
1

Secure Virtual Network Embedding in a Multi-Cloud
Environment

Max Alaluna∗ Luı́s Ferrolho∗ José Rui Figueira† Nuno Neves∗ Fernando M. V. Ramos∗

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal∗,
CEG–IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal†

{malaluna,lferrolho}@lasige.di.fc.ul.pt, figueira@tecnico.ulisboa.pt, nuno@di.fc.ul.pt, fvramos@ciencias.ulisboa.pt

Abstract—Recently-proposed virtualization platforms give cloud
users the freedom to specify their network topologies and ad-
dressing schemes. These platforms have, however, been targeting
a single datacenter of a cloud provider, which is insufficient to
support (critical) applications that need to be deployed across
multiple trust domains while enforcing diverse security require-
ments. This paper addresses this problem by presenting a novel
solution for a central component of network virtualization –
the online network embedding, which finds efficient mappings of
virtual networks requests onto the substrate network. Our solution
considers security as a first class citizen, enabling the definition of
flexible policies in three central areas: on the communications,
where alternative security compromises can be explored (e.g.,
encryption); on the computations, supporting redundancy if nec-
essary while capitalizing on hardware assisted trusted executions;
across multiples clouds, including public and private facilities,
with the associated trust levels. We formulate the solution as a
Mixed Integer Linear Program (MILP), and evaluate our proposal
against the most commonly used alternative. Our analysis gives
insight into the trade-offs involved with the inclusion of security
and trust into network virtualization, providing evidence that this
notion may enhance profits under the appropriate cost models.

Keywords-virtual network embedding; multi-cloud; security

I. INTRODUCTION

Network virtualization has emerged as a powerful technique
to allow multiple heterogeneous virtual networks to run over
a shared infrastructure. Nowadays, a number of production-
level platforms have been proposed [2, 10], already achieving
the necessary scale, performance, and required level of service.
This has allowed cloud operators to start extending their service
offerings of virtual storage and compute with network virtual-
ization [10].

So far, these modern platforms have been confined to a
datacenter, controlled by a single cloud operator. This restric-
tion can be an important barrier as more critical applications
start shifting to the cloud. To overcome this problem, we are
developing a solution that aims to extend network virtualization
across multiple cloud providers [3, 11], bringing a number
of benefits in terms of cost, performance, and versatility. In
particular, a multi-cloud solution may contribute to security
from several perspectives. For example, a tenant1 that needs
to comply with privacy legislation can demand a certain virtual
machine to remain at a specific place while the rest can go to
other facilities (e.g., some services of a healthcare application,
such as the analysis of patient medical images, can only be
performed in pre-approved clouds). An application can also be
made immune to any single datacenter (or cloud availability
zone) outage by spreading its services across providers. Several

1We employ the terms user and tenant interchangeably in the paper.

incidents in cloud facilities are evidence of this increasingly
acute risk [7, 15], motivating the exploration of availability-
enhancing alternatives (e.g., the services deemed critical are
replicated over two providers).

This paper tackles a fundamental component in our network
virtualization solution – the Virtual Network Embedding (VNE)
– from this new perspective. VNE addresses the problem of
provisioning the virtual networks specified by the tenants [6].
When a virtual network request (VNR) arrives, the goal is
to find an effective mapping of the virtual nodes and links
onto the substrate network, while maximizing the revenue of
the virtualization operator. This objective is subject to various
constraints, such as the processing capacity on the substrate
nodes and bandwidth resource on the links.

A mostly unexplored perspective on this problem is pro-
viding security assurances. We propose a VNE solution that
considers security constraints based on indications from the
tenants. These constrains address, for instance, concerns about
attacks on virtual machines or on physical links (e.g., re-
play/eavesdropping). To further extend the resiliency proper-
ties of our solution, we support the coexistence of resources
(nodes/links) in multiple clouds, both public and private, and
assume that each individual cloud may have distinct levels of
trust from a user standpoint. A private datacenter is in principle
considered more trustworthy, while different public clouds may
offer various levels of security and trust (due to their location
and/or Service Level Agreements (SLA)).

We have evaluated our proposal against the most commonly
used alternative [4]. The results show a similar behavior of both
solutions when no security constrains are specified. Even when
a significant part of the VNR impose security restrictions, the
performance decrease is limited. This is a direct consequence
of being harder to fulfill the requirements of the VNR, leading
to lower acceptance rates. A key finding is that by rising the
price of security services by a modest value, the provider is
able to attain at least the same revenue as the other approach
(certainly, a provider offering such added-value services will
want to increase its profits further, so that figure can be seen
as a baseline).

The contributions of our work can be summarized in the
following: (i) We formulate the SecVNE problem and solve it
as a Mixed Integer Linear Program (MILP). The novelty of our
approach is in considering comprehensive security aspects over
a multi-cloud model; (ii) We compare our solution with the
most commonly used VNE MILP formulation [4], and analyze
the trade-offs between the benefit of security and embedding
efficiency.

ar
X

iv
:1

70
3.

01
31

3v
1

 [
cs

.N
I]

 3
 M

ar
 2

01
7

2

b

c
d

g

f e

j
h

i

Private Cloud

Trusted Public
Cloud

Public Cloud

1 2
Virtual Network

Request
User Virtual
Network

Substrate
Network

a

Communications
(virtual links)

Computations
(virtual nodes)

Availability

Confidentiality
& Integrity

NT0 – Container
NT1 – VM
NT2 – Secure VM

CT0 – Public Cloud
CT1 – Trusted Public Cloud
CT2 – Private Cloud

Trust Domains
(clouds)

NA0 – Single virtual node
NA1 – Replication (another cloud)
NA2 – Replication (same cloud)

LA0 – Single path
LA1 – Replicated paths

Availability

Trusted
Executions

LC0 – Default
LC1 – Authenticity, Integrity
LC2 – Confid. & Auth., Integrity

1 2

Figure 1: Model of levels of security for communications,
computations and trust domains.

