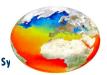
3rd INTERNATIONAL OPERATIONAL SATELLITE OCEANOGRAPHY SYMPOSIUM

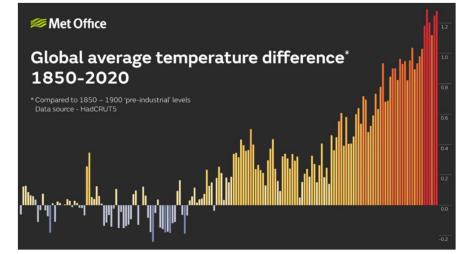
Operational exploitation of Sea-Surface Temperature data retrieved from satellites

Anne O'Carroll (EUMETSAT), Jacob Hoeyer, Ioanna Karagali, Chiara Bearzotti, Edward Armstrong, Christo Whittle

ORGANISED BY



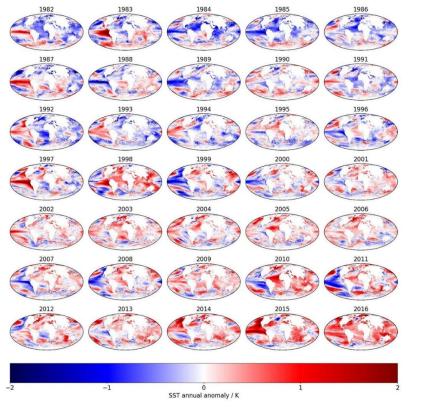
HOSTED BY



Korea Hydrographic and Oceanographic Agency

SST importance and global mean temperature increase 3rd International Operational Satellite Oceanography Sy

opernicus


- **Atmospheric circulation**
- **Circulation of oceans**
- **Ocean biogeochemistry**
- **Climate Change**

https://scienceblog.eumetsat.int/2019/12/sea-surface-temperature-climate-data-record-generation-with-slstr/

http://www.ghrsst.org

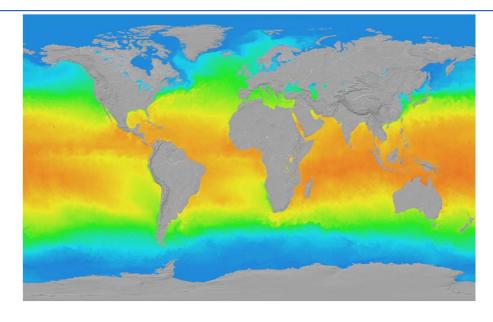
The Group for High-Resolution Sea-Surface Temperature (GHRSST)

The Group for High Resolution Sea Surface Temperature grew out of a GODAE Pilot Project, 1997-2008

- GHRSST is an open international science group
- Coordinates research and operational developments in satellite-derived sea surface temperature (SST)
- Promotes the application of satellites for monitoring SST by enabling SST data producers, users and scientists to collaborate within an agreed framework of best practices

See <u>www.ghrsst.org</u>

http://www.ghrsst.org


Committee on Earth Observation Satellites Sea Surface Temperature Virtual Constellation

opernicus

3rd International Operational Satellite Oceanography S

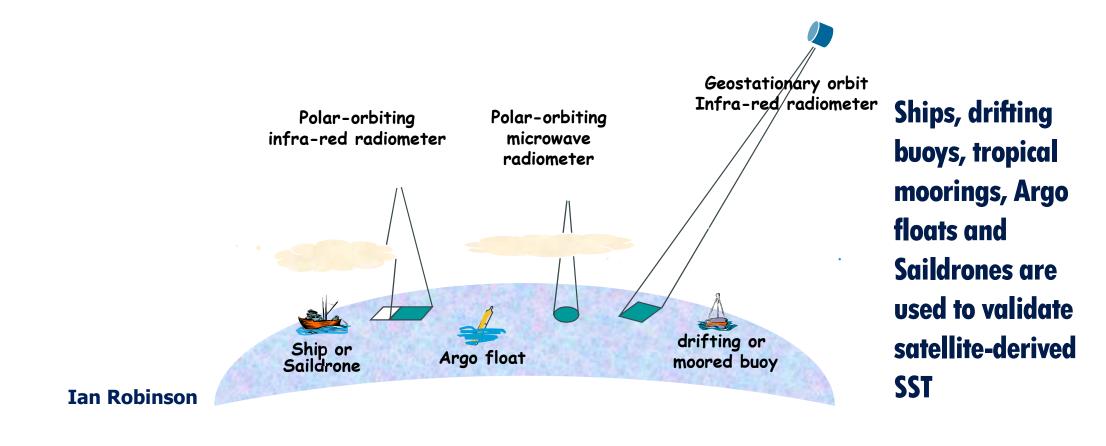
To provide operational users and the science community with the SST measured by the satellite constellation

