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A B S T R A C T

Structural Health Monitoring (SHM) enables the rapid assessment of structural integrity in the immediate
aftermath of strong ground motions. Data-driven techniques, often relying on damage-sensitive features (DSFs)
derived from vibration monitoring, may be deployed to attribute a specific damage class to a structure. In
practical applications, individual features are sensitive to specific levels of damage, and therefore combining
multiple DSFs is required to formulate robust damage indicators. However, the combination of DSFs typically
involves empirical thresholds that are often structure-specific and hinder generalization to different structural
configurations. This work evaluates the predictive performance of a large ensemble of DSFs, computed on
an extensive dataset of nonlinear simulations of frame structures with varying geometrical and material
configurations. Gradient-boosted decision trees and convolutional neural networks are deployed to fuse
multiple DSFs into damage classifiers, improving the predictive accuracy compared to best-practice methods
and individual DSFs. A Domain Adversarial Neural Network (DANN) architecture enables the transfer of
knowledge obtained from numerical simulations to real data from a large-scale shake-table test. After exposure
to limited data, exclusively from the healthy state, the DANN framework yields satisfactory performance in
predicting unseen damage states in the experimental data. The results demonstrate the potential of DANN
in transferring knowledge from simulations to real-world monitoring applications, where only limited data
characterizing exclusively the current, typically healthy, structural state is available. Overall, this work
comprises the definition of multiple DSFs, their fusion through ML approaches, and the generalization of the
knowledge obtained from simulations to real data through domain adaptation.
1. Introduction

Although modern seismic design codes have reduced the risk of ca-
sualties from earthquake events, performance-based design approaches
tolerate structural damage, which is somehow against the principle
of resilience. A main associated drawback is the required functional
downtime of structures, which is incurred by lengthy and potentially
subjective post-earthquake inspections [1,2]. Permanently monitored
buildings can be leveraged for rapid and data-informed assessment of
the post-earthquake structural integrity. Although extended literature
has addressed data-driven damage detection in the past, the mere detec-
tion of the presence of damage after an earthquake is often insufficient
for decision-makers. The quantification of damage sustained by an
earthquake, often lumped into categorical damage states (DSs) [3,4], is
further required for a reliable decision, as this offers insights into the
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increase in vulnerability due to the main shock [5], paving the way to
the critically important evaluation of residual capacity [6].

Structural Health Monitoring (SHM) often relies on changes in
vibration properties to extract indicators of damage [7,8]. Changes
in natural frequencies and, less frequently, damping coefficients are
typically linked to the existence of damage [9–15], while modal shapes
or mode-shape curvature may correlate with its location [16–19]. As
data often proves insufficient, physics-based models are sometimes used
to further improve performance in terms of damage detection and
localization [20–24]. The aforementioned tasks comprise only the first
two levels of damage identification [25], and do not typically entail a
quantification of damage (third level), which may then lead to remain-
ing useful life assessment (fourth level). In achieving these higher-end
tasks, model-based SHM is typically exploited but involves the use of
computationally expensive and structure-specific models [26–28].
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In recent years, the increasingly available computational resources
have entailed a paradigm shift from traditional vibration monitoring to
the use of machine learning (ML) and deep learning applications [29].
ML algorithms provide powerful tools for training classifiers to differ-
entiate healthy from damaged monitoring data or even attribute data
to various classes related to increasing severity of damage [30–34]. In
the context of post-earthquake assessment, Yuan et al. [35] trained a
convolutional neural network (NN) for post-earthquake damage pre-
diction, reaching an accuracy of 80% in model predictions. However,
generalizing predictions from ML algorithms, trained on simulated
data, to real structures is not trivial, while such references are very
limited in the current literature. Tsuchimoto et al. [36] successfully
predicted post-earthquake DSs in a scaled high-rise building, based
on the residuals between the measured and modeled accelerations.
Sajedi and Liang [37] trained support-vector machines on a large set of
simulations to build a damage severity classifier, yielding a prediction
accuracy of over 90% in a large-scale test specimen. Labeled data
from real earthquake-damaged structures is scarce, and thus real-world
monitoring datasets are often unbalanced or even limited to healthy
data. Hence, supervised ML approaches that require large amount of
labeled data cannot be directly applied. Recently, the combination of
a limited number of buildings for damage assessment at larger scales
has been proposed as an alternative to overcome the lack of historic
labeled data [38–40].

Given the scarcity of real-world data from damaged structures,
researchers rely on simulations to generate data in damaged states [41–
43]. However, engineering models contain inherent bias and multiple
sources of uncertainty that prevent a realistic representation of mea-
sured responses. A remedy to this can be sought in transfer learning;
a ML technique, which aims to transfer knowledge from a source
domain, where a large amount of labeled data is available, to a tar-
get domain with limited data [44]. Domain adaptation addresses this
task by reducing the distance between the data distributions of the
source and the target domains. Gardner et al. [41] outlined three do-
main adaptation methods, namely Transfer Component Analysis, Joint
Domain Adaption, and Adaptation Regularization based Transfer Learn-
ing. Their applicability for vibration-based SHM is shown in various
numerical cases and one hybrid case study, where the source domain
comprises simulated data and the target domain contains measure-
ments of a small-scale laboratory experiment. Bull et al. [45] proposed
population-based SHM based on transfer component analysis to match
the normal condition data from different wind-turbines, which leads
to a 87% increase in the true positive rate. Ganin and Lempitsky
[46] introduced a novel measure of the disparity between the source
and target distributions by implementing a unified architecture that
combines feature extraction, damage classification, and domain adap-
tation. This generic architecture, termed Domain Adversarial Neural
Network (DANN), has been implemented for fault diagnosis in indus-
trial machinery, demonstrating satisfactory performance and a reduced
training time [47]. Ozdagli and Koutsoukos [48] deployed a DANN
architecture to a benchmark dataset of vibration data corresponding
to various DSs of a generic gearbox system. By differentiating the
data into source and target domains, depending on the excitation
amplitude, they demonstrated that the predictive performance of the
adopted DANN architecture in the target domain outperforms source-
only trained models, as well as other domain adaptation techniques.
The authors used two source domains comprising the acceleration
response of a low- and a high-fidelity numerical model, while the target
domain contains the vibration recordings from a small-scale shake-table
experiment. They demonstrated the inability of DANN to improve the
predictive performance in the target response when the low-fidelity
model is used as the source domain. For the high-fidelity model, the
performance of the DANN architecture is consistently higher than that
of the model trained only in the source domain. Xu and Noh [43]
introduced a variation of the DANN architecture that considers weight
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factors in the loss function, depending on the similarity between the
source data and the target domain. Simulations of a generic steel-frame
structure with varying number of floors comprise the source domain,
while the target domain consists of a small-scale four-story steel frame
tested on a shake-table. The researchers formulated a similarity func-
tion that compares the number of floors between the source data and
the experimental structure. The results demonstrate 70% accuracy in
damage quantification in the target domain and improved performance,
compared to the conventional DANN architecture. Although physics-
based information is shown to be useful in the weighting of the source
data, defining a similarity relation is not straightforward in real-world
cases, where the source data differ from the target in more dimensions
than only the number of floors (e.g., stiffness and mass distribution
per floor, material properties, boundary conditions). This limitation be-
comes particularly relevant in cases, where the target domain includes
large-scale structures consisting of inhomogeneous materials, such as
concrete or masonry, with significant uncertainties in terms of material
properties and boundary conditions.

