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 Abstract: The aim is to develop a more simple and effective 

method's performance and dynamic reliability assessment for 

complex industrial systems. By using the operating data of the 

industrial system characterized by a strong desynchronization and 

applying to it prediction algorithms of artificial intelligence 

applied to the time series, the model will have learned from the 

behavior of the complex manufacturing system allowing the 

operator or decision-maker to better orientate the maintenance, 

production, and quality policies. Furthermore, we propose this 

approach to avoid tedious mathematical methods related to 

dynamic reliability calculations and performance evaluation to 

make forecasts of the company's operation over a long period by 

identifying future bottlenecks in the system's behavior. The 

low-performance indicators and irrelevant reliability presented by 

many third-generation industries are due to the lack of efficient 

and simple tools for reliability assessment taking into account the 

dynamic aspect of the different elements of the production chain, 

maintenance department, production department, and quality 

department. We propose to develop a model that will abstract from 

conventional, complex, and inefficient mathematical methods for 

systems subject to combinatorial explosion problems in the 

manufacturing industry. 

Keywords: Dynamic Reliability, Performance Indicators, 

Complex Industrial System, Long Short-Term Memory (LSTM) 

Architecture.  

I. INTRODUCTION 

Manufacturing industries are looking for a simple and 

efficient method to investigate the dynamic aspect of 

reliability and performance of systems that are becoming 

increasingly complex due to desynchronization, 

redundancies, and scaling factors. Several methods are 

proposed, including formulas and mathematical laws of 
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dependability [1-7]. But these mathematical methods, taking 

into account the architecture and the nature of the equipment, 

are often very complicated to put into practice. For this 

reason, in this paper, we propose a new method to study the 

prediction of failures and performances of a complex 

industrial system by analyzing the operating data during the 

different times of operation and shutdown of the system 

based on artificial intelligence and the NFE60-182 standard 

[6-9]. 

II. LITERATURE REVIEW 

The manufacturing industry is a challenging environment due 

to its structure, the complex nature of the equipment, and the 

coexistence of technologies. Determining reliability, 

performance, or setting up maintenance planning remain 

challenges. The work published in [10] uses MTBF and 

MTTR data to estimate the performance of a production 

system. To better plan maintenance and operational costs, [1] 

presents in its scientific work a resilience-based approach to 

optimize maintenance costs. [8] To further understand the 

depth of the challenges, [11]emphasizes in its published work 

the role of reliability engineering in the design, manufacture, 

maintenance, and replacement of industrial products. The 

work of  and [2] demonstrates that the nature of industrial 

manufacturing systems is becoming increasingly complex 

and requires more appropriate analysis tools. Finally, the 

scientific work of [12] shows how, from the raw data 

collected on an electrical network, one can make an analysis 

of the reliability of this network. In this paper, we present a 

method for evaluating the performance and reliability of a 

manufacturing system based on reliability and performance 

indicators. 

 

 

 

 

 

Ondo Boniface, Nasso Toumba Richard, Ombété Tsimi Giscard, Kombé Timothée, Elé Pierre 

Data-Based Estimation of the Dynamic Reliability 

and Performance Indicator of an Industrial 

Manufacturing System 

https://www.doi.org/10.35940/ijeat.D4053.0412423
http://www.ijeat.org/
http://www.ijeat.org/
mailto:bonitoondo@gmail.com
https://orcid.org/0009-0000-7441-0334
mailto:richardnassotoumba4@gmail.com
https://orcid.org/0009-0006-7596-1860
mailto:tsimidaniel@gmail.com
https://orcid.org/0009-0002-8304-3710
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D4053.0412423&domain=www.ijeat.org


 

Data-Based Estimation of the Dynamic Reliability and Performance Indicator of an Industrial Manufacturing System 

32 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number:100.1/ijeat.D40530412423 

DOI: 10.35940/ijeat.D4053.0412423 
Journal Website: www.ijeat.org 

 

Table-I: Raw Data from The Company 

 MTBF MTTR 
Availability 

rate 

Quality 

rate 

Performance 

rate 

Operational 

availability 
Efficiency OEE 

Date                 

10-01-2020 1.022727 0.09375 0.916031 0.999945 0.849316 0.833333 0.419866 0.707725 

11-01-2020 0.906061 0.125 0.878766 0.996354 0.634082 0.906061 0.245143 0.572422 

12-01-2020 0.909091 0 1 0.991782 0.962481 1 0.372879 0.954571 

13-01-2020 0.666667 0 1 0.999376 1.040984 0.77193 0.218543 0.803065 

14-01-2020 0.818182 0 1 0.998513 0.907254 1 0.286634 0.905905 

... ... ... ... ... ... ... ... ... 