II. SECURE VNE

Our approach to VNE supports the specification of security
policies enforced on a multi-cloud deployment, enhancing the
flexibility, efficiency and security of the network virtualization
solution. When a user wants to instantiate a virtual network
(VN), besides indicating the nodes’ processing capacity and the
links’ bandwidth, he may also include as requirements security
demands. These demands are defined with the selection of
security levels/attributes associated with resources of the VN.
The current collection of attributes resulted from conversations
with several companies from the healthcare and energy sectors
that are moving their critical services to the cloud, and they
represent a balance among three goals: (i) expressive enough
to represent the main security requirements when deploying
a VN; (ii) easy to specify when configuring a VN (requiring
a limited number of options); (iii) implementable with ready
available technologies. Figure 1 displays the attributes that can
be selected in our virtualization solution:

Communications. Two aspects can be tuned for each of the
virtual links: (1) the user may desire to employ standard tunnels
while connecting certain nodes (LC0 for default security), but in
others extra safeguards may be required. Since data encryption
normally imposes a non-negligible performance penalty, we let
the user choose if authentication and integrity protection is
enough (LC1) or if confidentiality is also necessary (LC2); (2)
to tolerate failures, we allow for backup paths to be setup for
extra availability assurances (LA0, where only a path is created
vs. LA1, with two paths).

Computation. Virtual nodes can be embedded onto machines

with distinct support for trusted executions: containers, e.g.,
Docker, have applications isolated directly on top of the host
operating system (NT0); VMs achieve a higher level of security
as isolation is ensured by the hypervisor (NT1); secure VMs
could run in machines with hardware that can enhance the trust
on the executions (e.g., TPMs or Intel SGX extensions)2 (NT2).
Since failure repair times are unpredictable [8], we also let the
user specify that a node should be replicated. He can choose
the location of each backup node, in the same cloud (NA2) or
a different one (NA1) for physical failure independence.

Trust domains. The user can choose the type of cloud
where virtual nodes should be located. Three types of clouds
are supported: public clouds, belonging to external providers
(CT0); trusted public clouds that give higher security assurances
(e.g., greater penalties for SLA violations) (CT1); and private
clouds, where the user has higher control on security (CT2).
With these options, the user may choose private clouds for more
sensitive VMs, leaving the others for public clouds to scale out.

Taking into consideration the above features, we now define
the Secure Virtual Network Embedding (SecVNE) problem:

SecVNE problem: Given a virtual network GV with the
requested resources and corresponding security requirements,
and the substrate network GS with the resources to serve
incoming VNRs, can GV be mapped to GS with the minimum
use of resources while satisfying the following constraints?
(i) Each virtual link is mapped to the substrate network
meeting the bandwidth and security constraints, namely related
to confidentiality, integrity and availability; (ii) Each virtual
node is mapped to the substrate network meeting the CPU
capacity and security constraints, namely with regard to trusted
executions and availability; (iii) Each virtual node is mapped to
a substrate node located in a cloud that covers its trust domains
requirements.

Our solution handles the SecVNE problem, trying to map
a VN onto a substrate network (SN) while respecting all the
requirements and constraints. When a VNR arrives, the best
mapping is searched for to decrease the costs of embedding
(i.e., reduce the total quantity of substrate resources allocated
to it). If there is no possible solution to embed the incoming
VN, then the request is rejected. Otherwise, the quantity of
resources demanded by the VN is allocated.

In our formulation, after the embedding of a VN, the SN is
augmented with the virtual nodes that were embedded. These
virtual nodes have meta-links to the substrate nodes on which
they are mapped. Figure 2(c), illustrates the result of embedding
the VNR presented in 2(b) onto the SN presented in 2(a). In
the example, the VNR requires the replication of nodes and
links for higher availability. Virtual node 1 has a meta-link with
substrate node A, and virtual node 2 has one with E, which are
their primary nodes. They also have meta-links with substrate
nodes B and D, the backup nodes that can be used when a
failure occurs. In this figure it is also possible to observe that
the substrate paths (both working and backup) correspond to
more than one substrate link (e.g., the substrate links (A,F) and
(F,E) are assigned to the working path).

2Notice that we target also private clouds, where this support can be made
readily accessible. Public clouds may have this sort of offering in the future,
as out-of-the-box Intel CPUs already support SGX extensions.

3

Figure 2: (a) Substrate network; (b) Virtual network request that
requires node/path replication. (c) Example of the embedding
result after the execution of our MILP formulation.

A. Network Model

This section describes the characteristics and attributes that
are associated to a substrate and a virtual network.

1) Substrate Network

We model the substrate network as a weighted undirected
graph. It is denoted by GS = (NS , ES , ASN , A

S
E) , where NS

is the set of substrate nodes, ES is the set of substrate links,
ASN is the set of attributes of substrate nodes, and ASE is the
set of attributes of substrate links.
ASN contains the following attributes for substrate nodes:

ASN = {{cpuS(n), secS(n), cloudS(n)}|nεNS}
• cpuS(n) - Total CPU capacity of the substrate node n.

This attribute can take any values greater or equal to 0;
• secS(n) - Security provided by the substrate node n. This

attribute can take any positive value (including zero). In
the example given in Figure 1, if substrate node n is a
normal container, then secS(n) = 0. If it is a normal VM
or a secure VM, then secS(n) is 1 or 2 respectively.

• cloudS(n) - Defines in which type of cloud the substrate
node n is located. This attribute can take any positive value
(including zero). In the example, if n is located in a public
cloud, then cloudS(n) = 0. If it is located in a trusted
public cloud, then cloudS(n) = 1. Lastly, if n is located
at a private cloud, then cloudS(n) = 2.

