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Tables I, II, III, IV, and V present features with textual
descriptions and mathematical equations for the ability to re-
compute the time series features. The mathematical equations
have the following notation for one IP flow, i.e., one network
communication between a server and client:

{Xn} is a Single flow time series (SFTS), i.e., se-
quence of n payload lengths of network packets
{x0, . . . , xn−1} within one IP flow, and xi is the
i-th value.

{tn} is sequence of times of SFTS, {Xn}, i.e. i-th packet
is transferred in the ti ∈ {tn}.

{x,} is a sequence of payload lengths of each network
packet sorted by value in ascending order, and x,

i

is i-th value.
{stn} is a sequence of Scaled times computed by the

equation: sti = ti − t0, i ∈ {0, . . . , n− 1}.
{st,} is a sequence of Scaled times sorted by value in

ascending order, and st,i is i-th value.
{dtn−1} is a sequence of Time differences, i.e., spaced

between observations, computed by the equation:
dti = ti+1 − ti, i ∈ {0, . . . , n− 2}.

{dt,} is a sequence of Time differences sorted by value
in ascending order, and dt,i is i-th value.

{d} is a sequence of payload lengths that occur in time
series sorted by value in descending order, and
di is i-th value. Only unique payload lengths are
included.

{c} is a sequence of the number of occurrences of
payload length sorted in descending order, and ci
is i-th value and it is a number of occurrences of
payload length di.

{ym} is aggregated SFTS on 1-second intervals, and yi is
i-th value of the time series of m values.
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{zk} is sequence of non-zero values of {y}, and zi is i-th
value of time series of k values.

{PLS} is the power spectrum of the Lomb-Scargle (LS)
periodogram [1]–[3]. The PLS(fj) is power on
frequency fj ∈ {f}. The generalized form of the
LS periodogram for an unevenly spaced time series
{xn} with times {tn} is shown in equation 1.
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∑
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where τ is specified for each frequency fj to ensure
time-shift invariance:

τ =
1

4πfj
tan−1

(∑
i sin (4πfjti)∑
i cos (4πfjti)

)
(2)

{f} is sequence of frequencies for which there is a
power in LS periodogram {PLS}, and fj ∈ {f}
is j-th frequency.

{f̂} is a sequence of frequencies in reverse order for
which there is a power in LS periodogram {PLS},
and f̂j ∈ {f̂}.

N is the number of frequencies of the Lomb-Scargle
periodogram.
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TABLE I
SUMMARY DETAILED DESCRIPTION OF STATISTICAL-BASED FEATURES OF THE NETTISA FLOW

Feature Mathematical equation Description

Mean µ = 1
n

∑n
i=1 xi The average value of data points

Median x̃ = x,
n+1
2

The middle value of sorted data points

Standard deviation σ =
√

1
n

∑n
i=1 (xi − µ)2 The measure of the variation of data from the mean.

Variance σ2 = 1
n

∑n
i=1 (xi − µ)2 The measure of spread of data from its mean.

Percent above mean = α
n

, where α is the number of values greater than µ Percent of data points with value greater than the mean

Percent below mean = β
n

, where β is the number of values lower than µ Percent of data points with value smaller the mean

Burtiness bxn = σ−µ
σ+µ

The degree of peakedness in the central part of the distribution.

First quartile Q1{xn} = x,
n+1
4

The value marking off the highest 25% of values.

Third quartile Q3{xn} = x,
3(n+1)

4

The value marking off the highest 75% of values.

Min min (x1, x2, . . . , xn) Minimum value in the time series.

Max max (x1, x2, . . . , xn) Maximum value in the time series.

Min minus max = |min − max| Difference between minimum and maximum in the time series.

Mode Mo = argmax(f(x1), . . . , f(xn)) Most common value in the time series.

Average dispersion ad = 1
n

∑n
i=1 |xi − µ| The average absolute difference between each data point and the

mean value of the time series.

Percent deviation pd = ad
µ

The dispersion of the average absolute difference to the mean
value.

Root mean square rms =
√

1
n

∑n
i=1 x

2
i The measure of the magnitude of a time series values.

Entropy H({xn}) = −
∑n

i=1 pi log2 pi The measure of the amount of uncertainty or randomness in the
time series.

Scaled entropy Hs({xn}) = H({xn})
− log2

1
n

It normalizes the entropy value by dividing it by the logarithm
of the time series length, and it is often used to compare the
entropy values of time series with different lengths.

Kurtosis kurt = 1
nσ4

∑n
i=1 (xi − µ)4 The measure describing the extent to which the tails of

distribution differ from the tails of a normal distribution.

Coefficient of variation cv = σ
µ

The dimensionless quantity that compares the dispersion of a
time series to its mean value and is often used to compare the
variability of different time series that have different units of
measurement.

Galton skewness Gs = Q1+Q3−2µ
Q3−Q1

The measure of the asymmetry of a probability distribution that
is based on the difference between the arithmetic mean and the
median of the time series. It is less sensitive to outliers than
other measures of skewness. It is often used in financial analysis
and risk management.

