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ABSTRACT 

 
Selecting compute nodes and solution grid generation are the first steps of numerical solutions. The most 

distinct manner is storing the values of dependent variables in the same set of nodes and using the identical 

control volumes for all variables. Such a grid is called Collocated. Collocated grid arrangement has many 

positive results in problems with complex solving range, especially with discontinuous boundary 

conditions. But this arrangement was not used for a long time for incompressible flow due to pressure and 

velocity isolation problems and creation of fluctuations in pressure. So the researchers in the mid-60s, have 

developed a new arrangement to reduce this isolation and increase the coupling between pressure and 

velocity. This new arrangement called staggered grid, provided the field of a new method for solving fluid 

flow problems called SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm [1]. This 

report presents the solution to the continuity, Navier-Stokes equations. Standard fundamental methods like 

SIMPLER and primary variable formulation have been utilized. The results were analyzed for standard 

CFD test case- cavity flow. Different Reynold number (1000, 3000) and grid sizes with the finest meshes ie. 

(100×100), (1000×1000) have been studied.  

 

KEYWORDS 

 

Navier-Stokes equations, SIMPLER algorithm, CFD, cavity flow 

 

1. INTRODUCTION 

 
Several popular books on computational fluid dynamics have discussed the SIMPLE algorithm in 

details [1, 2]. In computational fluid dynamics (CFD), SIMPLE algorithm is a widely used 

numerical method to solve the Navier-Stokes equations [3]. SIMPLE algorithm is an acronym for 

Semi-Implicit Method for Pressure Linked Equations and it was developed by Prof. Brian 

Spalding and his student Suhas Patankar at Imperial College, London in the early 1970s [4]. 

Since then it has been widely used by several researchers to solve different kinds of fluid flow 

and heat transfer problems. A modified variant is the SIMPLER algorithm (SIMPLE Revised), 

that was introduced by Patankar in 1979 [5]. The SIMPLER method is an extension of the 

SIMPLE method. The SIMPLE method normally gives good velocity corrections; however, the 

correction of the pressure is less accurate. This is as a result of the omission of the term ∑anbunb. 

The SIMPLER method keeps the algorithms for computing the velocity-corrections, but utilizes 

another algorithm for computing the pressure [6]. 

 

 



Mechatronics and Applications: An International Journal (MECHATROJ), Vol. 1, No.1, January 2017 

56 

 

Several numerical methods for solving the 2D Navier-Stokes equation in the literature were tested 

utilizing the 2D cavity flow problem. In this study, SIMPLER algorithm was used with primitive 

variables velocity and pressure. The application of simpler iterative techniques to solve the 

Navier-Stokes equations might result to slow convergence. The rate of convergence is also 

generally strongly dependent on parameters such as Reynolds number and mesh size [7]. In this 

article, the results obtained by running the written code are presented in FORTRAN. It should be 

noted that Tecplot software has been used to process the results. 

 

2. THE SIMPLER METHOD 

 
SIMPLER algorithm (modified SIMPLE, Patankar (1980)) is a modified version for SIMPLE. In 

this algorithm, continuity equation has been used to derive a discrete equation for the pressure 

instead of pressure correction equation in the SIMPLE method. So the average pressure field is 

obtained directly and without the use of correction. But the velocities would be obtained by 

velocity correction with SIMPLE method. 

 

Thus, the momentum equation is rewritten in the following discrete form. 
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Where are defined at unrealistic velocities of û  and v̂ as follows: 
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Substituting Jiu , and jIv ,  in continuity equation and finally the equation algebraic operations, 

the following pressure equation is obtained. 
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In which the coefficients are obtained from the relations. 
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Solution process in SIMPLER method is very similar to the process of solving in SIMPLE 

method, the difference is that the pressure distribution in the SIMPLER method is not guessed, 

but is obtained with the pressure equation. Another difference is that, at the end of a reputation, 

only the velocities are modified and no correction is considered for pressure. 