ASE contains the following attributes for substrate links:

ASE = {{bwS(l), secS(l)}|lεES}
• bwS(l) - Total bandwidth capacity of the substrate link l.

This attribute can take any values greater or equal to 0;
• secS(l) - Security provided by the substrate link l. This

attribute can take any positive value (including zero). In
the example, secS(l) = 0 if substrate link l might be con-
figured with no security mechanisms (defined as default).
If link l supports protocols that provide authenticity and
integrity guarantees, then secS(l) = 1. Lastly, if l ad-
ditionally offers confidentiality assurances (by encrypting
packets), then secS(l) = 2.

2) Virtual Network Requests

VNRs are defined by the clients of the system. Similar to
the substrate network, the VNRs are also modeled as weighted
undirected graphs. Each virtual network request is denoted by
GV = (NV , EV , T imeV , DurV , AVN , A

V
E), where NV is the

set of virtual nodes, EV is the set of virtual links, TimeV

is the arrival time of the VNR, DurV is the time period for
which the VN is valid, AVN is the set of attributes of substrate
nodes, and AVE is the set of attributes of substrate links. AVN
contains the attributes demanded by virtual nodes and links,
quite similar to the Substrate Network ones, except for:

• availV (n) - Defines where the backup of virtual node n
should be mapped. This attribute can take any positive
value (including zero). Considering the same example, if
replication is not needed for the VNR , then availV (n)
= 0. If virtual node n should have a backup in the same
cloud, then availV (n) = 1. Finally, if n should have a
backup located in other cloud (e.g., in order to survive
from a cloud outage), then availV (n) = 2.

3) Measurement of Substrate Network Resources

The residual capacity (or available capacity) of a substrate
node, RN (nS), is defined as the available CPU capacity of
the substrate node nSεNS .

RN (nS) = cpuS(nS)−
∑
∀nV ↑nS

cpuV (nV),

where nV εNV and x ↑ y denotes that the virtual node x is
hosted on the substrate node y.

Similarly, the residual capacity of a substrate link, RE(eS),
is defined as the total amount of bandwidth available on the
substrate link eSεES .

RE(e
S) = bwS(eS)−

∑
∀eV ↑eS

bwV (eV),

where eV εEV and x ↑ y denotes that the flow of the virtual
link x traverses the substrate link y.

Since a virtual link can be mapped onto multiple substrate
links, i.e., mapped onto a substrate path, it is also important to
define the available bandwidth capacity of a substrate path P.
This corresponds to the minimum available bandwidth among
all the substrate links belonging to P.

RE(P) = min
eSεP

RE(e
S)

4) Objectives

One of the main goals of VNE is to maximize the profit
of the virtualization provider. For this purpose, and similar to
[4, 17], the revenue of accepting a VNR is proportional to the
acquired resources. However, in our case, we have to take into
consideration that stronger security protection measures maybe
are charged at a higher premium value:

R(GV) = λ1
∑

eV εEV

bwV (eV) secV (eV) +

λ2
∑

nV εNV

cpuV (nV) secV (nV) cloudV (nV),

where λ1 and λ2 are weight coefficients that denote the relative
proportion of each revenue component to the total revenue.

Although the revenue gives us an idea of how much a
virtualization provider will gain by accepting a certain VNR,
it is also important to understand the cost the provider will
incur for embedding that request. The cost of embedding a
VNR is proportional to the total sum of substrate resources

4

allocated to that VN. In particular, this cost has to take into
consideration that virtual links may be embedded to one or
more physical links. In our work, the cost may also increase
if the VNR requires higher security for its virtual nodes and
links. We define the cost of embedding a VNR as:

C(GV) = λ1
∑

eV εEV

∑
eSεES

fe
V

eS secS(eS) +

λ2
∑

nV εNV

∑
nSεNS

cpun
V

nS secS(nS) cloudS(nS),

where fe
V

eS denotes the total amount of bandwidth allocated
on the substrate link eS for virtual link eV . Similarly, cpun

V

nS

corresponds to the total amount of CPU allocated on the
substrate node nS for virtual node nV (either working or
backup parts). As above, λ1 and λ2 are the same weights, which
denote the relative proportion of each cost component to the
total cost.

III. MILP FORMULATION

We have developed a MILP formulation to solve the SecVNE
problem. This section starts by explaining the decision variables
used in our formulation, the objective function, and finally the
constraints that were defined to model the problem.

A. Decision variables

Table I explains the variables that are used in our MILP
formulation. Briefly, wf i,ju,v , bf i,ju,v , wli,ju,v , bli,ju,v and rlu,v are
related to working and backup links; wni,v , bni,v and rnv are
associated with the working and backup nodes; wci,c and bci,c
are related to the embedding location of virtual nodes.

B. Objective Function

The objective function of our formulation has three goals: to
minimize 1) the sum of all computing costs, 2) the sum of all
communication costs, and 3) the overall number of hops of the
substrate paths for the virtual links.

Since we have different objectives, and these objectives are
measured in different units, we have to unify them. Thus, in
our formulation we consider a weighted-sum function with
three different coefficients, β1, β2, and β3, which should be
reasonably parameterized for each objective.

The first and the second parts of Eq. 1 are the sum of all
working and backup link bandwidth costs, respectively. The
third and the fourth parts are the sum of all working and backup
computing node costs. In this function, the level of security
provided by the physical resources is considered. The parameter
α is a weight for each physical link that assumes some value
defined previously and that depends of (u,v) being an inter-
cloud connection (link between two clouds) or an intra-domain
link (link inside a cloud). This is due to the expectation that
virtual links that use links connecting two clouds (inter-domain
links) will have a higher cost (monetary, delay, or other). Also,
mapping a VN onto substrate resources that provide higher
security are expected to increase costs. The fifth and last parts
of the objective function achieve the third goal presented above.