Engineering demand parameters (EDPs), often structural displace-
ments or drifts, are used in performance-based earthquake engineer-
ing [49,50] to define thresholds that separate DSs. For regional risk
assessment, global EDPs, such as average roof drift (ARD), enable
the derivation of fragility functions that link the probability of reach-
ing a given DS with intensity measures that characterize the ground
motion [51,52]. Similarly, monitoring-based damage quantification in
buildings may involve a model-based derivation of fragility functions
with respect to individual measurable DSFs, such as changes in natural
frequencies [53] or modal features derived with wavelet decomposi-
tion [54]. Yet, formal comparison of the predictive performance of
individual damage metrics on the basis of an extensive dataset of
different building configurations is lacking. The applications of ML
approaches to fuse DSFs are limited, while no domain adaptation ap-
plications to generalize predictions in real-world large-scale structures
with inhomogeneous materials, such as concrete or masonry, have been
attempted.

This paper capitalizes on novel ML tools and DSFs extracted from
vibration-based (i.e., acceleration) response in simulations, in order to
enhance damage quantification in real building structures. In Section 2
the methodological framework is presented, covering the creation of a
parametric nonlinear model simulator, the formulation of a comprehen-
sive ensemble of DSFs, and the architectures of the deployed ML and
domain adaptation algorithms. Then, the classification performance
of individual DSFs is compared with fragility curves, typically based
on ground motion intensity, before the performance of classifiers that
fuse several DSFs is assessed (Section 3). Finally, a semi-supervised
domain adaptation approach is implemented that allows the fusion
of simulated data with limited measurements of real-world structures,
referring exclusively to the reference (healthy) state. By exploiting
domain-adversarial training, the predictive performance with real data
is significantly improved against conventional deep neural network
approaches. This showcases the potential of domain adaptation for
damage detection and characterization in real buildings, for which
data collected in damaged states is almost never available. Adaptation
favors transfer and thus application to a large number of buildings,
alleviating the need for structural information and structure-specific
modeling (Section 4).

2. Methodological framework

A main ingredient of the proposed approach lies in the development
of an extensive dataset of nonlinear simulations of frame structures,
which are representative of historic masonry buildings. To this end, a
parametric nonlinear frame model is established. Initially, a thorough
comparison of the damage predictive performance of individual fea-
tures is conducted, based on the numerical simulations. Furthermore,
ML damage classifiers that fuse multiple DSFs are tested. Finally, in

order to enhance the generalization of the knowledge obtained from
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Fig. 1. Overview of the domain adaptation framework for robust damage prediction in real structures, based on simulations and on limited healthy data from the monitored
structure.
training on simulated systems to real structures, a domain adaptation
framework is proposed. As illustrated in Fig. 1, the framework in-
volves training on simulations and limited data from the real structure,
characterizing exclusively the healthy state.

2.1. Nonlinear parametric model of a generic building

The simulated data were generated using a parametric two-
dimensional frame model, implemented in the application program-
ming interface (API) of the commercial software SAP 2000 (v.23) [55].
The generated frame models represent the facades of conventional ma-
sonry buildings and follow the equivalent frame (EF) approach [56,57].
EF models are selected for their ease of assembly and their ability
to lump nonlinearity in a computationally efficient manner, which is
required to conduct a large number of simulations. In existing masonry
buildings, the facade walls contribute predominantly to the global
lateral stiffness of the structures. The regular disposition of openings
further justifies the segmentation of masonry walls into spandrels and
piers, with overlapping regions modeled with rigid offsets [56]. The
free length of the piers and spandrels forms the deformable part of the
wall and is modeled as a Timoshenko beam.

The modeling principles of the two-dimensional building geometry
are schematically illustrated in Fig. 2. Subsequent seismic evaluation is
limited to in-plane actions. The geometry of the walls is parameterized
by changing the amount of floors (𝑛) and bays (𝑚), the height of
the ground floor (ℎ𝐺𝐹 ), the height of the upper floors (ℎ𝑅𝐹 ), and the
geometrical dimensions of all spandrels (𝑙𝑏𝑖, ℎ𝑏𝑖, 𝑡𝑏𝑖) and piers (𝑙𝑤𝑖, ℎ𝑤𝑖,
𝑡𝑤𝑖). The bounds of the uniform ranges of the geometric properties were
selected to be representative of typical Swiss masonry buildings and
are reported in Table 1. In addition, several material properties are
considered as uncertain: the modulus of elasticity of masonry, 𝐸𝑚𝑎𝑠,
affects the lateral load-resisting behavior in both the elastic and the
nonlinear regimes [58]. Given the uncertainty related to the equivalent
elastic properties of masonry [59,60] and to the stiffness reduction
during seismic events, a wide uniform range is chosen between 1 GPa
and 4 GPa for uncracked conditions (Table 1). Accounting for the
stiffness reduction due to cracking during seismic events, the modulus
of elasticity is reduced by 50% [61–63]. The nonlinear behavior of
masonry is lumped into hinges at the edges and in the middle of
the elastic parts of piers and spandrels. A schematic representation
of the hinge positions and capacity curves is given in Fig. 2b–c. The
strength criteria for the nonlinear hinges are formulated according
to Lagomarsino et al. [56]. The compression strength of masonry in the
vertical direction 𝑓𝑘 is considered linearly related to 𝐸𝑚𝑎𝑠, as prescribed
in the Swiss building codes [63]:

𝑓𝑘 = 𝐸𝑚𝑎𝑠∕1000 (1)

In the absence of specific guidelines for horizontal compression
strength, 𝑓ℎ𝑘 = 80%𝑓𝑘 is assumed. Although the shear and mo-
ment capacity of masonry depend on the acting axial loads [56],
3

Table 1
Parameters of the EF model.

Parameter Unit Min Max

Number of floors (𝑛) – 2 5
Number of pier axes (𝑚) – 3 6
Height ground floor (ℎ𝐺𝐹 ) m 2.75 3.2
Height rest floors (ℎ𝑅𝐹 ) m 2.75 2.75
Wall length (𝑙𝑤) m 1 2.5
Beam length (𝑙𝑜) m 1 2.5
Wall and beam thickness (𝑡𝑤, 𝑡𝑏) m 0.2 0.2
Beam height ground floor (ℎ𝑏,𝐺𝐹 ) m 1 2.2
Beam height rest floors (ℎ𝑏,𝑅𝐹 ) m 1 2.2
Masonry E-modulus (𝐸𝑚𝑎𝑠) GPa 1.5 4
Masonry unit weight (𝑤𝑚𝑎𝑠) kN/m3 16 18
Masonry Poisson ratio (𝑣𝑚𝑎𝑠) – 0.2 0.2
Masonry shear strength (𝑓𝑣0𝑘) kN 100 200
Additional distr. loads (𝑞𝑑𝑖𝑠𝑡𝑟) kN/m 8 12
Viscous damping % 1 2

the characteristic shear strength without compression (cohesion), 𝑓𝑣0𝑘,
is considered variable in the range of 0.1 MPa–0.2 MPa, according
to Eurocode [64]. Following typical code-based seismic assessment
approaches, compression and shear strength values are further reduced
by a safety factor equal to 2 [63]. The maximum drift that each
structural element can sustain is defined through the ultimate inter-
story drift, 𝛿𝑢, which is set equal to 0.4%, as suggested by the Swiss
building codes [63]. The additional mass, beyond the self-weight of
the structure, is modeled as uniformly distributed loads (𝑞𝑑𝑖𝑠𝑡𝑟) in the
range of 8 kN/m–12 kN/m, applied to all spandrels.

In the absence of data justifying a more informed distribution, all
parametric quantities are considered to follow a uniform distribution,
within the ranges summarized in Table 1. A set of 4032 random samples
is generated to perform nonlinear static and dynamic analyses.