 

2.1. Motivation of the SIMPLER  
 
The approximation introduced in deriving the P´ equation (the omission of the term ∑anbu´nb) 

leads to rather exaggerated pressure corrections, therefore under relaxation becomes necessary. 

Since the influence of the neighbor-point velocity corrections is eliminated from the velocity-

correction formula, the pressure correction has the whole burden of correcting the velocities, and 

this leads to a rather severe pressure-correction field. If the pressure-correction equation is only 

applied for the task of correcting the velocities and provide some other means of obtaining an 

improved pressure field, then a more efficient algorithm can be constructed. This is the essence of 

SIMPLER [1]. 

 

2.2. Algorithm of the SIMPLER 

 
The revised algorithm includes solving the pressure equation to obtain the pressure field and 

solving only the pressure-correction equation to correct the velocities. The steps in the solution 

are as follows [8]: 

 

1. Act with a guessed velocity field. 

2. Calculate the coefficients for the momentum equations and hence calculate uˆ, vˆ. 

3. Calculate the coefficients for the pressure equation and solve it to obtain the pressure field. 

4. Solve the momentum equations to obtain u*, v*. 

5. Calculate the mass source b and hence solve the p´ equation. 

6. Correct the velocity field, but do not correct the pressure. 

7. Return to step 2 and repeat until convergence. 

 

2.3. Flow Chart of the SIMPLER  
 
In this algorithm, the discretized continuity equation is applied to derive a discretized equation for 

pressure, instead of a pressure correction equation as in SIMPLE [9]. Therefore the intermediate 

pressure field is directly obtained without using a correction. Velocities are however, still 

obtained by the velocity corrections of SIMPLE [10]. 
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Flow chart 1. Showing the SIMPLER algorithm 

 

3. PROBLEM DEFINITION 
 

The problem considers incompressible flow in a square domain (cavity) with an upper lid moving 

with a velocity (u=1 ft/s) and the other boundaries have no-slip tangential and zero normal 

velocity boundary condition as depicted in Fig.1 [7]. The main objective is to obtain the velocity 

field in 2D incompressible steady state flow with different Reynold number (1000, 3000) and 

distinct grid sizes (100×100), (1000×1000). Nowadays, primitive variable formulation is 

preferred. 
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Figure 1. Cavity flow in a square domain [7] 

 

3.1. Governing Equations 

 

The governing equations are those of 2D incompressible Navier-Stokes equations, continuity and 

u and v momentum equations (1, 2, 3). 

 

∇.(ρV) = 0                                       (1) 

∇.(ρVu) = ∇.(µ∇u)−∇p.i+Su             (2) 

∇.(ρVv) = ∇.(µ∇v)−∇p.j+Sv              (3) 

 

The difficulty in solving these equations is that the NS equations are nonlinear and the pressure in 

the domain is unknown [11]. The continuity and momentum equations are also decoupled partial 

differential equations and need to be solved. 

 

3.2. Numerical Method Discretization 

 
Co-located storage of the pressure and velocity variables at the cell centers leads to the problem 

of checker boarding. This is because the cell center values of pressure and velocity were 

cancelled out on expanding the face gradient terms. To overcome this problem, staggered grid 

was utilized for discretization of the momentum equations. The staggered grid for the u 

momentum equation is depicted in Fig.2 alongside the neighboring velocity vectors for 

calculating velocity gradients. Staggered grid in vertical direction is applied for v momentum 

equation. Pressure is stored on the original grid and the pressure difference terms are evaluated as 

a difference of cell center pressure values. 

 

 
 

Figure 2. Neighbors for Ue momentum control volume 
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3.3. Discretization of boundary cells 

 
Although, the velocity boundary condition is applied when calculating gradients in the first cell 

using the staggered grid for the u-momentum discretization, it does not consider momentum 

balance on the boundary strip (Fig.3). The last (far east) staggered cell is also only half ∆x thick. 
 