Symbol Meaning

wf i,j
u,v > 0

The amount of working flow, i.e., bandwidth, on the
physical link (u,v) for the virtual link (i,j)

bf i,j
u,v > 0

The amount of backup flow, i.e., backup bandwidth,
on the physical link (u,v) for the virtual link (i,j)

wli,ju,v ∈ {0, 1}
Denotes whether the virtual link (i,j) is mapped onto
the physical link (u,v). (1 if (i,j) is mapped on (u,v), 0
otherwise)

bli,ju,v ∈ {0, 1}
Denotes whether the backup of virtual link (i,j) is
mapped onto the physical link (u,v). (1 if backup of
(i,j) is mapped on (u,v), 0 otherwise)

rlu,v > 0
The reserved backup resources on a physical link (u,v),
i.e., the total quantity of bandwidth that is allocated for
backup flows.

wni,v ∈ {0, 1}
Denotes whether virtual node i is mapped onto the
physical node v. (1 if i is mapped on v, 0 otherwise)

bni,v ∈ {0, 1}
Denotes whether virtual node i’s backup is mapped
onto the physical node v. (1 if i’s backup is mapped
on v, 0 otherwise)

rnv > 0
The reserved backup resource on a physical node v,
i.e., the total quantity of CPU that is allocated to
backups.

wci,c ∈ {0, 1}
Denotes whether virtual node i is mapped on cloud c.
(1 if i is mapped on c, 0 otherwise)

bci,c ∈ {0, 1}
Denotes whether virtual node i’s backup is mapped on
cloud c. (1 if i’s backup is mapped on c, 0 otherwise)

Table I: List of all the Domain Constraints (decision variables)
used in our MILP formulation.

Intuitively, with our formulation when a VNR arrives to our
system, the embedder will try to match the request to the
resources in such a way that more “powerful” resources are
saved (e.g., those with higher security levels) for the virtual
resources that require them explicitly. For instance, virtual
nodes with secV = 1 will be mapped onto substrate nodes
with secS = 2 if and only if there are no other substrate nodes
with secS = 1 available.

min β1
∑

(i,j)εEV

∑
u,vεNS

αu,v wf i,ju,v secS(u, v)

+ β1
∑

u,vεNS

rlu,v secS(u, v)

+ β2
∑
iεNV

∑
vεNS

cpuV (v) wni,v sec
S(v) cloudS(v)

+ β2
∑
vεNS

rnv secS(v) cloudS(v)

+ β3
∑

(i,j)εEV

∑
u,vεNS

wli,ju,v

+ β3
∑

(i,j)εEV

∑
u,vεNS

bli,ju,v (1)

C. Typical Constraints

Besides the Domain Constraints of Table I, in this section
we define the other constraints that often have to be considered
in most VNE MILP formulations.

Link Mapping for Working Traffic

Constraints 2, 3 and 4 refer to the working flow conservation
conditions, which denote that the overall network flow to a
node is zero, except for the source node and the sink node,
respectively (i.e., no flow appears or disappears in any node,
unless it is a source or a sink node).

5

∑
uεNS∪NV

wf i,ju,v −
∑

uεNS∪NV

wf i,jv,u = 0,∀(i, j)εEV , vεNS\{si, ti}

(2)∑
vεNS

wf i,ji,v −
∑
vεNS

wf i,jv,i = bwV (i, j),∀(i, j)εEV

(3)∑
vεNS

wf i,jj,v −
∑
vεNS

wf i,jv,j = −bw
V (i, j),∀(i, j)εEV

(4)
Eq. 5 and 6 guarantee that the working flow of a virtual link

(i, j) always departs from the correspondent working node of
i and arrives to the correspondent working node of j.

wni,v bwV (i, j) = wf i,ji,v ,∀vεN
S , (i, j)εEV (5)

wnj,v bwV (i, j) = wf i,jv,j ,∀vεN
S , (i, j)εEV (6)

Node Capacity Constraints

Substrate nodes can map nodes from different VNRs. For
instance, they can be the working node corresponding to a
virtual node i from a VNR x and simultaneously be the
corresponding backup node of a virtual node j from a VNR
y. Considering this, for a substrate node, the total allocated
capacity depends on the total capacity that is allocated for
working nodes, plus the total capacity that is allocated for
backup nodes, which should be less than the current capacity
of the substrate node. This is represented by Eq. 7 and 8.∑

uεNV

bnu,v cpuV (u) 6 rnv,∀vεNS (7)∑
uεNV

wnu,v cpuV (u) + rnv 6 RN (v),∀vεNS (8)

Link Capacity Constraints

Like substrate nodes, substrate links can also map virtual
links from different VNRs. Eq. 9 and 10 define the allocated
link capacity of a substrate link as the sum of the capacity
allocated for the active flows and the reserved resources for
backup. The allocated capacity of a substrate link should be
less than the residual capacity of that physical link.∑

(i,j)εEV

(bf i,ju,v + bf i,jv,u) 6 rlu,v,∀u, vεNS (9)

∑
(i,j)εEV

(wf i,ju,v + wf i,jv,u) + rlu,v 6 RE(u, v),∀u, vεNS (10)

D. Security Constraints

Our VNE formulation includes security constraints, for both
the nodes, links, and clouds.

Node Security Constraints

The security restrictions for nodes are defined as:

wnu,v secV (u) 6 secS(v),∀uεNV , vεNS (11)

bnu,v secV (u) 6 secS(v),∀uεNV , vεNS (12)
Eq. 11 guarantees that a virtual node u is only mapped to

a physical node that has an equal or higher security level than
u’s security demand. Eq. 12 ensure the same as the previous

one, but for backup nodes. This ensures, returning to our initial
example, that a secure VM from the physical infrastructure can
map virtual nodes requesting normal containers, VMs, or secure
VMs, whereas a physical container can only map virtual nodes
that are looking for normal containers.

