotypes in a different heteroge-
neous mice population (Valdar et al. 2006). A relevant aspect is
that in this study phenotypes for CHOL and GLUC were collected
at 8 and 19 weeks, while RNA samples were taken at 26 weeks of
age. As previously mentioned, in Takagi et al. (2014), RNA samples
and phenotypes were collected around the same age (10 weeks).
In this study, phenotypes recorded at a time point closer to the
moment of transcript profiling resulted in more phenotypic vari-
ance being explained by transcripts for all 6 traits (Fig. 1), and for
5 out of 6 traits in higher predictive accuracy for TBLUP (Table 4).
This was very clear for FATP and BW, where the variances
explained by gene transcripts in the liver were high, which biolog-
ically makes sense. The pattern of increased variance explained
and higher prediction accuracy was, however, also observed for
BMD where a link to gene expression in the liver is not obvious.
For 4 out of 6 traits, GBLUP also yielded higher prediction accu-
racy when the trait was measured at later time points, which
may suggest a general time dependency of variance explained, as
the association of the phenotypes with the SNPs is not affected
by the moment of RNA sampling. The SNPs, however, explained
considerably less variance than the transcripts, while not show-
ing a consistent increase in variance explained over time as the
transcripts did. This implies that GBLUP generally had lower
power than TBLUP, and suggests that the apparent time depen-
dency of the accuracy for GBLUP, which was less pronounced
than for TBLUP, should not be overvalued given the limited size
of the data used.

The TGBM model outperformed the TBLUP model for several
traits, which was not the case when comparing GBLUP and
GGBM. This result indicates that interactions between transcripts
were more easily captured or are more relevant than between
SNPs. One other hypothesis is that as transcripts are more
strongly linked to phenotypes than genetic markers, transcript-
by-transcript interactions are also likely to affect the phenotype
more strongly than SNP-by-SNP interactions (Green et al. 2019),
hence the former is expected to have a clearer and more detect-
able signal. Morgante et al. (2020) have used the random forest
model, a nonparametric ensemble machine learning method like
GBM, to predict complex phenotypes in Drosophila using gene
transcripts as predictors but did not observe a superior predictive
ability when compared with the TBLUP model. While TGBM out-
performed TBLUP for 7 out of 13 traits, the GTGBM only outper-
formed GTBLUP or GTIBLUP in only 4 out of 13 traits. This could
mean that the inclusion of SNP genotypes together with gene
transcripts as predictors in the GTGBM model may have impaired
the ability of GBM to capture linear and nonlinear signals from
within- and between-omics layers. The exact cause remains
unclear, but the size of dataset together with the substantial in-
crease in number of predictors when switching from TGBM to

GTGBM may be in the roots of it. It is likely that the GBM algo-
rithm may require more data to be able to accurately capture all
patterns from the complex relationship between omics layers un-
derlying quantitative traits. If this is indeed the case, testing
these models using a larger dataset could help to confirm this hy-
pothesis. In Azodi et al. (2019), machine learning models integrat-
ing genomics and transcriptomics data were also not able to
outperform single-omics models in terms of predictive accuracy
for phenotypes in maize using a dataset of similarly limited size
as in this study.

Although the inclusion of an interaction component in
GTIBLUP captured between 9% and 26% of phenotypic variance
(represented by gt2 in Figs. 1 and 2) within the reference set, it
hardly affected the correlations of the model components with
the phenotype (qĝ y� and qt̂ y� ), and those between the model
components (qĝ t̂ ) (Table 5). The low values observed for qĝ ĝt and
qt̂ ĝt in GTIBLUP also seem to suggest that the interaction compo-
nent is capturing a portion of variance not directly shared with ĝ
or t̂ components, and therefore it does not affect the relationship
between other components. The correlation between ĝ and t̂ in
GTBLUP and GTIBLUP models was always higher than the corre-
lation between ĝ and t̂c in GTCBLUP across all traits analyzed.
Since in the GTCBLUP model the transcript relationship matrix
was conditioned on the variance of SNP genotypes (tc), the corre-
lation between solutions for the 2 components was expected to
be closer to zero than observed for GTBLUP or GTIBLUP.

In this article, we proposed the GTCBLUP model as an alterna-
tive to integrate genome and transcriptome data for genomic pre-
diction. There has been an increasing interest in the use of
intermediate omics data in animal and plant breeding (Guo et al.
2016; Yang et al. 2017; Azodi et al. 2019; Morgante et al. 2020;
Christensen et al. 2021; Michel et al. 2021), such as transcriptom-
ics, metabolomics, or microbiome data. The inclusion of new
layers of omics data into genomic prediction models could argu-
ably help in capturing additional portions of variance not
explained by genotype data, but at the same time, these layers
most likely contain overlapping information, increasing collin-
earity between predictors. Modeling the relationship between G
and T components could be an efficient way to realize the added
value of integrating such omics data into genomic prediction
models (Wade et al. 2022), but this could also be a challenge given
the increase in number of parameters to be estimated. The ad-
vantage of the GTCBLUP is that as a preprocessing step it condi-
tions the variance contained in transcripts on the variance of
genotypes to minimize the amount of redundant information
without having to increase model complexity. In general, the
GTCBLUP model was able to produce GEBV that were at least as
accurate as or slightly more accurate than the GBLUP model. The
percentage of variance explained by SNP genotypes in GTCBLUP
was similar to that with the GBLUP model, while it was always
lower when using GTBLUP and GTIBLUP (Figs. 1 and 2). The ob-
served reduction in additive genetic variance for GTBLUP and
GTIBLUP when compared with GBLUP indicates strong redun-
dancy in information contained in the genomic and transcrip-
tomic layers. So, the conditioning of transcripts on SNP
genotypes in GTCBLUP allowed this model to perform a more ac-
curate variance partitioning for the additive genetic component,
which consequently resulted in a more accurate estimation of
GEBV (Table 5). Thus, when the aim is to predict GEBV consider-
ing both genomic and transcriptomic data, of the different mod-
els considered here, the GTCBLUP model is the most suitable.

