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Abstract 

In the formulation of the problem of scattering of monochromatic waves and the numerical simulation of the 

solution to the Helmholtz equation, there is a computational inconvenience: the calculation is performed on a finite 

grid of discretization nodes of the finite scattering region, while the radiation conditions for the scattered wave are 

formulated at the infinitely distant boundary. Overcoming this inconvenience leads to a new type of boundary 

condition: a nonlocal boundary condition (or condition of the 4th kind). 
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1. Introduction. The main types of setting bound-

ary value problems for equations of mathematical phys-

ics of elliptic type are well known [1-4]: these are 1) 1st 

boundary value problem with Dirichlet conditions – 

boundary condition of the 1st kind (the value of the de-

sired function is set on the boundary of the solution do-

main); 2) the 2nd boundary value problem with the 

Neumann conditions - the boundary condition of the 

2nd kind (the normal derivative of the desired function 

is set on the boundary); 3) The 3rd boundary value 

problem with Robin conditions is a boundary condition 

of the 3rd kind (a linear combination of the required 

function and its normal derivative is specified on the 

boundary). 

All these types of conditions are linear and local 

(when formulating, the values of the desired function 

and/or its normal derivative at each point of the bound-

ary are used separately). It should be noted that if the 

property of linearity of boundary conditions for linear 

problems is natural, then the locality of boundary con-

ditions for fields in distributed systems is not due to an-

ything, and is only a tradition of the historical develop-

ment of problem formulations. 

Non-local boundary conditions arise in a situation 

where a certain system of bodies is surrounded by 

boundless space, and it is required to solve the bound-

ary value problem in conditional finite boundaries in 

such manner that the solution would not spoiled by 

these boundaries, and within the computational domain 

would coincide with the solution for boundless space. 

In the literature, such a problem is called the problem 

of constructing non-reflecting boundary conditions, 

and is widely studied for acoustics, hydromechanics, 

and scattering of waves of various nature [5–9]. 

The specific example of a problem with the Helm-

holtz equation proposed below is not new (A.A. Kon-

stantinov and others, [8], J.B. Keller [9]). However, the 

solution of the problem there was done formally: in the 

form of a series, which turned out to be divergent and 

unsuitable for use in calculations. This work brings the 

solution to the proper form. 

2. Statement of the problem. Consider the non-

uniform Helmholtz equation in R3: 

   (2.1) 

Let  has a bounded in the R3 support, which lies completely inside a closed ball 

 with a radius  and a center in the origin. The parameter  has 

a positive constant value in the ball exterior, which is equal to .  

Thus, in the ball  exterior, the solution  satisfies the uniform Helmholtz equation with 

constant coefficients. The Sommerfeld radiation conditions define the solution behavior in the infinity, namely 

[10]: 

 

     (2.2) 

Under conditions (2.1), (2.2) the solution of the problem in the ball  exterior is defined uniquely by the 

boundary condition in the ball  surface, or in the surface of a ball, which includes  inside, because a 

zero boundary condition gives everywhere a zero solution in the ball exterior (see [11] pp. 440 – 441). 

However, when setting computational boundary value problems, one has to perform calculations in a finite 

region of space, and the use of conditions (2.2) at infinity causes difficulties. So, 
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Required: to find an expression for the radiation condition on the boundary of a limited area (namely, here - 

on the boundary of the ball  of radius R, which contains the region of 

inhomogeneity of the original problem inside itself). 

3. Solving. Let's move from Cartesian coordinates to spherical coordinates: 

   (3.1) 

Equation (2.1) is rewritten in the form18: 

      (3.2) 

Here the angular part of the 3-dimensional Laplace operator is introduced 

     (3.3) 

Outside the ball , the solution satisfies the homogeneous equation 

      (3.4) 

When the radiation conditions (2.2) are satisfied, it is represented as a series (see [4], p. 448): 

    (3.5) 

Here  are the spherical functions [12-14]19. They are orthonormal [15]: 

    (3.6) 

Spherical functions form a complete basis on a sphere in space  (see [16], [17]). 

 are the Hankel functions of the 1-st and 2-nd kind. They have asymptotic behavior at 

infinity [18]: 

    (3.7) 

    (3.8) 

From (3.7) follows the asymptotic behavior of (3.5) at large distances 

   (3.9) 

On the sphere  from the obtained formulas we have: 

   (3.10) 