Link Security Constraints

The following equations refer to the working and the backup
link security constraints:

wli,ju,v secV (i, j) 6 secS(u, v),∀(i, j)εEV , u, vεNS (13)

bli,ju,v secV (i, j) 6 secS(u, v),∀(i, j)εEV , u, vεNS (14)

Here, it is necessary to ensure that each virtual link is mapped
to one or more physical links that provide a security level
equal or higher than the security demand of the virtual link.
Similarly to the previous case, a physical link that provides
default security can only map virtual links that demand for
that low level of security, while a physical link that provides
authenticity, integrity and confidentiality guarantees can map
virtual links with any security demand.

Cloud Security Constraints

Eq. 15 ensures that a virtual node u is mapped to a certain
physical node v only if the cloud where v is located is of a type
of equal or higher security than the type of cloud demanded by
node u. For instance, a virtual node that requires to be mapped
on a public cloud may be mapped to either a public, a trusted
public or a private cloud, considering again our example. On
the other side, a virtual node that requires the highest level of
security can only be mapped to nodes located in a private cloud.
Eq. 16 guarantees the same for the backup nodes.

wnu,v cloudV (u) 6 cloudS(v),∀uεNV , vεNS (15)

bnu,v cloudV (u) 6 cloudS(v),∀uεNV , vεNS (16)

E. Availability Constraints

Finally, we define the constraints related to fault-tolerance
and availability.

Link Mapping for Backup Traffic

For the backup traffic, it is necessary to define the same set
of flow constraints defined for working traffic, but using the
variables bf i,ju,v and bnu,v . Constraints 17, 18 and 19 refer to
the backup flow conservation conditions, which denote that the
network flow to a node is zero, except for the source node
and the sink node, respectively. wantBackup is a parameter
defined by the tenant and it assumes the value 1 if backups are
needed or the value 0 otherwise.∑

uεNS∪NV

bf i,ju,v −
∑

uεNS∪NV

bf i,jv,u = 0,∀(i, j)εEV , vεNS

(17)∑
vεNS

bf i,ji,v −
∑
vεNS

bf i,jv,i = bwV (i, j) ∗ wantBackup,∀(i, j)εEV

(18)∑
vεNS

bf i,jj,v −
∑
vεNS

bf i,jv,j = −bw
V (i, j) ∗ wantBackup,∀(i, j)εEV

(19)

6

Eq. 20 and 21 guarantee that the backup flow of a virtual link
(i, j) always departs from the corresponding backup node of i
and arrives to the corresponding backup node of j. Normally,
the backup path only carries information of a virtual link if a
failure in the working substrate path has occurred.

bni,v bw
V (i, j) = bf i,ji,v ∗ wantBackup,∀vεN

S , (i, j)εEV

(20)

bnj,v bw
V (i, j) = bf i,jv,j ∗ wantBackup,∀vεN

S , (i, j)εEV

(21)
The equation below guarantees that the meta-links only carry

working or backup traffic to their correspondent virtual nodes.
This means that, if a virtual node 1 needs to send information
to virtual node 2, the data does not need to pass through the
meta-links of a virtual node 3.∑
j,k!=i j,kεNV

wf j,ki,v + wf j,kv,i + bf j,ki,v + bf j,kv,i = 0,∀vεNS , iεNV

(22)

Virtual Node Mapping
Eq. 23 and 24 state that each virtual node has to be mapped

to exactly one working node and wantBackup backup nodes
in the substrate node, i.e., if wantBackup = 0, virtual nodes
will not have backup, if wantBackup = 1, virtual nodes will
have backup. For the same VN, Eq. 25 guarantees that (i) two
different virtual working nodes are not mapped to the same
substrate node; and (ii) a substrate node that is the backup for
a virtual node does not have any virtual working nodes on it.
Eq. 26 guarantees that a substrate node can be the backup of a
single virtual node, for the same VN.∑

vεNS

wnu,v = 1,∀uεNV (23)∑
vεNS

bnu,v = wantBackup,∀uεNV (24)∑
uεNV

wnu,v + bnz,v 6 1,∀vεNS , zεNV (25)∑
uεNV \{z}

bnu,v + bnz,v 6 1,∀vεNS , zεNV (26)

Note that we define Eq. 25 because we want to minimize
the number of virtual resources of a VN affected if a failure
occurs in a certain substrate node. Figures 3 clarifies this idea.
In this example if a failure occurs in the physical node A, and
nodes 1 and 2 are mapped onto it, all the virtual links will be
affected. Instead, if all the nodes of the VN are mapped onto
different physical nodes and the failure occurs in node A, only
the virtual link (1,3) will be affected.

Since in our work we allow the user to choose between
having no replication, replication in the same cloud or in
different clouds, it is necessary to specify these restrictions.∑

cεC

wcu,c = 1,∀uεNV (27)∑
cεC

bcu,c = wantBackup,∀uεNV (28)

wantBackup ∗ wcu,c + bcu,c 6 depV (u),∀uεNV , cεC (29)

wcu,c > bcu,c ∗ depV (u)− 1,∀uεNV , cεC (30)

Eq. 27 states that each virtual node is mapped on exactly
one cloud. Eq. 28 ensures that, when a VN needs backup
(wantBackup = 1), the backup of each virtual node is mapped
to exactly one cloud. Eq. 29 and 30 are restrictions that address
if a virtual node u and its correspondent backup will be on the
same cloud or in different clouds, depending on the availability
level required by u (depV (u)).

Figure 3: Example of an embedding that respects the first part
of eq. 25.

Eq. 31 and 32 establish a relation between the virtual and
physical nodes and the clouds (the first one related to working
nodes, and the second related with the backup nodes).∑
vεNS

(wnu,v ∗ doesItBelongc,v) > wcu,c,∀uεNV , cεC (31)∑
vεNS

(bnu,v ∗ doesItBelongc,v) > bcu,c,∀uεNV , cεC (32)

The aim of these equations is the following. If a virtual node
u is mapped onto a physical node v and v belongs to cloud c
(doesItBelongc,v = 1 if substrate node v belongs to cloud c,
0 otherwise), then u is mapped on cloud c.