Pearson SK1 skewness sk1 = µ−Mo
σ

The measure of the skewness based on the standardized third
central moment of the time series, and it is often used in
statistical analysis and modelling. It is more sensitive to outliers.

Pearson SK2 skewness sk2 = 3µ−x̃
σ

It is a commonly used measure of skewness due to its ability to
detect both positive and negative skewness.

Fisher µ3 skewness µ3 = E

[(
{xn}−µ

σ

)3
]

It is designed to be unbiased, meaning that it estimates the true
skewness of a population based on a sample of data without
over- or underestimating it.

Fisher-Pearson g1
skewness

g1 = 1
σ3

∑n
i=1

(xi−µ)3

n
It is designed to have a value of zero for symmetrical
distributions, which makes it a more suitable measure for
comparing skewness across different types of distributions.

Fisher-Pearson G1

skewness
G1 =

√
n(n−1)

n−2
g1 It is designed to have a value of zero for symmetrical

distributions, making it a more appropriate measure for
comparing skewness across different types of distributions.



TABLE II
SUMMARY DETAILED DESCRIPTION OF TIME-BASED FEATURES OF THE NETTISA FLOW

Feature Mathematical equation Description
Mean of scaled times µst =

1
n

∑n
i=1 sti The average value of data points

Median of scaled times s̃t = st,n+1
2

The middle value of sorted data points

First quartile of scaled times Q1{stn} = st,n+1
4

The value marking off the highest 25% of values.

Third quartile of scaled times Q3{stn} = st,3(n+1)
4

The value marking off the highest 75% of values.

Mean of time differences µdt =
1
n

∑n
i=1 dti The average value of data points

Median of time differences d̃t = dt,n+1
2

The middle value of sorted data points

First quartile of time differences Q1{dtn} = dt,n+1
4

The value marking off the highest 25% of values.

Third quartile of time differences Q3{dtn} = dt,3(n+1)
4

The value marking off the highest 75% of values.

Duration D = tn−1 − t0 The time duration of the IP flow.

TABLE III
SUMMARY DETAILED DESCRIPTION OF DISTRIBUTION-BASED FEATURES OF THE NETTISA FLOW

Feature Mathematical equation Description
Hurst exponent E

[
R(n)
S(n)

]
= CnH

where R(n) is the first n cumulative deviations from the
mean, S(n) is the sum of the first n standard deviations, E
is the expected value, and C is a constant.

The Hurst exponent H can detect a time series’s tendency
to regress to the mean or cluster towards the center strongly.
If H ∈ ⟨0; 0.5), it indicates a long-term switching between
high and low values in adjacent pairs. It is also stated that
the time series is anti-persistent. If H ∼ 0.5, then this
indicates a random (uncorrelated) time series. Furthermore,
if H ∈ (0.5; 1⟩ indicates a long-term positive
autocorrelation in the time series. It is also said that the
time series is persistent. [4]

Stationarity Adfuler test of stationarity Properties of a stationary time series do not depend on the
observation time. So time series with a trend or with
seasonality is not stationary. Nevertheless, the time series
with periodic (or cyclic) behavior without trend or
seasonality is stationary. [5]

Benford’s law PBENFORD = 1− 1
2

∑9
i=1

(
log10

(
1 + 1

di

)
− ci

n

)
Describes a probability that the occurrence counts of the
first 9 most frequent data points of the time series conform
to Benford’s law [6].

Normal distribution Lilliefors test of normality Verify if the aggregated SFTS to 1-second intervals is
distributed by the normal distribution. That means deciding
if most of the communication of the flow is suited in the
middle of the flow.

Count distribution cdist =
1
m

∑m
i=1|µ{ym}−yi|

1
2
(max({ym})−min({ym}))

Describes the distribution of the number of packets over
time. The lower cdist is, the better the packet counts are
distributed across the time series. The disadvantage is that
the zero intervals can dominate and artificially reduce the
value when there are many zero intervals.

Count non-zero
distribution

cndist =
1
k

∑k
i=1

∣∣∣µ{zk}−zi

∣∣∣
1
2
(max({zk})−min({zk}))

This feature is similar to feature Count distribution but
filters the data points with zero value out of aggregated time
series.

Time distribution tdist =
1

n−1

∑n−1
i=1

∣∣∣µ{dtn−1}−dti

∣∣∣
1
2 (max({dtn−1})−min({dtn−1}))

Describes the distribution of time differences between
individual packets. The lower the tdist, the better the time
differences are spread over time. The weakness is, for
example, if there are only two values in the time series
{dtn−1} with the same count, then the result is always 1
because the mean, µ{dtn−1}, will always be exactly
between them, and so denominator and numerator will have
the same value.