Considering applications in practice, one limitation of the
GTCBLUP as well as all other models considered in this study, is
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that they do not accommodate missing omics information, so all
reference individuals must have genomics and transcriptomics
data available. In the context of breeding programs, a situation in
which all reference animals have multiple omics data available is
unlikely to happen due to current high costs involved in collect-
ing this kind of information. However, based on the observed de-
crease in costs of genotyping which has enabled large-scale
genotyping, we may expect similar developments for the costs of
transcriptomics and other intermediate phenotypes in the near
future (Uzbas et al. 2019). At the same time, there have been
some recent model developments that enable including other
omics data in genomic prediction, when these other omics data
are not available for all animals (Christensen et al. 2021; Zhao
et al. 2022).

Conclusion
We have assessed prediction models that incorporate genetic
markers and transcriptomics data in genomic prediction of com-
plex phenotypes in mice. The proportion of phenotypic variance
explained by transcripts was almost always higher when traits
were measured closer to the time of measuring gene transcripts.
While GBM models explained more variance in the reference
data, their predictive performance did not exceed the GBLUP
models. Models including SNP genotypes and gene transcripts did
not consistently outperform the best single-omics models to pre-
dict phenotypes. While TGBM model was able to outperform
TBLUP, this was not the case for GTGBM compared to GTBLUP
and GTIBLUP. The newly developed GTCBLUP model was able to
force all phenotypic variance associated with SNP genotypes into
its additive genetic component, by conditioning gene transcripts
on SNP genotypes. GTCBLUP generally yielded considerably lower
accuracies of phenotypic predictions than the other models in-
cluding SNP genotypes and gene transcripts, but it showed the
best accuracies for breeding values for most traits. We recom-
mend using the GTBLUP model for prediction of phenotypes,
while the GTCBLUP should be preferred when the aim is to esti-
mate breeding values.
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Pérez-Enciso M, Zingaretti LM. A guide for using deep learning for

complex trait genomic prediction. Genes. 2019;10(7):553.

Ponsuksili S, Trakooljul N, Hadlich F, Methling K, Lalk M, Murani E,

Wimmers K. Genetic regulation of liver metabolites and tran-

scripts linking to biochemical-clinical parameters. Front Genet.

2019;10:348.

Pook T, Freudenthal J, Korte A, Simianer H. Using local convolutional

neural networks for genomic prediction. Front Genet. 2020;11:

561497.

Ridgeway G. Generalized Boosted Models: A Guide to the gbm

Package. 2020 [accessed 2021 Sept 5]. https://cran.r-project.org/

web/packages/gbm/vignettes/gbm.pdf.

Schrag TA, Westhues M, Schipprack W, Seifert F, Thiemann A,

Scholten S, Melchinger AE. Beyond genomic prediction: combin-

ing different types of omics data can improve prediction of hybrid

peformance in maize. Genetics. 2018;208(4):1373–1385.

Shalev-Shwartz S, Ben-David S. Understanding Machine Learning:

From Theory to Algorithms. New York (NY): Cambridge

University Press; 2014.

Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years.

Nat Rev Genet. 2019;20(11):631–656.

Steiger JH. Tests for comparing elements of a correlation matrix.

Psychol Bull. 1980;87(2):245–251.

Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ,

Palmer AA, McMillan L, Churchill GA. High-resolution genetic

mapping using the mouse diversity outbred population.

Genetics. 2012;190(2):437–447.

Takagi Y, Matsuda H, Taniguchi Y, Iwaisaki H. Predicting the pheno-

typic values of physiological traits using SNP genotype and gene

expression data in mice. PLoS One. 2014;9(12):e115532.

Tohge T, Fernie AR. Metabolomics-inspired insight into developmen-

tal, environmental and genetic aspects of tomato fruit chemical

composition and quality. Plant Cell Physiol. 2015;56(9):1681–1696.

Tyler AL, El Kassaby B, Kolishovski G, Emerson J, Wells AE, Mahoney

JM, Carter GW. Effects of kinship correction on inflation of genetic

interaction statistics in commonly used mouse populations. G3

(Bethesda). 2021;11(7):jkab131.

Tyler AL, Ji B, Gatti DM, Munger SC, Churchill GA, Svenson KL, Carter

GW. Epistatic networks jointly influence phenotypes related to

metabolic disease and gene expression in diversity outbred mice.

Genetics. 2017;206(2):621–639.

Uzbas F, Opperer F, Sönmezer C, Shaposhnikov D, Sass S, Krendl C,

Angerer P, Theis FJ, Mueller NS, Drukker M. BART-Seq: cost-

effective massively parallelized targeted sequencing for geno-

mics, transcriptomics, and single-cell analysis. Genome Biol.

2019;20(1):155.

Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algo-

rithm validation with a limited sample size. PLoS One. 2019;

14(11):e0224365.

Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson

WO, Taylor MS, Rawlins JNP, Mott R, Flint J. Genome-wide genetic

association of complex traits in heterogeneous stock mice. Nat

Genet. 2006;38(8):879–887.

VanRaden PM. Efficient methods to compute genomic predictions.

J Dairy Sci. 2008;91(11):4414–4423.
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