2.1.1. Simulator data
Initially, a static nonlinear pushover analysis is performed on each

structural realization. The structure is pushed in both the positive
and negative directions by controlling the average displacement at the
roof level, resulting from a lateral force distribution that is propor-
tional to the modal shape of the first bending mode. Subsequently, a
nonlinear dynamic analysis is conducted by applying one horizontal
component of a historical ground motion to the base of the structure,
where fixed boundary conditions are applied. The selected ground
motion corresponds to the x-component of the 1981 Alkion earth-
quake in Greece (Station: ST121, waveform: #333) with a PGA of
0.23 g [65] (Fig. 3). Increasing DSs are generated for each model con-
figuration by scaling the ground motion to nine amplitudes: 𝐺𝑀𝑠𝑐𝑎𝑙𝑒 =
0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, corresponding to: PGA = 0.046 𝑔 −
0.276𝑔. All time–history analyses are assumed to begin from the pris-
tine (healthy) state. Following each ground motion, a low-amplitude
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Fig. 2. Equivalent frame model: (a) Generic representation of the parametric model, (b) Discretization and nonlinear hinge positions, (c) Backbone curve formulation for the
nonlinear hinges. The strength criteria for the nonlinear hinges are formulated according to Lagomarsino et al. [56].
Fig. 3. The Alkion 1981 ground motion. Response depicted in time-domain (a) and in
frequency-domain (b).

white-noise (WN) excitation (with frequency content between 1 Hz
and 40 Hz), with a root mean square (RMS) amplitude of 0.01 g is
applied at the bottom of the structure. The selected frequency range
covers the natural frequencies of low- and medium-rise masonry and
concrete structures, which typically range from 2 Hz to 15 Hz [66]. This
WN excitation simulates post-earthquake low-amplitude vibrations. All
damage-sensitive features (DSFs) are computed during the WN excita-
tion that follows the strong ground motions. As a result, the derived
DSFs evaluate changes in the dynamic characteristics due to residual
damage. The effect of ground motion variability on the produced
damage falls outside of the scope of this work, which focuses on the
comparison of damage detection approaches in a wide range of realistic
structural configurations. In addition, the structure remains quasi-linear
under the simulated low-amplitude WN and thus, the influence of the
WN amplitude on the computed DSFs is considered minor. Assuming
such a perfect WN excitation may not cover all real-world cases but is
deemed acceptable for the simulation.

2.2. Damage labels

For the characterization of the severity of the damage sustained by
the structure, an empirical mapping scheme based on the ARD ratio is
employed. By considering the bilinear approximation of the capacity
curve obtained from static nonlinear analysis (using the N2 method
proposed by Fajfar [67]), the idealized yield displacement is used to
define thresholds for the distinctive global DSs (see Fig. 4a):

• Healthy state: maximum transient displacement below 70% of the
yield displacement

• Slight damage: 70%–110% of the yield displacement
4

Fig. 4. (a) Definition of empirical DSs on the basis of a bilinear approximation of a
push-over curve, (b) Damage state distribution of the dataset, (c) Data split for training,
validation and test.

• Moderate damage: 110%–200% of the yield displacement
• Extensive damage: > 200% of the yield displacement

Current practice in regional seismic vulnerability and risk assess-
ment adopts the ARD to characterize the severity of the damage, often
comparing it with thresholds established with an idealized version
of the capacity curve [3,68–70]. However, while most formulations
include an estimate of the ultimate displacement capacity, the corre-
sponding value is rather volatile and affected by several underlying
modeling assumptions, as well as the definition of the ultimate dis-
placement capacity itself. In addition, with the visual inspection of
near-collapse building states being rather straightforward, monitoring-
driven quantification is not contributing much to the assessment of such
cases. Here, assessment of lower – less obvious DSs – is addressed and
these cases are defined on the basis of the bilinearized yield point.
This uncertainty is reflected in the reduced predictive performance
with respect to intermediate damage classes (Section 3). However, the
definition of a unique damage threshold lies outside the scope of this
work, as the proposed framework for damage characterization based on
DSFs is independent from the exact definition of the damage classes.

The minimum yield displacement between positive and negative
directions is considered to define the DS thresholds. The maximum
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Fig. 5. Damage level distribution per element group for each global damage state (DS0 to DS3). All 19010 data are considered.
average roof drift (MRD) is reached during each time-series analysis is
used to attribute global DSs, by comparison with damage thresholds
defined on the pushover curve of each model configuration. Such
global DSs exclude separation between global and local failure modes
(such as out-of-plane and soft-story mechanisms) and coincide with the
observed damage patterns that feature distributed damage instances in
all floors (Fig. 5). Considering all model configurations and DSs, a total
of 19010 data points are generated. The distribution of DSs is provided
in Fig. 4b. Although healthy data comprise over 55% of the dataset, the
rest of the DSs are roughly balanced. This dataset is randomly shuffled
and divided into training (64%), validation (16%) and test (20%) sets,
as illustrated in Fig. 4c.

The actual damage patterns that correspond to the empirically
defined DSs are illustrated after grouping the structural elements into
three categories: piers in the ground floor, piers in the remaining floors,
and spandrels in all floors. For the visualization of damage at element-
group level, a conservative assumption is followed: individual spandrels
and piers are considered damaged as soon as at least one of the rocking
or shear hinges (Fig. 2) yields. By counting the percentage of damaged
elements in each group, the damage levels are estimated as follows:

• Group Damage Level 1, if 100% of the elements are healthy.
• Group Damage Level 2, if ≥ 75% of the elements are healthy
• Group Damage Level 3, if < 75% of the elements are healthy.

Fig. 5 compares the damage level of the three element groups with
the global DS attributed to the structure, based on the analyses results
from all simulated building configurations. For the globally healthy
state (DS 0), all the piers are healthy, while in few cases more than
25% of the spandrels experience a nonlinear response. In more than
40% of DS 1 cases the amount of damaged spandrels is significant
(damage level 3), while in 20% of the DS 1 cases piers above the
ground floor reach the plastic range, as the lower axial forces result
in reduced lateral capacity [56]. For global DS 2, the majority of the
cases present heavily damaged spandrels, while the number of damaged
piers above the ground floor increases as well. In global DS 3, spandrels
are damaged in all cases. In almost all cases the piers above the ground
floor are partially damaged, while in 80% of the cases a significant part
of the piers in the ground floor reaches the nonlinear range as well.
Overall, damage initiates in the spandrels, progresses to the piers in
the upper floors, and reaches the piers in ground floor at later global
DSs.
5

2.3. Engineering demand parameters

Thresholds based on EDPs are typically used to separate DSs and
thus form the cornerstones of fragility functions that link earthquake
intensity with the probability of reaching a given DS [52]. Typical EDPs
are the maximum inter-story drift ratio (ISD𝑚𝑎𝑥), possibly limited to the
ground floor (ISD𝑔𝑓 ). In addition, the MRD is evaluated, as it is used
to define global DSs for each individual model configuration and is
often used in regional risk assessment [51]. As EDPs are intrinsically
chosen to correlate well with damage, monitoring these quantities
would facilitate precise loss assessment in the aftermath of earthquakes.
However, dynamically measuring displacements is challenging in real
structures, especially in cases of stiff, low-rise masonry buildings. Vibra-
tion monitoring is mainly based on sensors that measure accelerations
or velocities. As the calculation of displacements through numerical in-
tegration of the measured accelerations lacks consensus with the actual
displacements [71], extraction of DSFs from measured acceleration or
velocity signals is more practical.

2.4. Damage-sensitive features

For the purposes of this work, an extensive set of features is com-
puted in the time and frequency domains. To define a generic feature
space that is independent from the individual characteristics of each
model configuration, the selected features are computed exclusively
at the positions A to E, depicted in Fig. 2a. These sensor positions
cover the ground, the first floor, and the top floor of the modeled
structure. The typical frequency range that includes the main modes
of vibration of buildings is 1 Hz–30 Hz. Prior to computing features,
acceleration signals are pre-processed and band-pass filtered between
1 Hz–40 Hz using a Butterworth filter to mitigate the effect of noise
due to spurious vibrations beyond this range. As all frequency-domain
features are computed in narrow frequency ranges within the pass-
band, the classification accuracy is not expected to be sensitive to the
type of filter. All DSFs are extracted from WN excitation, as described
in Section 2.1, and are summarized in Table 2. Additional features
describing the geometrical configuration are summarized in Table 3.
Finally, selected physical quantities of the healthy building state that
can be retrieved from vibration monitoring before a damaging earth-
quake, such as the natural frequencies of the building and indirectly
inferred elastic properties, are summarized in Table 4. It is noted that,
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Table 2
List of deployed acceleration-based DSFs.

