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Abstract. 

A simple and innovative approach is presented to solve Collatz’s conjecture, based 

on an equivalence relation and the derivation of equivalence classes. Therefore, it is 

demonstrated that the union of all equivalence classes forms the set of odd numbers. 
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1 Introduction 

The Collatz's conjecture, also known as the 3 � + 1 problem, is a famous unsolved 

problem in mathematics which consists of the following: if a positive integer � is even, 

it is divided by two. If it is odd, it is multiplied by three and one is added. This operation 

can be expressed as: 

���� = 
 �/2        � ≡ 0 ���� 2�
3 � + 1    � ≡ 1 ���� 2� 

In this way, by applying the function ����: ℕ + 1 →  ℕ + 1, with ℕ ≔ {0,1, ,2 … }, 

repeatedly to any positive integer, we always reach the number 1, regardless of the 

initial chosen number, and in a finite number of steps. Let � ∈ ℕ + 1, we use the 

definition of Collatz orbit given in [1], ���ℕ��� ≔ {�, ����, �����, … }. Let ���� !��� ≔
�"� ���ℕ��� = "��#∈ ℕ���$���, then the Collatz conjecture is expressed as 

���� !��� = 1 for every � ∈  ℕ + 1. 

If the previous statement were false, it would mean that there exists a 

number � ∈  ℕ + 1 that generates a cycle where the number 1 does not belong to its 

cycle, i.e., ���� !��� ≠ 1. This would imply that the sequence enters a cycle that does 

not contain the number 1. Furthermore, the cycle could potentially increase 

indefinitely. 

For example, if we start with � = 7 and apply the function repeatedly, we obtain 

the following sequence of numbers until reaching 1: 7 → 22 → 11 → 34 → 17 →
52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1. Thus, its orbit would 

be ���ℕ�7� = {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1}. 
In [1], the function ,��!: ℝ → ℝ is defined such that for every positive integer � ∈

ℕ\{0}, we have ,��!��� = /012
�3 , where � is the largest natural number such that 2! 

divides 3� + 1, resulting in an odd number if � is odd. In this paper, we will always consider � 
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to be an odd number. Thus, we can define the Collatz orbit for this new function as follows: 

 ����ℕ12��� ≔ 4�, ,��!5���, ,��!5 6,��!7���8 , … 9. This corresponds to the formulation 

known as Syracuse, so the Collatz conjecture can be expressed as �"� ����ℕ12��� = 1 

for every � ∈ 2ℕ + 1. This Syracuse orbit ����ℕ12���  corresponds to the Collatz orbit 

but for odd numbers. Thus, in the previous example, we obtain the sequence 

����ℕ12�7� = {7, 11, 17, 13, 5, 1}. 

From the direct observation of the odd numbers that reach 1 after applying the 

function only once ,��!, it is observed that there is recursion between them. For 

example, consider the odd numbers � = 1, 5, 21, 85, 341, … then 5 = 4 : 1 + 1, 21 =
4 : 5 + 1, 85 = 4 : 21 + 1, 341 = 4 : 85 + 1, in general �$12 = 4�$ + 1, obtaining 

the general term of the series as 4$ + 2
/ �4$ ; 1� ∈ 2ℕ + 1. 

This fact reveals a structure or pattern that is generated by the repeated 

application of the function ,��!. Clearly, the numbers in this series satisfy that 

,����$12� <4$ + 2
/ �4$ ; 1�= = 1. 

Due to this, we can consider that the series of nodes thus defined constitute a 

series of nodes belonging to the same branch. See figure 1.  

 

Figure 1. Representation of a branch with its nodes. Nodes that are 

multiples of three are marked with a black circle. 

Thus, the distribution of odd numbers is ordered in the branch according to the 

number of 2�$ required to belong to it. For example, for ,����1� = 1 with 2�, 

,��>�5� = 1 with 2>, ,��?�21� = 1 with 2?, ,��@�85� = 1 with 2@, so the number 2�$ 

varies but it is clear that 1, 5, 21, 85 reach 1 in one step (a single application of ,��!), 

hence they belong to the same branch. 