- Framework for SST knowledge and data
- Best practices for processing and uncertainties
- Bring SST to operational users and science

http://www.ghrsst.org

Patrons and Sponsors

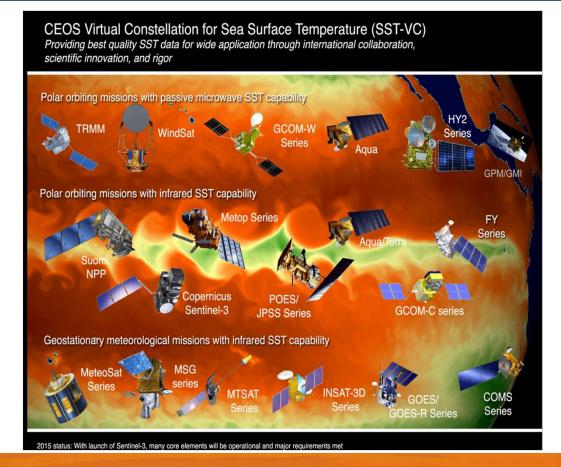
Opernicus 3rd International Operational Satellite Oceanography Sy



<u>http://www.ghrsst.org</u>

Platforms for measuring SST

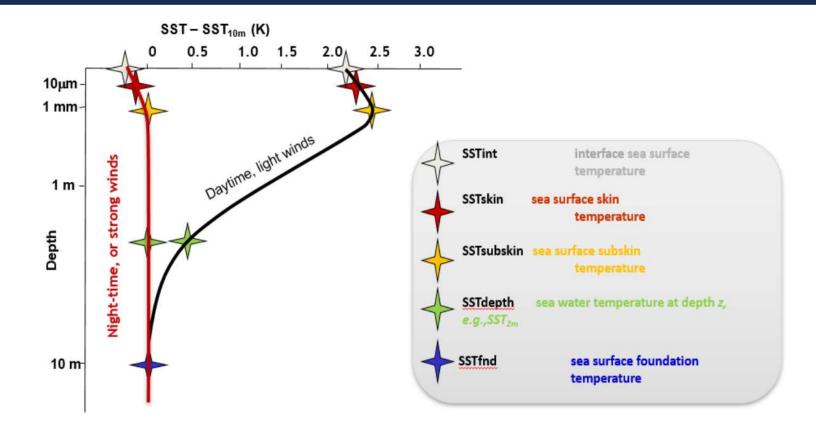
Opernicus 3rd International Operational Satellite Oceanography Sy



<u>http://www.ghrsst.org</u>

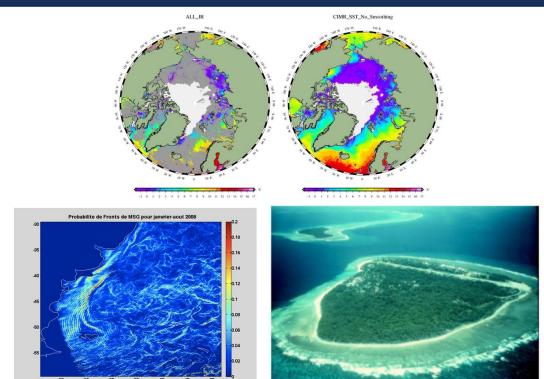
CEOS SST-VC

https://ceos.org/ourwork/virtualconstellations/sst/



<u>http://www.ghrsst.org</u>

What is SST?