 
 

Figure 3. Neighbors for Ue momentum control volume 

 

4. RESULTS 

 
A uniform grid is assumed in the x and y direction. The momentum equations are discretized and 

the SIMPLER algorithm is implemented. Several grid sizes have been studied and for different 

Reynold numbers (1000, 3000). The graphs include computed u-velocity along the vertical center 

line and v- velocity along the horizontal center line [7]. Here the plots show results of the finest 

meshes ie. (100×100) and (1000×1000). In addition, the stream lines have been plotted for each 

Re value and were compared to the stream lines. Figures 4 and 5 show the velocity plots for 

Re=1000, Grid l00× 100. Apart from a primary vortex, the formation of secondary vortices can 

be seen on the corners of the domain. 

 

 

Figure 4. Re =1000 U& V velocity, Gridl00× 100 

 

 

Figure 5. Re =1000 Streamlines, Grid l00× 100 
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Figures 6 and 7 show the results for higher Re of 3000 and Grid l00×100. In addition, for higher 

Re values, the primary vortex shifts more towards the center of the domain. The results for other 

Re can also be seen below. For higher Re values, the primary vortex shifts more to the center and 

more corner secondary vortices are formed. The secondary vortices are also convected towards 

the center of the domain for higher Re values. Also with the convection of secondary vortices, 

more vortices are formed at the corners. 

 

 

Figure 6. Re =3000 U & V velocity, Grid l00× 100 

 

 

Figure 7. Re =3000 Streamlines, Grid l00× 100 

 

The stream line function plots for various Grid l000× 1000 can be verified with the plots shown 

in Appendix A. Figures 8, 9 and 10 show the stream line contours in the reference paper. We can 

see a very close resemblance with the computed stream line solutions with SIMPLE method. [12]. 

 

 

Figure 8. Re =3000 U & V velocity, Grid l000× 1000 
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Figure 9. Re =3000 Streamlines, Grid l000× 1000 

 

 

Figure 10.In order from left to right: Re =5000, Re =7500Re =10000 Streamlines, Grid l50× 150 

 

4. CONCLUSION 

 
Comparing the results of this study with those of the bench park paper on driven cavity flow 

show that SIMPLER solver is adequate to solve complex flow field problems like the cavity flow. 

There is a good match of the computed results with the reference values. Fine details like the 

corner vortices were also accurately predicted using fine grids. Other than some minor 

computational difficulties, the SIMPLER solver is very efficient in solving flow problems. The 

accuracy and convergence might be increased using refined technique like SIMPLE-C though. 

But why this method is better than SIMPLE technique?!  
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5. DISCUSSION 

 
It is easy to see that, for the one-dimensional problem discussed in this study, the SIMPLER 

algorithm would immediately give a converged solution. Generally, since the pressure-correction 

equation produces reasonable velocity fields, and the pressure equation works out the direct 

consequence (without approximation) of a given velocity field, convergence to the final solution 

should be much faster.  In SIMPLE, a guessed pressure field plays a prominent role. On the other 

hand, SIMPLER does not use guessed pressures, but extracts a pressure field from a given 

velocity field. If the given velocity field happens to be the correct velocity field, then the pressure 

equation in SIMPLER will produce the correct pressure field, and there will be no need for any 

further iterations [13]. If on the other hand, the same correct velocity field and a guessed pressure 

field were used to initiate the SIMPLE procedure, the situation would actually deteriorate at first. 

The use of the guessed pressure would lead to starred velocities that would differ from the given 

correct velocities. Then, the approximations in the p´ equation would produce incorrect velocity 

and pressure fields at the end of the first iteration. Convergence would take several iterations, 

despite the fact that we did have the correct velocity field initially [1]. Although SIMPLER has 

been found to produce faster convergence than SIMPLE, it should be emphasized that one 

iteration of SIMPLER involves more computational effort. First, the pressure equation must be 

solved in addition to all the equations solved in SIMPLE; and second, the calculation of u, v and 

w represents an effort for which there is no counterpart in SIMPLE. However, since SIMPLER 

requires lesser iterations for convergence, the additional effort per iteration is more than 

compensated by the overall saving of effort [1]. 
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