In general and as a consequence of this result, we can consider all numbers �, A ∈
2ℕ + 1 that satisfy the following equation ,��!B��� = ,��!C�A�, which means that 
/012
�3B = /D12

�3C . If we solve for  �, we obtain � = 2!BE!C  A + 2
/ �2!BE!C ; 1�. Since � and A 

are odd numbers, it can be deduced that �0 ; �F must be a natural and even number, 

that is, �0 ; �F = 2 G with G ∈ ℤ. Rewriting it, we obtain that � = 2�$ A + 2
/ �2�$ ; 1�. 

The sign of |G| will be determined by the relationship between � and A. If � J A, then 

this implies that G K 0. On the other hand, if � K A then necessarily G J 0 since both � 

and A have to belong to 2ℕ + 1. For example, if � = 1 and A = 5 we have that 1 =
2E� 5 + 2

/ �2E� ; 1�, in this case G = ;1. 
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In this way, we can establish the following relation: let �, A ∈ 2ℕ + 1 be given. 

Then, �~A if ,��!B��� = ,��!C�A� for suitable �0 and �F. This relation is one of 

equivalence relation since it is reflexive, symmetric and transitive, and its proof is trivial. 

This equivalence class allows us to regroup the elements into equivalence classes and 

consider subsets or equivalence classes accordingly. 

2 Nodes and Branches 

Definition 2.1. The equivalence classes, which we will call branches, are defined as 

M��� ∶= 4� ∈ 2ℕ + 1 | � = 4$� + 2
/ �4$ ; 1�, G ∈ ℤ9. And the number  � ∈ 2ℕ + 1 

as the initial node of the branch. 

Clearly the equivalence relation holds for any � ∈ M���, since ,��!��� =
 ,��! <4$� + 2

/ �4$ ; 1�= = ,��!E�$���. 

As mentioned earlier, the initial node of the equivalence class can be any element 

from it. The only thing to consider is the sign of |G| so that all members of the class 

belong to 2ℕ + 1. 

Proposition 2.1. Let � ∈ M��� then � ∈ M��� and vice versa. Therefore, M��� =
M���. 

Proof. Assuming that � ∈ M���, then � = 4$� + 2
/ �4$ ; 1�, so if G K 0, solving 

for �, � = 4E$� + 2
/ �4E$ ; 1� thus � ∈ M���. The same reasoning applies for G J 0. 

Therefore, M��� ⊆ M���. By exchanging � with �, the other inclusion is demonstrated.

□ 

For example, let � ∈ M�1� then we have that 1 is the initial node of the branch 

and thus � = 4$ + 2
/ �4$ ; 1� and G could be G = 0,1,2 … such that � ∈ 2ℕ + 1 and 

so M�1� = {1, 5, 21, 85, 341, … }. If we consider the element 85 as the initial node, 

we obtain the same branch. Let � ∈ M�85� then � = 4$  85 + 2
/ �4$ ; 1� and G could 

be G = ;3, ;2, ;1,0,1,2 … and so M�85� = {1, 5, 21, 85, 341, … }. 

Node 1 is the only node that belongs to its branch since ,����1� = 1. For any 

other node this does not occur, for example for M�3� = {3, 13, 53, 213, … } and 

,��2�3� = 5, that is, it goes down to the branch of 1. See figure 2. 
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Figure 2. Representation of two branches with its nodes. 

Proposition 2.2. The only initial node that belongs to its branch is 1 node, that is, 

let � ∈ M��� if ,��!��� = � for some � ∈ ℕ\{0} then � = 1. 