ID DSF Domain Pos. Notes

1–3 TAC Freq. A-B fr. ranges 1–3
4–6 TAC Freq. B-C fr. ranges 1–3
7 RMS Time A-C RMS𝐶/RMS𝐴
8 AR1 Time A-C 1st AR param.
9 ED1 Time A-C ground floor
10 ED2 Time B-C rest floors
11 TAC𝑏𝑒𝑎𝑚 Freq. C-D fr. range 3
12 TAC𝑏𝑒𝑎𝑚 Freq. C-E fr. range 3
13–15 TAC𝑏𝑒𝑎𝑚,𝐺𝐹 Freq. B-D fr. ranges 1–3
16–18 TAC𝑏𝑒𝑎𝑚,𝐺𝐹 Freq. B-E fr. ranges 1–3
19–21 TAC𝑇𝐵 Freq. A-C fr. ranges 1–3
22 CURV𝐺𝐹 Freq. A-B ground floor
23 CURV𝑅𝐹 Freq. B-C rest floors

Table 3
List of geometric configuration features (CFs) with reference to Fig. 2.

ID CFs Unit Notes

1 L𝑡𝑜𝑡 m Total length
2 t𝑤 m Wall thickness
3 n𝑝𝑖𝑒𝑟𝑠 – Number of pier axes
4 L𝑤,𝑡𝑜𝑡 m Total wall length
5 L𝑤,𝑎𝑣 m Average wall length
6 L𝑤,𝑚𝑖𝑛 m Minimum wall length
7 L𝑤,𝑚𝑎𝑥 m Maximum wall length
8 L𝑜,𝑡𝑜𝑡 m Total opening length
9 L𝑜,𝑎𝑣 m Average opening length

10 L𝑜,𝑚𝑖𝑛 m Minimum opening length
11 L𝑜,𝑚𝑎𝑥 m Maximum opening length
12 Op𝑝𝑒𝑟𝑐,𝐺𝐹 % Relative area of openings

in ground floor
13 Op𝑝𝑒𝑟𝑐,𝑅𝐹 % Relative area of openings

in rest floors
14 n𝑓𝑙𝑜𝑜𝑟𝑠 – Number of floors
15 ℎ𝐺𝐹 m Height ground floor
16 ℎ𝑅𝐹 m Height rest floors

Table 4
List of monitoring-based inferable features (MFs)

ID MFs Unit Notes

1 𝐸𝑚 GPa Masonry E-modulus
2 𝑤𝑚 kN/m3 Masonry unit weight
3 𝑞𝑑𝑖𝑠𝑡𝑟 kN/m Distributed load per floor
4 F1 Hz 1st modal freq.
5 F2 Hz 2nd modal freq.
6 F3 Hz 3rd modal freq.

while the natural frequencies (features 4–6) can be obtained from con-
tinuous ambient-vibration monitoring using conventional operational
modal analysis techniques, material and load parameters (features 1–
3) require model identification approaches that are not trivial. The
uncertainties in deriving all six features are omitted in this analysis,
which evaluates an upper limit of the contribution of these features.

2.4.1. Time domain features
Time domain features are defined to capture changes in response

characteristics due to permanent structural damage. The response is
evaluated at the top of the ground floor and at the top of the structure
(points B and C per Fig. 2) under low-amplitude WN excitation. To
reduce the influence of the frequency content of the WN excitation,
the response at points B to E is normalized with respect to the absolute
response at point A.

The RMS amplitude of the response at the top of the structure,
normalized to the input at the ground level, indicates global changes in
the amplitude of the propagated signal. To capture changes in higher-
order characteristics, a four-order autoregressive model (AR) is trained
to fit the response at the top (point C), normalized to the input at
6

the ground level, and the parameters of the AR model are included
as DSFs. The choice of limiting the AR model to the first four orders
was purely driven by heuristics and the change in performance with
lower or higher order terms has not been studied, yet without loss
of generalization other orders could be included in the feature set.
Finally, in an attempt to formulate a feature that captures changes in
energy flow through the structure, approximations of the velocity (�̂�)
and displacement response (�̂�) are derived by integrating the accelera-
tion signal in the time domain. Prior to integration, the acceleration
signal is band-pass filtered between 1 Hz and 40 Hz through a 4th
order Butterworth filter. The computed approximations are normalized
to the corresponding approximations of velocity and displacement at
the ground level. A quantity inspired by the kinetic energy (�̂�𝑘𝑖𝑛) is
alculated by integrating the square of the relative velocity response,
hile a proxy inspired by the potential energy (�̂�𝑝𝑜𝑡) is derived by

ntegrating the product of the relative displacement and the absolute
cceleration response.

̂𝑘𝑖𝑛 = ∫ �̂�2 dt (2)

�̂�𝑝𝑜𝑡 = ∫ �̂� ⋅ 𝑎𝑎𝑏𝑠 dt (3)

By summing the above approximations, the quantity �̂� is defined:

�̂� = |�̂�𝑘𝑖𝑛| + |�̂�𝑝𝑜𝑡| (4)

These approximate numerical integration results serve exclusively to
the formulation of the DSF and are not intended to capture the real
displacement or velocity response, given the inherent loss of informa-
tion. Taking the points A and B as a reference (Fig. 2a), two DSFs are
defined, based on the relative displacement and velocity evaluating the
output at points B and C, respectively. By normalizing �̂� in the current
state (�̂�𝑑) to the reference state (�̂�𝑟), the following DSF is formulated:

𝐸𝐷 = �̂�𝑟 − �̂�𝑑

�̂�𝑟
(5)

2.4.2. Frequency domain features
The acceleration signals are converted to the frequency domain by

implementing Welch’s method [72] with 50% overlapping segments
windowed with a Hamming window. The aim of the frequency-domain
features is to provide a comparison between the pristine and the
potentially damaged building state, as opposed to identifying the exact
frequency or transmissibility. In this latter case, more advanced spectral
analysis techniques would be more suitable, as elaborated in [73].
Transmissibility-based criteria have been proposed for the detection
and localization of damage based on output-only data [74]. The trans-
missibility function between points 𝑎 and 𝑏 of an elastic system can be
defined as the ratio of the complex amplitude of the system responses
in the frequency domain, which can be expressed as a fraction of power
spectral densities:

𝑇𝑎,𝑏(𝜔) =
𝑋𝑎(𝜔) ×𝑋𝑏(𝜔)
𝑋𝑏(𝜔) ×𝑋𝑏(𝜔)

=
𝐺𝑎,𝑏(𝜔)
𝐺𝑏,𝑏(𝜔)

(6)

where 𝑋𝑎(𝜔) is the complex amplitude of the system response at the
point 𝑎, as a function of the angular frequency 𝜔, and 𝐺𝑎,𝑏(𝜔) is the
cross-spectral density between the points 𝑎 and 𝑏. By considering the
transmissibility function between points 𝑎 and 𝑏 at healthy state as
reference, the Transmissibility Assurance Criterion (TAC) evaluates the
goodness of fit between transmissibility in the damaged and reference
state in a pre-defined frequency range [75]:

TAC𝑎,𝑏 =
[(𝑇 𝑑 )𝑇 (𝑇 𝑟)]2

[(𝑇 𝑑 )𝑇 (𝑇 𝑑 )][(𝑇 𝑟)𝑇 (𝑇 𝑟)]
(7)

where 𝑇 𝑟 and 𝑇 𝑑 represent the truncated transmissibility vectors in
reference and damaged conditions. For the truncation of the transmis-
sibility function, three frequency ranges have been considered: 3 Hz −

8 Hz, 8 Hz−15 Hz and 15 Hz−22 Hz. By evaluating the transmissibility
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between different points of the structure, several TAC features have
been defined, as reported in Table 2. Another frequency domain feature
that is defined between two points of the structure and relates to the
modal curvature, is expressed as follows:

𝐶𝑈𝑅𝑉𝑎,𝑏 =
𝜙𝑏 − 𝜙𝑎
ℎ𝑎,𝑏

(8)

where 𝜙𝑎 represents the normalized modal displacement at point 𝑎 and
ℎ𝑎,𝑏 the distance between the points 𝑎 and 𝑏.