Using the formula (see [19] for the half-sum of formulas (5.6.3)) 

     (3.11) 

for the normal derivative of u on the sphere, we get: 

   (3.12) 

Let us now construct an expression for the normal derivative of u expressed in terms of the function u itself 

on the boundary. To do this, using the orthogonality of spherical functions (3.6), we express from (3.10) and 

substitute into (3.12): 

 

    (3.13) 

 (3.14) 

 
18 For formally other functions - already from spherical coordinates - we leave the previous designations. 
19 In new sources (see Wikipedia), complex spherical functions (3.6) are denoted with subscript and superscript: ( ), ,m

lY    

and two subscripts are used for real-valued spherical functions. But in this work only complex spherical functions are used, so 

we follow the old tradition. 
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It can be seen from the relation obtained that the normal derivative of the desired function on the spherical 

boundary is expressed in terms of the values of the desired function on this boundary using the action of a linear 

unbounded operator on the right side of (3.14). This operator has received a name in the literature: the Dirichlet to 

Neumann map (DtN) [9]. The eigenfunctions of the operator are the spherical functions , and the coefficients 

in parentheses are the spectrum of the operator. The spectrum is unbounded because the first term in parentheses 

in (3.14) is bounded, but the second is not. For functions that are not a finite linear combination of  the 

representation (3.14) is not convenient to use and needs to be converted to a form that does not contain divergent 

series. Let's show how this can be done. 

For spherical functions, the addition theorem holds [20]: if 

   (3.15) 

is true, where 

    (3.16) 

then it holds 

  (3.17) 

In what follows, for functions of angular variables , we will also use vector notation for 

arguments: , implying dependence on the position of a point on the surface of a sphere. 

Substituting (3.17) into (3.14), we obtain 

 (3.18) 

So, the desired boundary condition on a sphere of radius R has the form: 

   (3.19) 

where the kernel DtN of the linear operator is given with expression 

  (3.20) 

The kernel DtN of the operator in (3.19) is singular at , and symmetric in the angular variables 

. The functional series (3.20) diverges in general. This is not surprising, since the kernels of linear operators are 

generalized functions. 

Let's divide the expression (3.20) into three components: calculation, analytical and singular: 

     (3.21) 

    (3.22) 

    (3.23) 

    (3.24) 

The calculation component corresponds to a bounded operator and is determined by a series that converges 

absolutely and uniformly (see below). The analytical component is summed up using reference formulas (see [21] 

formula 6.5.1.1 at  [22] formula 8.926 А(9063.2)) and gives the integrable kernel of 

the bounded operator (in ): 

   (3.25) 

The singular component corresponds to an unbounded integro-differential operator, the explicit form of which 

will be obtained below. 

4. The calculation component. Let us prove here that the series (3.22) converges absolutely and uniformly 

in  Due to the properties of Legendre polynomials  it suf-

fices to prove the convergence of the series 
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     (4.1) 

for any fixed .  

Lemma. For any fixed  there exists a finite limit 

.    (4.2) 

A corollary of the lemma is the statement about the absolute and uniform convergence of the series (3.22).  

Proof. We use the representation of the Hankel functions of a half-integer argument in the form of series: 

   (4.3) 

It follows from the formulas [23], [24]: 

,     (4.4) 

.     (4.5) 

Here  is a set of integers.  

We transform expression (4.3) as follows: 

 (4.6) 

To get away from the negative values of the argument in the gamma function in the first terms of the series, 

we use the Euler complement formula [25]: 

    (4.7) 

In what follows, we will also use the well-known property of the gamma function [25], called the functional 

Euler equation: 

      (4.8) 

We obtain 

 (4.9) 

Next, we take out of brackets the largest factor : 

 (4.10) 

The gamma function of the half-integer argument increases monotonically in absolute value with the growth 

of the argument everywhere, except for three values of the argument: -1/2; 1/2; 3/2, at which the absolute value of 

the gamma function decreases:  respectively. For large values of n in formula (4.10), this does not 

affect the fact that the factor from the gamma functions in the first sum in all terms of the series, except for the 

first, is less than 1 in absolute value. The gamma factor in the second sum has a similar property. 