In a similar fashion, we also need restrictions to create
relationships between the variables wf, wl and wn, and bf, bl
and bn:

wni,v ∗ bwV (i, j) > wli,ji,v,∀(i, j)εE
V , vεNS (33)

wnj,v ∗ bwV (i, j) > wli,jv,j ,∀(i, j)εE
V , vεNS (34)

bwV (i, j) ∗ wli,ju,v > wf i,ju,v,∀(i, j)εEV , u, vεNS ∪NV (35)

Eq. 33 and 34 are constraints that ensure that if a meta-link is
established between a virtual node i and a physical node v, then
it means that i is mapped onto v. For instance, if wli,ji,v = 1,
then wni,v = 1. Eq. 35 ensures that if there is a flow between
nodes u and v for a virtual link (i,j), then this means that (i,j)
is mapped to a meta-link or a physical link whose end-points
are u and v. For example, if wf i,ju,v = 1, then wli,ju,v = 1.

Eq. 36, 37 and 38 achieve the same goals as before, but for
the backup:

bni,v ∗ bwV (i, j) > bli,ji,v,∀(i, j)εE
V , vεNS (36)

bnj,v ∗ bwV (i, j) > bli,jv,j ,∀(i, j)εE
V , vεNS (37)

bwV (i, j) ∗ bli,ju,v > bf i,ju,v,∀(i, j)εEV , u, vεNS ∪NV (38)

Finally, we include two binary constraints to guarantee the
symmetric property of the binary variables related with links.

7

wli,ju,v = wli,jv,u,∀(i, j)εEV , u, vεNS ∪NV (39)

bli,ju,v = bli,jv,u,∀(i, j)εEV , u, vεNS ∪NV (40)

Nodes and Links Disjointness

Since any substrate nodes and links of a working path
can fail, we have to ensure that backup paths connecting the
backups of the virtual nodes are disjoint from the substrate
resources that are being used for the working part (otherwise
a backup path can be compromised if a physical resource
belonging to the working and backup part fails).

BigConstant ∗ workingu >
∑
vεNS

wli,ju,v,∀(i, j)εEV , uεNS

(41)

BigConstant ∗ backupu >
∑
vεNS

bli,ju,v,∀(i, j)εEV , uεNS

(42)

backupu = 1− workingu,∀uεNS

(43)
Equations 41 to 43, together with Eq. 25, ensure path

disjointness between the working and the backup parts. As we
already observed, Eq. 25 ensures that a substrate node mapping
the working virtual node can not be a backup of any other node,
and vice-versa. Relatively to Equations 41 to 43 we ensure that
if a substrate node u is an end point of a certain link that is
being used as a working resource, u can not be an end point
of a link that is being used as a backup resource, and vice-
versa. Variables working and backup are auxiliary variables
that define if a certain physical node u belongs to the working or
backup part. BigConstant is a constant big enough to ensure
that the restriction is valid when its rightmost part is greater
than 0.

IV. EVALUATION

This chapter presents performance results of our solution.
We have implemented a simulator to reproduce an environment
where VNRs with different requirements arrive over time.
Section IV-A presents the simulation setup. In Section IV-B we
describe the different experiments and also briefly introduce the
algorithm that was the basis for comparison. Finally, in Section
IV-C we present the evaluation results and discuss them.

A. Simulation Setup

We have implemented an event simulator to evaluate the
performance of our algorithm. Our tool was based on the
implementation presented in [1, 4] and, in short, it simulates
the dynamic arrival of VNRs to the system.

For the evaluation, the SN topology was randomly generated
with 25 nodes using the GT-ITM tool [18] in (10x10) grids.
Each pair of substrate nodes was randomly connected with
probability between 0.1 and 0.3. The CPU and bandwidth
resources of the substrate nodes and links were real numbers
uniformly distributed between 50 and 100. We assumed that
VNRs arrivals (TimeV) are modeled as a Poisson process with
an average rate of 4 VNRs per 100 time units, each one having
an exponentially distributed lifetime (DurV) with an average
of µ = 1000 time units. In each VNR, the number of virtual
nodes was randomly determined by a uniform distribution

Notation Algorithm description
D-ViNE VNE MILP model presented in [4]
NoSec Our SecVNE with no security requirements for VN and SN

SecL+0 SecVNE with all VNRs having security requirements (excluding
availability) for 1/3 of their resources (nodes and links)

SecH+0 Similar to SecL+0, but with security requirements (excluding avail-
ability) for 2/3 of the resources

SecL+5
SecVNE with all VNRs having security requirements (excluding
availability) for 1/3 of their resources. In addition, 5% of the re-
quests require one replica of each resource for increased availability

SecH+5 Similar to SecL+5, but with security requirements (excluding avail-
ability) for 2/3 of the resources

SecL+10 Similar to SecL+5, but 10% of the requests require one replica
SecH+10 Similar to SecL+10, but with security requirements (excluding

availability) for 2/3 of the resources
SecL+20 Similar to SecL+5, but 20% of the requests require one replica
SecH+20 Similar to SecL+20, but with security requirements (excluding

availability) for 2/3 of the resources

Table II: Configurations evaluated

between 2 and 4. Each pair of virtual nodes was randomly
connected with probability between 0.1 and 0.3. The CPU and
bandwidth capacity requirements of the virtual nodes and links,
respectively, were real numbers uniformly distributed between
10 and 20. We chose to only address a small scale environment
(25 nodes to the SN and 2-4 nodes to the VNs) because optimal
solutions, such as the MILP used in SecVNE, do not scale for
large networks. One way to deal with this problem is to devise
heuristics, something we leave for future work.