2.5. Fragility functions

A fragility function is a mathematical function that expresses the
cumulative probability of reaching a limit state as a function of an
intensity measure (IM), typically characterizing the ground motion
intensity [76]. The most common form is the log-normal cumulative
distribution function (CDF):

𝑃 (DS ∣ IM) = 𝛷
(

ln (IM∕𝜃)
𝛽

)

, (9)

here 𝑃 (DS ∣ IM) is the probability that ground motion with intensity
easure IM will cause the structure to reach the limit state DS, 𝛷 is

he standard normal cumulative distribution function with median 𝜃
nd standard deviation 𝛽. The parameters of the fragility function, 𝛽

and 𝜃, are uniquely defined for each DS.
The probability of reaching a DS for a given IM level can be

estimated as the fraction of records, for which the damage-defining
variable, for instance roof drift ration, falls in a defined interval.
To fit a log-normal cumulative distribution function, the median and
standard deviation must be estimated, for example, using the maximum
likelihood method [77,78]. Although log-normal distributions are the
most common choice for fragility functions, beta functions may also be
used [79]. Once established, a fragility function enables the prediction
of the probability of a building to be in a given DS using the IM,
as shown in Eq. (9). The same procedure can be used to fit fragility
functions based on either EDPs or DSFs, which can be measured di-
rectly. Fragility functions, based on IMs, are widely used in rapid loss
assessment, especially at regional level [80,81].

2.6. Supervised machine learning approaches

Provided the availability of labeled data, supervised classification
schemes have demonstrated good performance in damage detection and
characterization tasks: by fusing information from multiple features,
classifiers produce robust damage predictions. However, in real-world
SHM applications limited labeled data from damaged conditions under-
mine a direct application of supervised damage classification schemes.
Yet, increased computational capabilities enable the simulation of large
volumes of data from high-fidelity computational models. In this work,
two ML architectures are deployed, Convolutional Neural Networks
(CNNs) and Decision Trees (DTs). The performance of the algorithms is
evaluated by means of predictive classification performance in the test
set (Section 2.2). Three different sets of features are considered: (i) only
DSFs (see Table 2), (ii) DSFs + geometric configuration features (CFs
per Table 3), and (iii) DSFs + CFs + monitoring-inferred structural fea-
tures (MFs per Table 4). The split of the data into training, validation,
and test sets is described in Section 2.2.

2.6.1. XGBoost architecture
Information from various features can be used to perform super-

vised learning of a robust damage classifier, namely gradient-boosted
DTs [82], as implemented in the XGBoost algorithm [83]. While tra-
ditional DTs use hard conditions to classify data into target labels, the
XGBoost algorithm parallelizes the training of multiple DTs. For a given
7

training set with 𝑛 samples and 𝑚 features, a tree ensemble model
(Fig. 6a) uses 𝐾 decision trees to derive predictions �̂�𝑖 corresponding
to the real class 𝑦𝑖 as follows:

�̂�𝑖 =
𝐾
∑

𝑘=1
𝑓𝑘(𝒙𝑖), 𝑓𝑘 ∈ 𝐹 ; (10)

where 𝒙𝑖 represents the feature vector, 𝑓𝑘 is the 𝑘th tree function, and
𝐹 refers to the tree space. The optimal set of functions is derived by
minimizing the following regularized objective:

𝐿 =
𝑚
∑

𝑖=1
𝑙(�̂�𝑖, 𝑦𝑖) +

𝐾
∑

𝑘=1
𝛺(𝑓𝑘) (11)

The first term, 𝑙, represents a differentiable convex loss function and
accounts for the prediction accuracy. The second term, 𝛺, is a reg-
ularization term that penalizes the complexity of the model, thus
preventing overfitting. This regularized objective function is designed
to select a model that employs simple and predictive functions. How-
ever, including functions as parameters prevents the application of
traditional optimization methods in Euclidean space. Thus, the model
is trained in an additive manner, by adding tree functions and keeping
those that improve the predictive accuracy without increasing the
complexity significantly. The detailed derivation of the gradient tree
boosting algorithm is documented in Chen and Guestrin [83]. For
the implementation of the algorithm, the open source python library
https://xgboost.readthedocs.io/ has been deployed, by adopting the de-
fault values for the hyperparameters. Logistic regression has been used
as an objective function, while the validation metric is the negative
log-likelihood on multi-class classification error rate: wrong cases/all
cases.

2.6.2. Convolutional neural network architecture
Provided extensive labeled datasets for training and validation,

neural networks have demonstrated very high performance in dam-
age classification tasks, by combining information from multiple fea-
tures [31,34]. Typically, CNNs are deployed directly on time-series
measurements [84] or picture data [85]. In this work a CNN archi-
tecture is deployed on the pre-computed features (see Section 2.4),
as illustrated in Fig. 6b. The architecture comprises a latent-space
feature extractor and a damage classifier. This separation is compatible
with the domain adaptation framework introduced in Section 2.7. The
generic layer structure of the feature extractor contains an input layer
with the length of the initial feature space and a variable number of 1D
CNN layers with a kernel size of 3, followed by dropout regularization
and a hyperbolic tangent activation function (tanh). Finally, a dense
layer (fully connected) with variable output length is added for the
computation of the latent features. The number of convolutional layers
and the length of the latent feature space are tuned through a grid
search within the range described in Table 7.

The latent-space features produced by the feature extractor are
provided as input to the damage classifier, which consists of four dense
layers that output the predicted damage class. The size of the dense
layers has been selected following a grid search in the range 50 to
1000 neurons. The model output in terms of the predicted damage
class is provided through a softmax activation function. The detailed
architectures of the feature extractor and the damage classifier are
reported in Tables 5 and 6, respectively. The Adam optimizer is used,
and a grid search is conducted, in order to tune the hyperparameters of
the model. Although more efficient methods for the estimation of the
optimal set of hyperparameters exist [86,87], this task lies beyond the
scope of the present work. The ranges of the hyperparameters and the
selected values are summarized in Table 7.

2.7. Domain adaptation framework

Domain adaptation aims to improve the predictive performance of

a classifier in the target domain, for which no labels are available,

https://xgboost.readthedocs.io/
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Fig. 6. Schematic representation of (a) a decision tree ensemble model, (b) the Neural Network classifier architecture.
Table 5
Selected architecture for the feature extractor.

ID Layer Output size Activation Dropout

1 Input n. of features
2 1D Conv. n. of features tanh –
3–6 1D Conv. n. of features tanh 25%
7 Dense 200 tanh 50%

Table 6
Selected architecture for the damage classifier.

ID Layer Output size Activation Dropout

1 Input 200
2 Dense 400 tanh 20%
3 Dense 200 tanh 20%
4 Dense 50 tanh 20%
5 Dense n. of classes softmax

Table 7
CNN hyperparameters ranges and selected values.