30-08-2022 1.257576 0 1 0.999474 0.516729 1.627451 0.44652 0.840508 

31-08-2022 1.309091 0.025 0.981261 0.998528 0.525615 1.2 0.463505 0.62981 

01-09-2022 1.384848 0.06875 0.952704 0.999434 0.62924 1.523333 0.570431 0.958 

02-09-2022 1.325758 0.052083 0.962199 0.999287 0.44242 1.715686 0.387728 0.758513 

Table-II: Statistique Data 

  MTBF MTTR 
Availability 

rate 

Quality 

rate 

Performance 

rate 

Operational 

availability 
Efficiency OEE 

Count 968 968 968 968 968 968 968 968 

mean 1.124507 0.085518 0.932277 0.997132 0.641775 1.341891 0.427439 0.734369 

std 0.272046 0.123836 0.092307 0.030736 0.204375 0.949126 0.148262 0.140678 

min 0.257576 0 0.66108 0.525425 0.103099 0.520833 0.030538 0.34956 

25% 1.040909 0 0.900836 0.998321 0.517361 0.946667 0.353109 0.629714 

50% 1.198485 0.03125 0.973409 0.998941 0.634082 1.178551 0.459429 0.749897 

75% 1.289394 0.108333 1 0.999434 0.761801 1.391304 0.545714 0.844952 

III. PROPOSED METHODOLOGY 

A. Description of Data Collection 

The data was collected daily for a period of 31 months: 

Quality rate (number of good products, number of completed 

products), performance rate (deviation from rate), average 

uptime, and average technical repair time. The data was 

collected from a production system with an in-line 

configuration consisting of seven pieces of equipment: the 

decoder, washer, filler, tester, labeler, packer, and coder.  

These data are described in Tables I and II. 

 
Fig. 1. Equipment Description Diagram 

 
Fig. 2. Overview Image of The Equipment 
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B. Data Processing 

An exploratory data analysis through a seasonal 

decomposition in trend seasonality and residual has been 

done before processing the data. The exponential weighted 

moving average smoothing technic was implemented to 

reduce the impact of noise in the analysis of the system. 
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                                               (6)    

 : Being the linear combination of previous observations 

 : Degree of mixing parameter value, in this case 

0.1 

: As coefficient the variance being 

                                                         (7) 

For every step at the date   

 

The following   smoothing formula is obtained: 

                                          (8) 

And the updated formula of the smoothing formula is : 

                                                 (9) 
 

Table-II is a statistical table of raw data (unfiltered data). 

According to the NFE60-182 standard efficient operation, the 

OEE must be greater than 85% [6,7]. From this table, 75% of 

the operating time, the Overall Equipment Efficiency is less 

than 85%. It means that plant operates 75% of the time in 

Jogg mode. In addition, the plant has an average good 

operating time of less than 1 hour and 30 minutes for the 

operating time. The Availability rate has a standard deviation 

of 0.09. Meaning that most of the values are around its mean 

of 0.932277. The raw data curves, smoothed by an 

exponential weighted moving average, are presented in the 

following section in Figures 3, 4, 5, 6, 7, 8, 9. 

The Following Curves Represents the Filtered Operational Data. 

 

Fig. 3. MTTR 

 

Fig. 4. Operational Availability 
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Fig. 5. MTBF 

 

Fig. 6. Performance Rate 

 

Fig. 7. Availability Rate 

 

Fig. 8. Quality Rate 
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Fig. 9. OEE 

C. Data Prediction 

The data is fed into an architecture consisting of an LSTM as 

input, two intermediate layers (an LSTM layer and a Dense 

layer), and a Dense layer as output. The trained model has 

made it possible to make accurate predictions of reliability 

and performance indicators over six months with the 

precision given in Table-III, which makes it possible to 

evaluate the production system in advance, identify 

bottlenecks and anticipate a better management policy for the 

company [3, 5, 13]. 

 
Fig. 10. LSTM node Structure 
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IV. RESULT AND DISCUSSION 

Table-III: Model Performance Indicators 

INDICATORS MAE MAPE MDAPE 

OEE 0.01 1.36% 1.11% 

Availability 

rate 
0.01 0.70% 0.62% 

 

                                      (16) 

                                         (17) 

                 (18) 

 

 
The median of all absolute percentage errors between the 

prediction and actual values of respectively the availability 

rate and OEE are respectively 0.62% and 1.1%.It shows how 

fast and accurate our model have learnt the patterns of the 

systems from January 2020 to February 2022 to predict for 

the next 6 months the states of the brewery industry in term of 

availability and the efficient use of resources of the company 

(OEE). 
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The average difference between the actual values and the forecast values of the metric assessing the real use of the resources is 

very good on the set period of time of study according of the industry standards. 
 

 

Fig. 11. Prédiction vs Test Curves 

 

Fig.12. Learning Curve of the OEE 

 
Fig. 13. Prediction vs Test Curves of the Availability Rate 
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Fig. 14. Learning Curve of the Availability Rate 

V. CONCLUSION 

Complex manufacturing systems use very complex 

mathematical models to assess metrics such as availability, 

reliability and OEE. The method proposed in this article 

based on operational data and applied to a brewery industry 

performs very well and in a simple manner. It can be used to 

determine the dynamic reliability and performance of the 

brewery production system to improve maintenance policy, 

anticipate repairs, improve efficiency, identify bottlenecks 

and predict system behavior in the future years. 
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