For SecVNE, it is necessary to include security requirements.
In the simulation, the substrate nodes were divided between
three clouds, each one with a different security level (public,
trusted public and private). The parameters sec and cloud
were set in increasing order of security with the values {1.0,
1.1, 1.2}. The rationale for these values was to find a good
adjustment of the different security levels to their price. For
example, a higher level of security is considered 20% more
expensive than having no security. The choice of these specific
values was based on an empirical analysis we performed on the
pricing schemes of Amazon EC2. The probability of substrate
nodes and links having secS = 1.0 was 0.05, secS = 1.1 was
0.4, and secS = 1.2 was 0.55. The weight (α) of all substrate
links was 1. The cloudV of the virtual nodes was distributed
uniformly by the three different cloud types.

For the variables γ1, γ2, γ3 to be parameterized appropriately,
it is necessary to consider:

γ1 ∈]0, 1[,
γ2 ∈]0, 1[,
γ3 ∈]0, 1[,

γ1 + γ2 + γ3 = 1 [14]
As such, in our evaluation we considered that γ1 = 1/3,

γ2 = 1/3 and γ3 = 1/3 to find one supported Pareto solution.
To solve the MILP, we used the open source library GLPK

[9]. The simulation ran for 50000 time units, and during this
period the MILPs tried to embed 1000 VNRs. The order of
arrival of VNRs and the capacity requirements of each VNR
were the same for both algorithms, ensuring that both solved
equivalent problem instances.

B. Evaluation Method

In our evaluation, we compared the algorithm D-ViNE [4]
with ours, SecVNE. D-ViNE was chosen because it has been
considered as the baseline for most VNE work and due to
its availability as open-source software. D-ViNE requirements

8

(a) (b) (c)

Figure 4: Performance results: (a) VNR acceptance ratio over time; (b) Time average of generated revenue; (c) Average cost of
accepting VNRs over time.

(a) (b)

Figure 5: Performance results: (a) Average node utilization; (b)
Average link utilization.
are only based on CPU and bandwidth capacities, while our
algorithm adds to these requirements also security demands, in-
cluding availability needs, and cloud preferences. Furthermore,
the comparison of SecVNE against D-ViNE is interesting in
order to understand what are the implications of introducing
security constraints on a traditional embedding problem. The
objective function of D-ViNE is presented in Eq. 44:

min
∑
uvεES

αuv
RE(u, v) + δ

∑
i

f iuv+∑
wεNS

βw
RN (w) + δ

∑
mεNS′\NS

xmwc(m) (44)

Besides the minimization of CPU and bandwidth resources
allocated to a VN (i.e., minimization of costs), the objective
function also tries to balance the load by introducing weights.

For evaluation, we run nine different setups of our algorithm,
reflecting alternative needs of the tenants. Table II summarizes
the various setups and includes the notations used to refer to
the experiments.

C. Evaluation Results

We used several performance metrics (the same as in [4]) for
evaluation in our experiments. Namely, we have considered:
• VNR acceptance ratio: the percentage of requests accepted

over time;
• Average revenue: the revenue that the infrastructure

provider obtains over time;
• Average cost of accepting a VNR: the cost the provider

will incur by embedding a request;
• Average node utilization: the load of the SN nodes over

time;
• Average link utilization: the load of SN links over time.
To calculate the revenue R and costs C we used the equations

presented in Section II-A4. We now present all results from the
simulations and discuss each outcome.

1) The embedding performance of SecVNE without se-
curity and availability requirements is similar to the
embedding performance of D-ViNE. When security and
availability are not taken into account, our algorithm
performs similar to D-ViNE, as can be seen in all figures
and it shows our baseline to be identical to the most
commonly used VNE algorithm.

2) A richer set of features (namely, security and avail-
ability) decreases the acceptance ratio. Figure 4a shows
that D-ViNE leads to a higher acceptance ratio over
time when compared with our SecVNE when the security
requirements increase over a certain threshold. This was
expected, as SecVNE is richer in terms of the features
provided (security and availability, in addition to CPU and
bandwidth). Consequently, in SecVNE to accept a VNR
the number of constraints is higher and more conditions
need to be satisfied. Interestingly, the reduction in accep-
tance ratio is more pronounced when the number of VNRs
requiring availability increases (compared with the other
security features). This is due to the higher use of substrate
resources, as more resources need to be allocated to these
VNRs.

3) A richer set of features (security and availability)
increases the revenue until the point when the ac-
ceptance ratio becomes too low. Figure 4b illustrates
the time average of generated revenue. When our algo-
rithm is set without security and availability requirements
(NoSec), it generates nearly the same revenue as D-ViNE.
In this figure it is also possible to observe that all other
configurations generate more revenue than D-ViNE. This
is due to security having a weight coefficient (i.e., a
price) that is considered in the revenue function (richer
resources are expected to be more more expensive). Since
the acceptance ratio is not far from those of D-ViNE, the
revenue increases. It is to expect, therefore, a turning point
where infrastructure providers may need to increase the
price of their resources to generate a profit, as a natural
consequence of the balance between demand and supply.

9

4) Security requirements increase the costs of embedding
a VNR. Figure 4c shows that the costs of embedding
a VNR with the SecVNE algorithm are higher when
compared to D-ViNE, as providing security has a cost.
It is clear the cost of availability to be higher than that
of the other secure properties because when backups are
required by a VNR, the CPU and bandwidth resources
(with the security constraints) demanded by a virtual node
are always allocated twice: one allocation for the working
node and another to the backup node.

5) Security requirements increase substrate resources uti-
lization. Figure 5a and Figure 5b show the average sub-
strate node and link utilization, respectively. We observe
in both figures that more resources are allocated in the
SN with SecVNE than with D-ViNE. Between all security
properties providing availability remains costlier, leading
to higher average utilization of both nodes and links. The
reasons are the same as in the previous point.