Proof. Just apply the function once ,��!,  ,��!���  =  ,��! <4$� + 2
/ P4$ ; 1Q=  =

3<4G�+1
364G;18=+1
2� = 4G�3 �+1�

2� = 3 �+1
2�;2G = �, then  � = 2

�3R7SE/ and since it has to be an 

odd number and a positive integer there is only one solution that corresponds to � ;
2G = 2, that is, � = 2G + 2 and therefore � = 1, thus � ∈ M�1� and since 1 = 4T +
2
/ �4T ; 1� then 1 ∈ M�1� with G = 0.      □ 

When applying the function ,��! to any number other than 1, we obtain another 

number that can be considered one step closer to the branch that contains the number 

1. In other words, when applying the function ,��!, it switches from one branch to 

another and the latter will be closer to the node 1. Similarly, we can think that the 

inverse function of ,��! applied to a node results in a node that is one step further away 

from the node 1. Therefore, we can consider the inverse function of ,��! defined as 

,��!E2: 2ℕ + 1 → 2ℕ + 1 such that ,��!E2��� ≔ �3 �E2
/ . 

Proposition 2.3. For every node � not divisible by three, belonging to any 

branch, another branch comes out with infinite nodes, that is, if � ≡ 1 ���� 3� or 

� ≡ 2 ���� 3� there exists U ∈ 2ℕ + 1 such that ,��!�U� = �, equivalent 

,��!E2��� = U. And if � ≡ 0 ���� 3� no branches come from those nodes. 

Proof. Let � be any node, consider the only three possible situations  

1) Suppose that � ≡ 0 ���� 3�, then let  U be its superior node, that is 

U = ,��!E2��� = �3 �E2
/  then according to the remainder of U, we have that  

a. If U ≡ 0 ���� 3�, that is U = 3UT, with UT ∈ ℕ, then 3UT = �3 �E2
/ , which 

simplifies to 2! � = 3�UT + 1; in order words, 2! � ≡ 1 ���� 3�, which is 

not possible. 
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b. If U ≡ 1 ���� 3�, that is U = 3UT + 1, with UT ∈ ℕ, then 3UT + 1 = �3 �E2
/ , 

which simplifies to 2! � = 3 �3UT + 1�+; in order words 2! � ≡ 1 ���� 3�, 

which is not possible. 

c. If U ≡ 2 ���� 3�, that is U = 3UT + 2, with UT ∈ ℕ, then 3UT + 2 = �3 �E2
/ , 

which simplifies to 2! � = 3 �3UT + 2� + 1; in order words, 2! � ≡
1 ���� 3�, which is not possible. 

This make clear that if � ≡ 0 ���� 3�, it does not have a superior node. 

2) Suppose � ≡ 1 ���� 3�, then let U be its superior node, which means 

U = ,��!E2��� = �3 �E2
/ . Since � ≡ 1 ���� 3�, we can write � = 3�T +  1, 

with �T ∈ ℕ. Therefore, U = �3�/�W1 2� E2
/ = /  �3�W1 �3 E2

/ = 2!�T +  �3 E2
/ ∈

2ℕ + 1 if � ∈ 2ℕ, as in that case 
 �3 E2

/  will be an odd and integer number. Hence, 

there exists U ∈ 2ℕ + 1. As U depends on �, there are infinitely many values of 

U. 
3) Suppose � ≡ 2 ���� 3�, then let U be its superior node, which means 

U = ,��!E2��� = �3 �E2
/ . Since � ≡ 2 ���� 3�, we can write � = 3�T +  2, 

with �T ∈ ℕ. Therefore, U = �3�/�W1 �� E2
/ = /  �3�W1 �3X5 E2

/ = 2!�T +
 �3X5 E2

/ ∈ 2ℕ + 1 if � ∈ 2ℕ + 1, as in that case 
 �3X5 E2

/  will be an odd and integer 

number. Hence, there exists U ∈ 2ℕ + 1. As U depends on �, there are infinitely 

many values of U.         □ 

 

In conclusion, given � ≡ 1 ���� 3�, a branch is formed defined by the nodes U =
�7S �E2

/  with G = 1, 2,…. The initial node corresponds to G = 1, U = �7 �E2
/ . In other 

words, we have the branch M 6�7 �E2
/ 8 And in the case of � ≡ 2 ���� 3�, a branch is 

formed defined by the nodes U = �7SX5 �E2
/  with G = 0, 1, 2,…. The initial node 

corresponds to G = 0, U = � �E2
/ . In other words, we have the branch M 6��E2

/ 8. 