Parameter Min Max Selected value

N. of CNN layers 2 6 4
Latent space length 20 300 200
Learning rate 0.0001 0.01 0.001
Batch size 4 64 8

by training the classifier with labeled data from the source domain
and limited unlabeled data from the target domain. For instance, the
source domain could consist of a simulation model, and the target
domain a real-world structure. Here, a Domain Adversarial Neural
8

Network approach (DANN [46]) is implemented, which capitalizes
on Generative Adversarial Networks (GAN [88]). The adopted DANN
architecture, illustrated in Fig. 7, comprises three elements: a latent-
space feature extractor (𝐹𝐸) that maps the input to a 𝐷-dimensional
latent feature vector (𝑓𝑙), a damage classifier (𝐷𝐶) that maps 𝑓𝑙 to a
prediction of DS, and a domain discriminator (𝐷𝐷) that maps 𝑓𝑙 to
a binary domain label. By denoting the trainable parameters of each
component with 𝜃, a unified objective function can be formulated:

𝐸(𝜃𝐹𝐸 , 𝜃𝐷𝐶 , 𝜃𝐷𝐷) = 𝐿𝑦(𝜃𝐹𝐸 , 𝜃𝐷𝐶 ) − 𝜆 ⋅ 𝐿𝑑 (𝜃𝐹𝐸 , 𝜃𝐷𝐷)

(�̂�𝐹𝐸 , �̂�𝐷𝐶 ) = arg min
𝜃𝐹𝐸 ,𝜃𝐷𝐶

𝐿(𝜃𝐹𝐸 , 𝜃𝐷𝐶 , �̂�𝐷𝐷)

�̂�𝐷𝐷 = argmax
𝜃𝐷𝐷

𝐿(�̂�𝐹𝐸 , �̂�𝐷𝐶 , 𝜃𝐷𝐷)

(12)

In Eq. (12), the first part (𝐿𝑦) minimizes the label prediction loss,
as conventionally done for supervised ML approaches. The second part
(𝐿𝑑) is an adversarial loss that behaves differently in forward and
backward propagation. In forward propagation, the domain prediction
loss is maximized. The weights of the feature extractor are trained
so that the latent feature space remains domain-invariant. In back-
propagation, the domain prediction loss is minimized. The weights of
the domain discriminator are trained, with the goal of maximizing
the precision of predicting the origin of the latent-space features. The
parameter 𝜆 controls this transition and is materialized by introducing
a gradient reverse layer (GRL) between the feature extractor and the
damage classifier [46]. The adaptation parameter 𝜆 is initiated at 0 and
is progressively increased to 1 along the training epochs, through the
following schedule:

𝜆 = 2 − 1 (13)

1 + 𝑒−10⋅𝑝
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Fig. 7. Schematic representation of the generic architecture of a DANN model.
Table 8
Selected architecture for the domain-discriminator.

ID Layer Output size Activation Dropout

1 Input 200
2 Dense 100 tanh 20%
3 Dense 50 tanh 20%
4 Dense 2 softmax –

where 𝑝 is the training progress linearly changing from 0 to 1. This
strategy prevents the domain classifier from being sensitive at the early
stages of the training procedure [46].

The generic layer structure of the feature extractor and the damage
classifier is described in Section 2.6.2 and summarized in Tables 5 and
6. The domain discriminator contains three dense layers with variable
lengths, leading to the number of damage classes. The output length of
the dense layers has been selected after a grid search in the range 50 to
1000. The model produces a binary prediction of the original domain,
through a softmax activation function. The detailed architecture of the
domain discriminator is reported in Table 8.

3. Simulated data of earthquake damage

3.1. Damage prediction based on fragility functions

The damage prediction performance of individual EDPs and DSFs
is evaluated with the simulation data presented in Sections 2.1 and
2.2. For each feature, fragility functions, describing the probability of
reaching the respective DSs (Fig. 4a), are derived by considering only
the training data (Fig. 4c) and by fitting a log-normal distribution to the
empirical CDF, as explained in Section 2.5. The predictive performance
is evaluated with the test data by computing the predictive accuracy,
as a function of true positives (𝑇𝑃 ), false positives (𝐹𝑃 ), true negatives
(𝑇𝑁), and false negatives (𝐹𝑁):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(14)

Furthermore, a less strict accuracy metric, termed ‘‘soft’’ accuracy, is
computed and accepts predictions that yield ± 1 damage class from
9

reality. The predictive performance is illustrated with confusion ma-
trices, where each row contains the normalized or absolute number
of instances in an actual damage class and each column contains the
corresponding number of instances in a predicted damage class.

Fragility functions evaluate the probability that the structure
reaches a specific DS based on the value of a single IM. Here, the
peak ground acceleration (PGA) is considered as IM. Fragility functions
for all damage grades are derived using training data (Fig. 4c) and
plotted in Fig. 8. While there is a clear distinction between healthy
state (DS 0) and damaged states (DS 1–3), the predictive accuracy is
very poor (below 50%). As illustrated in the corresponding probability
density functions (10a), the probability of DS 1 is always lower than
the probability of DS 0 and 4, while the probability of DS 2 exceeds DS
3 for higher PGA values. This is reflected in the confusion matrices
evaluated in the test data (Fig. 8), where the prediction of DS 1 is
missing and most of the data belonging to DS 2 are misclassified. It
is noted that unlike in regional seismic risk applications [89], no post-
processing of the fragility functions is made to avoid such crossing of
fragility functions that describe increasing DSs and no hard assumptions
that usually help avoiding such behavior, such as equal standard-
deviation for all DSs, is taken. Overall, the poor predictive performance
indicates that information solely from the ground, expressed through
IMs, is insufficient to provide robust damage estimates. While IM-
based fragility functions – often derived with single degree of freedom
systems (SDOF) – reflect the state of practice for seismic risk analyses at
regional scale, the poor correlation of the studied IM with the predicted
DSs underline their limited structure-specific applicability to complex
multi-degree of freedom systems (MDOF). In Fig. 8a to c, the fragility
curves are created based on three different subsets of the training data,
considering exclusively two-floor configurations, exclusively four-floor
configurations, and the entire training set that comprises buildings with
two to five floors. The predictive accuracy is tested in the corresponding
subsets of the test set, yielding similarly low accuracy levels in all cases.
This observation confirms that the predictive performance of IM-based
fragility functions remains poor, even when the number of floors is
fixed.

EDPs are structural response quantities that typically rely on dis-
placements to estimate structural (and non-structural) damage. Mea-
suring displacements directly in real buildings is challenging and the
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Fig. 8. Fragility curves for all DSs based on training data (top) and confusion matrices reflecting the accuracy when applied to test data (bottom). The 𝑥-axis of the fragility
curves corresponds to PGA. Model configurations: (a) 2-floor buildings, (b) 4-floor buildings and (c) 2- to 5-floor buildings.
related costs almost prohibitive, especially in low- to medium-rise
masonry buildings with displacements in the order of millimeters.
However, assuming displacement measurements are available, fragility
functions are developed that depend directly on three characteristic
EDPs, namely the MRD, ISD𝑚𝑎𝑥, and ISD𝑔𝑓 , as described in Section 2.3.
Fig. 9a illustrates the fragility functions for ISD𝑔𝑓 , which produced
the best accuracy, resulting from the training dataset that includes
only 2-floor configurations. The confusion matrix evaluated in the test
set displays a 70% accuracy and 97% soft accuracy (accepting ±1
damage classes). While the damage labels for each individual model
configuration are defined based on the corresponding capacity curve
(Section 2.2), the fragility functions are developed collectively, con-
sidering the training set (Fig. 4c) that includes data from all model
configurations. As a result, the accuracy for individual structures is not
perfect, which is attributed to the inevitable simplifications associated
with SDOF systems that approximate the nonlinear characteristics of
complex MDOF structures. Nevertheless, the fragility functions based
on EDPs offer an upper bound to the accuracy of damage classification,
in the idealized case of measurable displacements. Additionally, the soft
accuracy indicates a clear separation between lower and higher DSs (DS
0 and DS 3 respectively, per Fig. 4). The increased confusion in DS 1
and 2 is attributed to the fact that the ISD𝑔𝑓 is sensitive to damage
in ground floor, which mostly concerns DS 3 (Fig. 5). Fig. 9b contains
the same information after including all available model configurations
(with two to five floors) for both training and testing. Absolute accuracy
drops to 66%, which is slightly less than in the previous case and
indicates the increased uncertainty in the fragility curves when multiple
model configurations are considered.