V. RELATED WORK

There is already a wide literature on this problem [6]. Yu et
al. [17] where the first ot solve it efficiently, by assuming the
capability of path splitting (multi-path) in the substrate network,
which enable the computationally harder part of the problem to
be solved as a multicommodity flow (MCF), for which efficient
algorithms exist. The authors solve the problem considering two
independent phases – an approach commonly used by most
algorithms. In the first phase, a greedy algorithm is used for
virtual node embedding. Then, to map the virtual links, either
efficient MCF solutions or k-shortest path algorithms can be
used. In [4], Chowdhury et al. proposed two algorithms for
VNE that introduce coordination between the node and link
mapping phases. The main technique proposed in this work is
to augment the substrate graph with meta-nodes and meta-links
that allow the two phases to be well correlated, achieving more
efficient solutions. Neither of these works considers security.

As failures in networks are inevitable, the issue of failure
recovery and survavibility in VNE has gained attention recently.
H. Yu et al. [16] have focused on the failure recovery of nodes.
They proposed to extend the basic VNE mapping with the
inclusion of redundant nodes. Rahman et al. [13] formulated
the survivable virtual network embedding (SVNE) problem to
incorporate single substrate link failures. Contrary to our work,
these proposals target only availability.

A mostly unexplored perspective on the VNE problem is
providing security guarantees. Fischer et al. [5] have introduced
this problem with a position paper where was proposed the as-
signment of security levels in the physical resources and virtual
network requests. No algorithms were presented. Liu et al. [12]
have afterwards proposed a VNE algorithm based on this idea.
Their simple model does not support the detailed specification
of security we propose, and does not consider availability nor
a multi-cloud setting with different trust domains.

VI. CONCLUSIONS

This paper proposes a VNE solution that addresses a diverse
set of security requirements, applied both to communications
and virtual nodes. These requirements enable performance
trade-offs to be explored (e.g., by avoiding packet encryption)

and allow trusted executions assisted by hardware (e.g., Intel
SGX extensions). In addition, the model was extended by
considering multiple clouds with distinct levels of trust, either
private (possibly belonging to the tenant) or public. By not
relying on a single cloud provider we avoid internet-scale
single points of failures, taking care of outages by replicating
workloads over various clouds. Privacy issues can also be
accommodated by constraining the mapping of particular virtual
nodes to specific classes of clouds (e.g., private).

The results from our experiments show that there is a cost
in providing security assurances. However, a relatively small
increase in the price of the new features (security resources,
for instance), coupled with efficient techniques to reduce the
embedding cost (e.g., pooling of backup resources), enables
the offering of security with an increased profit.

REFERENCES

[1] ViNE-Yard. http://www.mosharaf.com/ViNE-Yard.tar.gz.
[2] Al-Shabibi, Ali, et al. . 2014. OpenVirteX: Make Your

Virtual SDNs Programmable. In: HotSDN.
[3] Alaluna, Max, et al. . 2016. (Literally) above the clouds:

virtualizing the network over multiple clouds. In: IEEE
NetSoft.

[4] Chowdhury, Mosharaf, et al. . 2012. ViNEYard: Virtual
Network Embedding Algorithms With Coordinated Node
and Link Mapping. IEEE/ACM Transactions on Networking,
Feb.

[5] Fischer, Andreas, et al. . 2011. Position paper: Secure
virtual network embedding. Praxis der Informationsverar-
beitung und Kommunikation.

[6] Fischer, Andreas, et al. . 2013. Virtual Network Embed-
ding: A Survey. IEEE Communications Surveys Tutorials,
15(4).

[7] Froehlich, A. 2015 (July). 9 Spectacular Cloud Computing
Fails. Information Week.

[8] Gill, Phillipa, et al. . 2011. Understanding Network Failures
in Data Centers: Measurement, Analysis, and Implications.
ACM SIGCOMM.

[9] GLPK. 2008. GNU Linear Programming Kit. http://www.
gnu.org/software/glpk/.

[10] Koponen, Teemu, et al. . 2014. Network Virtualization in
Multi-tenant Datacenters. In: USENIX NSDI.

[11] Lacoste, M., et al. . 2016. User-Centric Security and
Dependability in the Clouds-of-Clouds. IEEE Cloud Com-
puting, 3(5).

[12] Liu, Shuhao, et al. . 2014. Security-aware virtual network
embedding. In: IEEE ICC’14.

[13] Rahman, Muntasir Raihan, et al. . 2010. Survivable
virtual network embedding. In: International Conference
on Research in Networking.

[14] Steuer, Raphael E. 1986. Multiple Criteria Optimization:
Theory, Computation and Application. John Wiley, New
York, 546 pp.

[15] Tsidulko, J. 2016 (July). The 10 Biggest Cloud Outages
Of 2016 (So Far). The Channel Company.

[16] Yu, H., et al. . 2011. Cost Efficient Design of Surviv-
able Virtual Infrastructure to Recover from Facility Node
Failures. In: IEEE ICC’11.

[17] Yu, Minlan, et al. . 2008. Rethinking virtual network em-

http://www.mosharaf.com/ViNE-Yard.tar.gz
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

10

bedding: substrate support for path splitting and migration.
ACM SIGCOMM.

[18] Zegura, Ellen W., et al. . 1996. How to model an
internetwork. In: IEEE INFOCOM.

	I Introduction
	II Secure VNE
	II-A Network Model
	II-A1 Substrate Network
	II-A2 Virtual Network Requests
	II-A3 Measurement of Substrate Network Resources
	II-A4 Objectives

	III MILP Formulation
	III-A Decision variables
	III-B Objective Function
	III-C Typical Constraints
	III-D Security Constraints
	III-E Availability Constraints

	IV Evaluation
	IV-A Simulation Setup
	IV-B Evaluation Method
	IV-C Evaluation Results

	V Related Work
	VI Conclusions