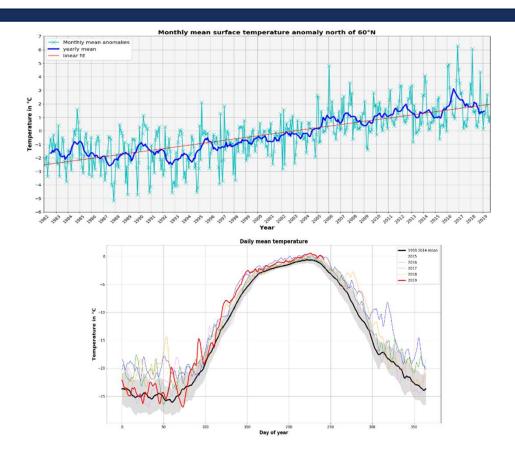

<u>http://www.ghrsst.org</u>

User driven priorities for SST observations in the next decade

- 1) Improving data quality in the Arctic
- 2) Improving coastal SST data quality
- 3) Improving SST feature resolution

Observational needs of Sea-Surface Temperature, Front. Mar. Sci., doi:10.3389/fmars.2019.00420

http://www.ghrsst.org


Committee on Earth Observation Satellites Sea Surface Temperature Virtual Constellation

opernicus

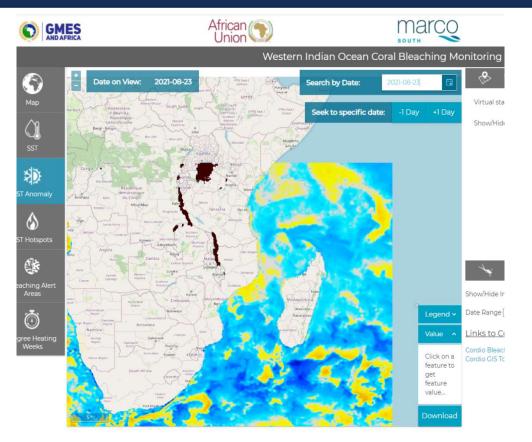
3rd International Operational Satellite Uceanography Sy

Monitoring the Arctic Ocean / sea-ice

SST and Ice-Surface Temperature (IST) products enable Arctic monitoring:

- Arctic Ocean surface temperature trends
- Daily surface temperatures
- 4oC increase in Arctic Ocean (>60 oN) surface temperature (SST+IST)

Høyer et al. (2021) GHRSST Science Team meeting <u>https://www.youtube.com/watch?v=KXPBgUW</u> <u>LFgs</u>



http://www.ghrsst.org

Coasts

- Marine dissemination services
- Promotion of sustainable management of marine resources
- CEOS and GHRSST activities towards coastal advancements

e.g. <u>https://marcosouth.org/</u> https://ocims-dev.dhcp.meraka.csir.co.za/

CEOS-COAST https://ceos.org/

GHRSST Task Teams on feature fidelity and cloud-masking

https://www.ghrsst.org/about-ghrsst/task-teams/

<u>http://www.ghrsst.org</u>

SST feature resolution

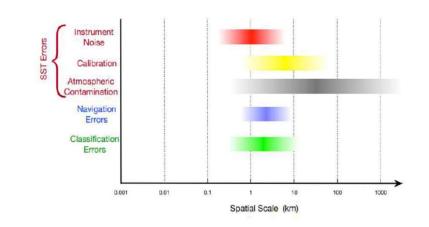
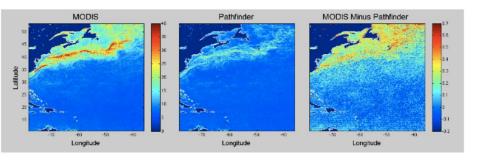
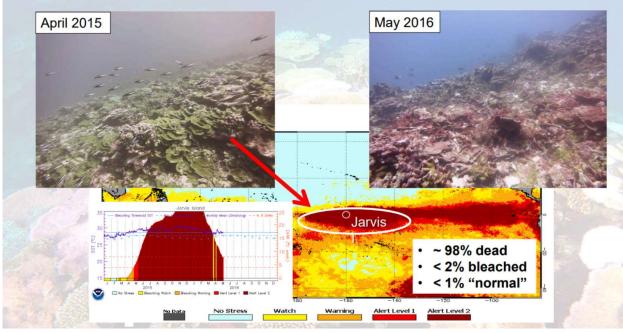



Figure 1: Spatial Scales of SST Errors Associated with Cause. Credits: Peter Cornillon.