For example, let's assume � = 341. Since 341 ≡ 2 ���� 3�, then U = �7SX5 �E2
/ . 

If G = 0 then U = 227. If G = 1 then U = 909, graphically, see figure 3. 



IGNACIO SAN JOSÉ 
6 

  

Figure 3. Representation of three branches with its nodes. 

In both cases it is verified that 341 are in the orbit ����ℕ12�227� = {227, 341, 1 } 

and ����ℕ12�909� = {909, 341, 1 }. 

Each node � is not a multiple of 3 (� ≢ 0  ���� 3�� generates a distinct 

equivalence class (branch) and each branch has its own nodes. 

Proposition 2.4. Let n, m ∈ 2ℕ + 1 consider the distinct branches b�m� and 
b�n� with m ∉ b�n� then  b�m� ∩ b�n� = ∅. 

Proof. Assume that there exists an odd number � ∈ M��� ∩ M���, then � =
4$� + 2

/ �4$ ; 1� = 4p� + 2
/ �4p ; 1� with G ≠ �; simplifying 2�$� = 2�p� + 2

/ �2�p ;
2�$� and so � = 2�pE�$� + 2

/ �2�pE�$ ; 1�; which implies that � ∈ M��� which 
cannot be by hypothesis, therefore there is no � that belongs to the intersection.□ 

3 Tree. Conclusion 

As indicated earlier, we can consider a tree-shaped like structure with the initial 

node being 1. In other words, the main branch can be assigned to the one that contains 

the initial node 1, with the trunk of the tree where for each node not divisible by 3, a 

branch with infinite nodes emerges. Each branch represents an equivalence class, and 

the union of all equivalence classes forms the set of odd numbers. 

Lemma 3.1. ⋃ M����∈�ℕ12 = 2ℕ + 1. 

Proof. The inclusion ⋃ M����∈�ℕ12  ⊆ 2ℕ + 1 is obvious from the very definition 

of M���. Let us see that ⋃ M����∈�ℕ12 ⊇ 2ℕ + 1. Let � ∈ 2ℕ + 1, consider � = 4� +
1, then � = 4$� + 2

/ �4$ ; 1� therefore  � ∈ M���, with G = ;1.  □ 

In this way, a set of infinite branches with infinitely many nodes is obtained. Nodes 

only belong to one branch by proposition 2.4. In addition, the branches are 

interconnected by the initial nodes of each branch by proposition 2.3 and the only initial 

node that is in its own branch is 1, which shows that there are no unconnected branches 
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or unconnected nodes that generate another independent tree and this is because the 

union of all branches is the set of odd numbers. Furthermore, it is clear that the orbit of 

any odd number indicates the passage from one branch to another, each time the ,��! 

function is applied, it jumps from one branch to a lower one. This indicates that every 

orbit ����ℕ12��� contains the number 1, thus fulfilling the conjeture. 

For example, consider the node � = 1643861; this node belongs to the branch of 

M�401� since 1643861 = 4$ 401 + 2
/ �4$ ; 1� with k = 6. The branch of M�401� starts 

at node 301, because ,����401� = 301. This node belongs to branch M�75�, this 

branch starts from node 113 and finally, node 113 starts from node 85 which is in the 

main branch. Its orbit is ����ℕ12�1643861� = {1643861, 301, 113, 85, 1 }. See figure 

4. 

 

Figure 4. Representation of a part of the tree where node 1643861 and 

the lower branches appears 
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