The same procedure is applied to all DSFs reported in Table 2,
considering the complete training set that contains all building con-
figurations. The predictive accuracy evaluated in the test set for each
feature individually is reported in Table 9. The highest accuracy (56%)
is achieved by DSF #7, which is the RMS amplitude of the normalized
response at the top of the structure (Table 2). The corresponding soft
accuracy is 91%. As expected, both the absolute and soft accuracy are
lower than the ISD, although significantly higher than the IM. It is
mentioned that all DSFs are computed on the basis of the acceleration
response in the pre-defined positions mentioned in Fig. 2a and repre-
sent measurable features, assuming that the structure is instrumented
with accelerometers.

Fig. 10 illustrates the probability density functions for all DSs by
considering the PGA, the ground floor inter-story drift and the best
performing DSF as damage indicators. For the case of PGA, the over-
lapping of the curves corresponding to global DSs above 0 reflects the
10
Table 9
Accuracy and soft accuracy (± 1 damage class) obtained from applying fragility
functions to the test set. Fragility functions are formulated with respect to either
intensity measures (IMs), engineering demand parameters (EDPs), or damage-sensitive
features (DSFs). The maximum accuracy achieved for each category (IM, EDP, DSF) is
highlighted in bold.

Type ID Description Accuracy Soft accuracy

IM – PGA 0.41 0.67
EDP – MRD 0.59 0.95
EDP – ISD𝑔𝑓 0.66 0.97
EDP – ISD𝑚𝑎𝑥 0.59 0.95
DSF 1 see Table 2 0.52 0.84
DSF 2 see Table 2 0.52 0.83
DSF 3 see Table 2 0.47 0.79
DSF 4 see Table 2 0.52 0.85
DSF 5 see Table 2 0.52 0.83
DSF 6 see Table 2 0.47 0.79
DSF 7 see Table 2 0.56 0.91
DSF 8 see Table 2 0.49 0.83
DSF 9 see Table 2 0.51 0.83
DSF 10 see Table 2 0.52 0.83
DSF 11 see Table 2 0.47 0.79
DSF 12 see Table 2 0.48 0.79
DSF 13 see Table 2 0.45 0.88
DSF 14 see Table 2 0.50 0.83
DSF 15 see Table 2 0.47 0.79
DSF 16 see Table 2 0.46 0.89
DSF 17 see Table 2 0.50 0.83
DSF 18 see Table 2 0.48 0.79
DSF 19 see Table 2 0.53 0.85
DSF 20 see Table 2 0.53 0.83
DSF 21 see Table 2 0.48 0.79

inability of the IM to differentiate between damaged states based on the
maximum probability principle. For the case of the ground floor inter-
story drift and the best performing DSF, the distributions are separable
and consistent with the increasing level of damage. The inevitable
overlapping is the main source of confusion in the prediction of damage
based on individual features. As different features are sensitive to
different DSs, in the next section multiple DSFs are fused in order to
improve the overall predictive performance.

3.2. Damage state prediction with supervised machine learning approaches

Two ML approaches, namely XGBoost and CNNs, are leveraged to
fuse the information from multiple features. As described in Section 2.6,
the input for both networks is a set of pre-computed features, the
output is the prediction of the DS, while three different sets of features
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Fig. 9. Fragility functions derived from training data (top) and confusion matrices evaluated on test data (bottom). The 𝑥-axis corresponds to: (a) Inter-story drift at ground floor
(only 2-story configurations), (b) Inter-story drift at ground floor (2- to 5-story configurations), (c) Best performing individual DSF (2- to 5-story configurations).
Fig. 10. Probability density functions for all DSs based on training data for all model configurations. The 𝑥-axis corresponds to: (a) PGA, (b) Ground floor inter-story drift and
(c) Best performing individual DSF.
are considered. The results obtained for both classifiers on all three
feature-combinations are summarized in Fig. 11.

Both architectures demonstrate significantly better predictive per-
formance compared to fragility functions based on individual features.
Considering only DSFs, the XGboost architecture yields 66% accuracy
and 96% soft accuracy, which is comparable to the predictive per-
formance of the ISD. This demonstrates that fused acceleration-based
DSFs have the potential to yield predictive performance that reaches
the level of hypothetically known ISD. Including geometric configura-
tion features (CFs) increases the predictive accuracy to 70% and 97%
(soft accuracy). In a step further, characteristic structural properties
(MFs per Table 4) that are possible to infer through model updating
frameworks [66] are considered. Although significant computational
effort is required for this task, the improvement in terms of accuracy
is only marginal (Fig. 11c). Overall, the predictive performance of
the CNN architecture is consistently inferior to that of the XGBoost
architecture. This is attributed to the limited amount of training data
and to the ability of the XGBoost architecture to reduce overfitting
through regularization.

Fig. 12 demonstrates the feature importance for the classification
decisions of the XGBoost architecture for the three combinations of
features tested. The normalized RMS amplitude and the TAC between
points B and C (Fig. 2a) have the largest impact on the damage
classification. This highlights the importance of fusing various fea-
tures at multiple positions along the structure to improve the per-
formance of damage prediction. Specifically, sensor data from the
ground, the top of the ground floor, and from different positions at
the top of the structure provide valuable information for DS prediction
in frame-type structures. When features characterizing the geometric
configuration are added to the feature space, the number of floors
significantly contributes to the predictions, showing the importance
of this information to adapt the classifier to datasets with multiple
floor-configurations. Finally, when MFs are available, the fundamental
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frequency and the equivalent elastic modulus further improve the
accuracy of damage prediction. This information facilitates the differ-
entiation between model configurations that share the same amount of
floors but vary in stiffness.

4. Application to real data of large-scale shake-table tests

The performance of the domain adaptation framework described in
Section 2.7 is evaluated on the data from a large-scale masonry-infilled
reinforced concrete (RC) frame. The specimen, tested by Stavridis et al.
[90], was a two-dimensional three-floor frame structure and, therefore,
complies with the modeled geometries considered in this study. How-
ever, the structural system differs, since the test structure consisted
of RC frames and infill walls, while the numerical models used here
represent unreinforced masonry shear-wall buildings. Therefore, the
domain adaptation is performed for a challenging case of discrepancy
between the simulated training set and the real building, on which
damage classification is attempted.

4.1. Experimental data

The experimental structure (see Fig. 13a–b) represented existing
buildings in California built in the 1920s. It was excited by the ground
motion recorded during the 1989 Loma Prieta earthquake at the Gilroy
Array #3 station, which was scaled to increasing amplitudes (see [90]
for a more detailed description of the experimental campaign).

Damage classification is performed for eight tests, with intensities
ranging from 20% to 120% of the original earthquake. Although many
quantities and positions were monitored during the tests, the measured
acceleration signals at five locations marked in Fig. 13b are used to
compute the DSFs outlined in Section 2.4. The five sensors are chosen
to comply with the simulated acceleration data that is used to train the
classifier (see Fig. 2a).
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Fig. 11. Predictive performance of supervised ML approaches. Three sets of available features have been considered: (a) Only DSFs, (b) DSFs and CFs and (c) DSFs, CFs and MFs.

Fig. 12. Feature importance for the damage classification by the XGBoost architecture. Different feature-sets are considered: (a) Only DSFs, (b) DSFs and CFs and (c) DSFs, CFs
and MFs.

Fig. 13. Overview of the test specimen and dynamic tests: (a) photo of the tested specimen, (b) summary of sensor locations used to derive DSFs and dimensions of the specimen,
(c) backbone curve of the peak displacements and corresponding base force, together with the response-history of two ground motions.