GHRSST Task Team on feature fidelity

- Addresses issues of uncertainty of satellite derived SST fields in relation to oceanographic features at mesoscale and smaller (<100km)
- Fronts, eddies, gradient regions
- Uncertainty in SST differences (rather than absolute)
- Focus on both metrology methods and variances of SST fields

https://zenodo.org/record/7263467 (Report from 2021) Activities lead by P. Cornillon & C. Gonzalez Haro


http://www.ghrsst.org

Coral heat stress user SST

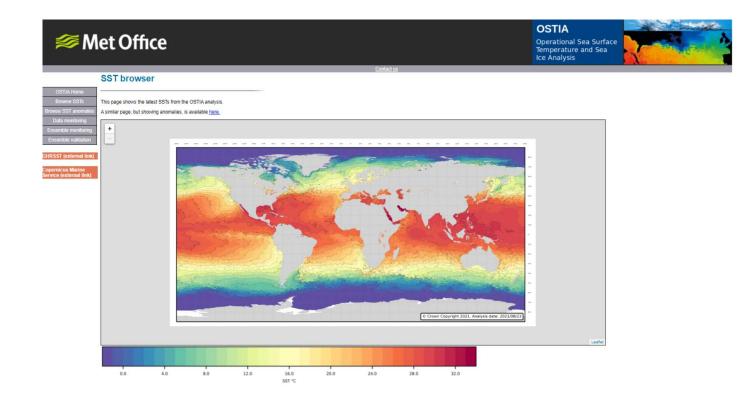
Heat Stress and Bleaching - Jarvis Island, Central Pacific

https://coralreefwatch.noaa.gov/

SST products need:

- Stability / time
- Geolocation accuracy
- Gap filled
- Daily average
- Uncertainties
- NRT / reprocessed
- Regional analyses

Skirving et al. (2020) Coral heat stress user SST requirements <u>https://doi.org/10.5281/zenodo.4700411</u>



<u>http://www.ghrsst.org</u>

Modelling (ocean and climate)

Goernicus 3rd International Operational Satellite Uceanography Sy

https://www.metoffice.gov.uk /hadobs/

https://ghrsstpp.metoffice.gov.uk/ostiawebsite

https://marine.copernicus.eu/

<u>http://www.ghrsst.org</u>

Marine heat waves

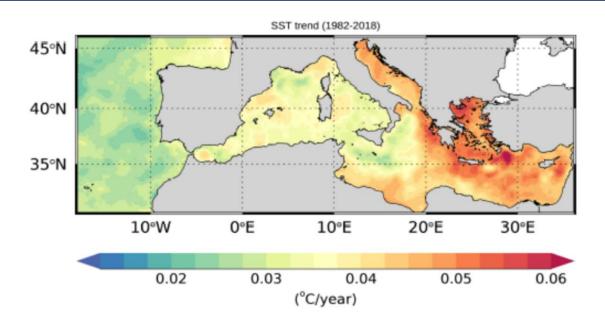
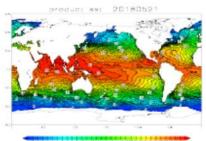


Figure 1. SST trend map (C/year) at the 95% significance level (i.e., p 0.05) covering the 1982–2018 period [Figure 6 from Pisano et al. 2020]

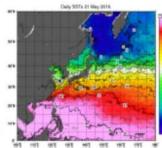
- Mediterranean Sea is particularly sensitive to climate variability and global warming
- Shows a nearly continuous warming trend of 0.041±0.006°C / year giving a total increase of 1.5°C from 1982 to 2008