TABLE IV
SUMMARY DETAILED DESCRIPTION OF FREQUENCY-BASED FEATURES OF THE NETTISA FLOW

Feature Mathematical equation Description
Min power min ({PLS}) The minimum power of the LS periodogram.
Max power max ({PLS}) The maximum power of the LS periodogram.
Frequency of min power fj |PLS(fj) == min ({PLS}) The frequency of the Min power.
Frequency of max power fj |PLS(fj) == max ({PLS}) The frequency of the Max power.
Power mean µLS = 1

N

∑
fj∈{f} PLS(f) The average power of the LS periodogram

Power mode MPLS
= argmax({PLS}) Most common power in the LS periodogram.

Power standard deviation σLS =
√

1
N

∑
fj∈{f} (PLS(fj)− µLS)

2 The measure of the variation of powers from the
power mean.

Spectral bandwidth Sb =
∑

fj∈{f} PLS(fj) (fj − Sc)
1
p Computes the order-p spectral bandwidth that aims

to describe the difference between upper and lower
frequencies at which spectral energy is half its
maximum value [7].

Spectral centroid Sc =

∑
fj∈{f} fjPLS(fj)∑

fj∈{f} PLS
Indicates at which frequency the energy of a
spectrum is centred upon [8].

Spectral energy Se =
∑

fj∈{f} PLS(fj) Represents the total energy present at all
frequencies in LS periodogram

Spectral entropy Computation is same as for classic entropy but each pi is a
probability of some power on LS periodogram.

The degree of randomness or disorder in the LS
periodogram.

Spectral flatness Sfj =
N
√

Πfj∈{f}PLS(fj)

1
N

∑
fj∈{f} PLS(fj)

Estimate the uniformity of signal energy
distribution in the frequency domain [9].
(sometimes called a spectral crest)

Spectral flux SF =
(∑

fj∈{f},f̂j∈{f̂}

∣∣∣PLS(fj)− PLS(f̂j)
∣∣∣) the rate of change of periodogram power with

increasing frequency [8]

Spectral kurtosis SK =

∑
fj∈{f} f4

j(∑
fj∈{f} f2

j

)2 − 3 Can indicate a nonstationary or non-Gaussian
behavior in the power spectrum [10].

Spectral periodicity SCDF = 1000− E

[
−MPLS

σ2
PLS

]
The SFTS contains a periodic signal if it is true
SCDF < t, where t is a threshold that can be set. From
our experiments, we set t = 0.9995. Then the feature is set
to True, otherwise is set to False.

The goal of this feature is to decide if in
Lomb-Scargle periodogram is a significant peak
that indicates the presence of the periodic signal in
the SFTS. We use a test by Scargle’s cumulative
distribution function (SCDF) [11] to decide if the
maximum periodogram power is a significant peak.

Spectral rolloff
{f̃} = {fj |PLS(fj) > 0.85 ∗MPLS

}
Sr = f̃0

Defined as frequency bellow at which 85% of the
distribution power is concentrated [12].

Spectral spread Ssp =

√∑
fj∈{f}(fj−Sc)2PLS(fj)∑

fj∈{f} PLS(fj)
The difference between highest and lowest
frequency in power spectrum [13].

Spectral skewness Ssk =

∑
fj∈{f}(fj−Sc)

3PLS(fj)

S3
sp

∑
fj∈{f} PLS(fj)

The measure of peakedness or flatness of power
spectrum [13].

Spectral slope Ssl =

∑
fj∈{f}(fj−µf )(fj−µPLS

)∑
fj∈{f}(fj−µf )2

The slope of power spectrum trend in given
frequency range [14].

Spectral zero crossing rate zcr = 1
N−1

∑
fj∈{f},f̂j∈{f̂} 1R<0(PLS(fj), PLS(f̂j)),

where fj and f̂j are adjacent frequencies, and
1R<0(PLS(fj), PLS(f̂j)) is 1 when change from negative
to positive in frequencies fj and f̂j is observed, otherwise
it is 0.

Refers to the rate of shift of the sign of a wave,
which is the rate of change from negative to
positive or the reverse [12].



TABLE V
SUMMARY DETAILED DESCRIPTION OF BEHAVIOR-BASED FEATURES OF THE NETTISA FLOW

Feature Mathematical equation Description
Significant spaces S = {si|si > µ{dtn−1} ∗ (1 + t) & si >

σ{dtn−1} ∗ (1 + t), si ∈ {dfn−1}}
The goal of this feature is to verify if in the SFTS
are present some spaces, i.e. time differences, that
are significantly bigger than the mean.

Switching ratio sr = sn
1
2
(n−1)

, where sn is the number of switches Represents a switching ratio between different
values of the sequence of observation.

Transients Aims to verify if there is at least one transient in the SFTS. The transient in time series is the
behavior when a set of data points occurring in a short time window has significantly larger
values than the rest of the data points.

Count of zeros c0 = m−k
m

Represents a percentage representation of zero
value data points of aggregated time series, {ym},
from the SFTS to 1-second intervals.

Biggest interval max({ym}) Represents the maximum value of data point of
aggregated time series.

Directions Describe a percentage ratio of packet direction. If they are all in the direction of 1, then the
percentages should be 100%, and if they are all in the direction of -1, then the percentages should
be 0%.

Periodicity The length and time of periodically occurring packet, if some are present.