Soil Dynamics and Earthquake Engineering 166 (2023) 107739P. Martakis et al.
Fig. 14. Predictive performance of Machine learning algorithms in the target domain: (a) pre-trained XGBoost, (b) pre-trained CNN and (c) DANN.
The building capacity is approximated with the MRD and reaction
force at the base that are reached during the earthquake tests, as
shown in Fig. 13c. The backbone curve is comparable to the simulated
pushover curves, which are used to define simulated DSs (see Fig. 4a).
The DS observed in the specimen after each earthquake is also reported
in Fig. 13c. Given that the characterization of the DS is based on obser-
vations and qualitative assessment, the DSs may not fully correspond
to the definition used in the numerical simulations in this study. Yet,
they reflect realistic conditions.

Following each earthquake motion, the structure was subjected to
WN excitations with RMS amplitudes of 0.03 g and 0.04 g. These are
used here to derive the DSFs. The application is based on real data and,
thus, includes sensor noise and randomness of WN signals. However,
it is noted that the amplitude of the WN excitation exceeds typical
ambient vibrations and remains approximately constant over all test
runs. Therefore, the monitoring data has a high signal-to-noise ratio.

4.2. Damage prediction with pre-trained classifiers

As a reference point, the predictive performance of the ML algo-
rithms, pre-trained on simulation data (Section 3.2), is evaluated on
the experimental data. The XGBoost and CNN classifiers are tested on
DSFs derived from the WN excitation in different DSs. The test data is
segmented into 10-second windows resulting in a total of 567 labeled
datapoints with the following distribution:

• 261 DS 0 (46%)
• 109 DS 1 (19%)
• 98 DS 2 (17%)
• 99 DS 3 (17%)

Since the ML models are pre-trained exclusively with the simulation
data, the entire set of experimental data can be used for testing. As
explained in the following section, 50% of the healthy experimental
data are used to train the domain adaptation network. To keep the
same test set for the supervised and the DANN architectures, 50% of the
healthy data, labeled DS 0, are excluded from the test set. Fig. 14a and b
visualize the predictive performance of the pre-trained networks when
exposed to the experimental data (target domain). The XGBoost archi-
tecture achieves an absolute accuracy of 58% and a soft accuracy of
89%. The confusion matrix exposes a significant bias towards predicted
class 3 (DS 2), while the network shows poor performance in separating
the healthy data (classes 1 and 2) from the damaged classes. CNN’s
performance is significantly worse, achieving an absolute accuracy of
25% and a soft accuracy of 77%. Again, there is a clear bias with
respect to predicted class 3. These results expose the inability of pre-
trained networks to generalize their predictive performance in domains
that differ significantly from the training set. ML classifiers overfit to
the source domain (simulations) and thus cannot adapt to the target
domain, which differs from the source domain in terms of material
(RC vs. simulated masonry), structural system (in-filled RC frame vs.
unreinforced masonry walls), and origin (simulations vs. experimental
data with inherent noise).
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4.3. Damage prediction with domain adaptation

Domain adaptation aims to improve the predictive performance
of a classifier in the target domain, for which only limited data are
available, referring exclusively to the healthy state of the structure. The
DANN architecture described in Section 2.7 is deployed, comprising
three elements: a latent-space feature extractor, a damage classifier,
and a domain discriminator. Apart from the common training set that
contains the simulation data (Fig. 4c), 50% of the healthy data from the
target domain (DS 0) are considered for training, without providing the
label of their DS. The remaining experimental data is kept for testing.
Finally, a binary domain label is attributed: 0 for the source domain
and 1 for the target domain.

Fig. 14c illustrates the performance of the DANN network in the
target domain. Absolute accuracy reaches 67% and the soft accuracy
94%, showing a significant improvement compared to the pre-trained
networks. The DANN successfully separates the healthy class (DS 0)
from the damaged classes. Furthermore, the heavy damage classes (DS
2 and 3) are successfully separated from the minor damage (DS 0 and
1). The prediction of DS 1 is only correct in 37.6% of the cases, although
the confusion is limited to ±1 DSs. It is mentioned that the definition
of damage in the experimental data was based on visual observations
and involved qualitative evaluations of DS based on four empirical
levels, namely ‘‘no damage’’, ‘‘minor damage’’, ‘‘some damage’’ and
‘‘major damage’’. Similar qualitative levels have been adopted for the
formulation of damage thresholds in the simulation data, as described
in Section 2.2. Although the hard assumptions for the DS thresholds do
not directly affect the healthy state and the heavy damaged states, DS
1 and DS 2 are sensitive to the exact values of the thresholds and the
assumptions made when deriving the equivalent yield point. Therefore,
the observed uncertainty in predicting DS 1, as well as the partial
confusion between DS 2 and 3 are deemed acceptable.

Overall, the deployed domain adaptation framework yields satis-
factory results in predicting DS in the target domain, from which
very limited and unlabeled data is considered, referring exclusively to
the reference (healthy) state. In a practical context, this data can be
acquired through ambient vibration measurements prior to an earth-
quake. By comparing the performance of the DANN with the corre-
sponding pre-trained CNN, sharing the same architecture in the feature
extractor and the damage classifier segments, a significant improve-
ment in prediction accuracy is achieved. The limited information from
the experiments, which does not contain data from damaged configu-
rations, allows the DANN network to adapt successfully to the target
domain. These results demonstrate the potential of DANN to trans-
fer knowledge from numerical simulations to real-world monitoring
applications.

5. Conclusions

This paper contains a thorough comparison of the damage clas-
sification performance of a large ensemble of DSFs, evaluated on an
extensive dataset of nonlinear simulations of masonry structures with
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varying geometrical configurations and material properties. With two
popular machine learning classifiers, namely the XGBoost and CNN,
multiple features have been fused into robust damage indicators. Fi-
nally, a DANN architecture is used to generalize the damage classifica-
tion knowledge obtained from numerical simulations to real-world data
from a large-scale shake-table test.

Fragility functions, involving individual DSFs, are used to compare
their predictive performance with EDPs and IMs. DSFs, which are
measurable, are shown to outperform PGA, which is a widely used IM
to characterize the ground motion intensity, especially for regional risk
and damage assessment. Although EDPs outperform individual DSFs in
predicting damage, their monitoring in real applications is challenging,
thus rendering their use impractical. However, fusing information of
multiple features through ML algorithms significantly increases the ac-
curacy of damage prediction, even beyond the accuracy achieved with
individual EDPs. Therefore, ML-based fusion of vibration-based DSFs
comprise a practical alternative for damage-tagging in the aftermath of
earthquakes.

Attempting to generalize the knowledge obtained from simulations
to real structures, a domain adaptation framework that capitalizes on
DANNs is formulated and evaluated on large-scale shake-table data.
Domain adaptation leverages limited data from a new domain (i.e., the
real structure) to improve the predictive performance of a classifier
that is trained in a known domain (i.e., numerical simulations). Com-
paring the performance of the DANN with pre-trained ML networks, a
significant improvement in the accuracy of predicted DSs is observed.
By exploiting very limited information from the experimental data,
pertaining exclusively to the healthy state, the DANN network adapts
successfully to the target domain, which differs from the source do-
main in terms of structural system (RC frames instead of unreinforced
masonry shear walls) and data quality (simulations instead of exper-
imental data with inherent noise). The successful domain adaptation
in such an extreme case of divergence between the source and target
domains demonstrates the powerful potential of DANN in transferring
knowledge from simulations to real-world monitoring applications.

This paper proposes a framework that combines traditional SHM
techniques with novel ML tools to fuse information from various mea-
surable features into robust damage indicators. Additionally, by deploy-
ing a domain adaptation framework, it is demonstrated – in practical
terms – how knowledge obtained from simulations can be harvested
to improve damage detection and post-event safety tagging of real
buildings, where labeled data are scarce.
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