Leonelli et al. (2021) GHRSST Science Team meeting https://youtu.be/3CvD8vRcZGU

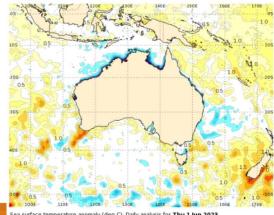
<u>http://www.ghrsst.org</u>



GHRSST examples from Asia / Pacific


L4 0.1 deg. Regional SST Product (HIMSST) L4 0.25 deg. Global SST Product(MGDSST)

JMA, **GHRSST**, 2022


Input:

 AMSR2 L2 from JAXA. VIIRS/sNPP from NOAA/NESDIS AVHRR/NOAA-19 :GAC from NESDIS, LAC from MSC/JMA In-situ (buoys and ships) from GTS

Input: Himawari-8 SST in addition to data used in MGDSST

Latest Sea Surface Temperature Anomaly () About marine weather services | Safety | Definitions | ☑ Marine website feedback About the Sea Surface Temperature Mans

Μ	

SST Observations by MW, LEO-IR, GEO-IR

Category		Low Earth Orbit Passive MW Imager	Low Earth Orbit IR Imager	Geostationary IR Imager			
Instrument	<- BoM JAXA-> GHRSST 2022/23	GCOM-W/AMSR2	GCOM-C/SGLI, Aqua/MODIS, JPSS/VIIRS	Himawari-8/AHI			
Horizontal resolution		AMSR2: 30-60km	SGLI: 250m, MODIS: 1km, VIIRS: 750m	Himawari-8: 2km			
Temporal resolution		1-2 per day (mid-latitude)	1-2 per day (mid-latitude)	2.5min (Japan) /10min (full-disc)			
Coverage		Global (including Polar region)	Global (including Polar region)	1/3 of surface (except Polar region)			

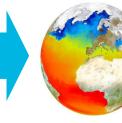
Sea surface temperature anomaly (deg C): Daily analysis for **Thu 1 Jun 2023** (c) Copyright Australian Bureau of Meteorology | **RAMSSA** | Climatology 1961-1990

http://www.ghrsst.org

Ongoing review of user-driven priorities (2021-2022)

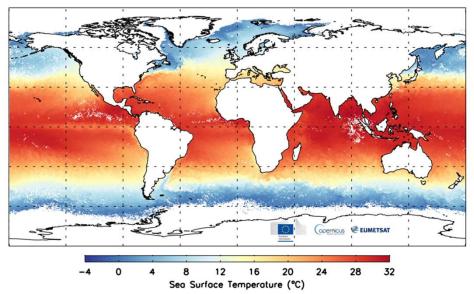
- High res SSTs products consistent with existing GHRSST products:
 - Data formats
 - SST retrievals and cloud masking
 - Quality of retrieved SST
 - Uncertainty components
- Open access to SST products
- High quality (Fiducial Reference Measurements) in situ observations should be used for validation.
- Consistency between high resolution (<100 m) and traditional (~1 km) products
- Consistency between SST and Land/Ice Surface Temperature products
- Feedback welcome and please join GHRSST 24 to learn more participate in discussions

opernicus


Summary

Gernicus 3rd International Operational Satellite Uceanography Sy

 GHRSST mission: To provide satellite-derived global SSTs with good estimates of uncertainty to operational users an the science community



- Satellite Sea-Surface Temperature essential for climate monitoring, modelling and seasonal predictions
- As global and regional earth temperatures continue to increase, SSTs from satellite remote sensing continue to be crucial for understanding, monitoring and modelling the climate and providing socio-economic benefits

Copernicus Sentinel-3 SLSTR SST 20160501

User feedback is of prime importance to us!

<u>http://www.ghrsst.org</u>

Thank you!

Questions are welcome. Anne.Ocarroll@eumetsat.int

https://www.ghrsst.org/

https://twitter.com/GHRSST

YouTube <u>https://www.youtube.com/@GHRSST</u>

https://www.linkedin.com/company/ghrsst

zenodo

https://zenodo.org/communities/ghrsst