We select the first two terms from the first series: 
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  (4.11) 

Let's denote the series: 

,     (4.12)  

     (4.13) 

These series, in any case, are bounded functions of the variable n for any fixed value of z:  

    (4.14) 

     (4.15) 

We will also need the following estimate: 

 

 

 

     (4.16) 

 

 

     (4.17) 

It means that 

     (4.18) 

Expression (4.11) with notations (4.12), (4.13) takes a more compact form: 

    (4.19) 

    (4.20) 

It can be seen that the function  introduced here tends to unity as . 

 Now, with the help of the obtained representations, let us calculate the limit (4.2). 
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The last parenthesized line in the limit disappears because the gamma function grows faster than both the 

power function and the exponent. Next, we get 
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In this way, 

    (4.21) 

The lemma is proven. 

As already mentioned, this proves the absolute and uniform convergence of the series (3.22), which deter-

mines the computational part of the Dirichlet-Neumann operator. 

5. The singular part of the operator DtN. Expression (3.24) admits the following further processing. To 

obtain a convergent series, one should use the formula [14] for one of the properties of spherical functions: 

.    (5.1) 

Here  means the operator (3.3) taken with respect to the variables . Using formula (3.17), we repre-

sent expression (3.24) as 

.   (5.2) 

This is the spectral expansion of the singular part S of the operator DtN in terms of its eigenfunctions, the 

spherical functions20. 

Using (5.1), we substitute into (5.2) the expression 

   (5.3) 

For transformations, we use the well-known formulas (see [22] formula 6.5.1.1 at  also 

[23] formula 8.926 А(9063.2)): 

, (5.4) 

.     (5.5) 

We obtain 

     (5.6) 

   (5.7) 

Let us note here that in representation (5.6) the kernel S formally ceased to be a symmetric function of the 

scalar product of vectors , since the angular operator  acts on the variables , but does not act on the 

variables . Symmetry had to be sacrificed temporarily in order to get away from the divergent expression 

(3.24). The symmetry will be restored farther, and the way is rather interesting. 

The angular part of the Laplace operator (3.3) can be expanded into a product of first-order differential oper-

ators acting on the sphere: 

       (5.8) 

Here  means the gradient operator on the sphere 

      (5.9) 

The divergence operator on the sphere has the form 

    (5.10) 

here v is an arbitrary vector field on a sphere of unit radius 

   (5.11) 

Note that the sphere has no boundary, and all integrals of the total divergence of smooth vector functions 

vanish. Operator kernels have singularities; when integrating them, all expressions should be understood as a weak 

 
20 The expansion of the operator DtN itself is given by formula (3.14). 
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limit of regularized expressions 21. Representation (5.8) makes it possible, by integrating twice by parts, to permute 

the operators: 

   (5.12) 

Therefore, in view of representation (5.12), expression (5.6) can also be written in the form: 

     (5.13) 

where it is understood that the differential operator  does not act on F, but on a sufficiently smooth function 

that will stand on the right. The usefulness of expression (5.13) is that  contains a singularity already 

integrable on the sphere at , while the integral of (5.6) diverges. Expression (5.13) shows that the operator 

      (5.14) 

where 

     (5.15) 

      (5.16) 

is an integro-differential operator of the 2nd (differential) order. All three operators: , included in the 

right side of the expression (5.14), have the same set of eigenfunctions, these are spherical functions 

. Therefore, the operator factors in (5.14) commute with each other and are self-adjoint operators, just like the 

operator (5.14) itself. The boundary condition with the operator of the 2nd differential order along the boundary, 

however, is not convenient for applying the finite element method (FEM) in calculations, since the idea of the 

method is to apply the so-called semi-weak form of a boundary value problem for second-order partial differential 

equations (see J. Descloux [26], also [27]). It allows to bypass the calculation of the second derivatives of the 

desired function in a process of numerical solving. Therefore, it is highly desirable to find a representation for a 

new type of boundary conditions also in a semi-weak form, that is, not containing second derivatives of the desired 

function along the boundary. 

6. Semi-weak form of the boundary conditions. Consider the bilinear form22: 

   (6.1) 

Is it possible to convert this form to a symmetrical view 

,  (6.2) 

including only the first derivatives of functions u, v ? Here  are the vectors tangent to the surface of the 

unit sphere at the points  and directed towards each other tangentially along the arc of the great circle con-

necting these points. Directional derivatives are defined along them 

     (6.3) 

    (6.4) 

Angles  are the rotation angles of the vectors  relative to the meridians  and 

 of the selected coordinate system on the sphere, respectively. It can be shown that they are deter-

mined by the relations 

      (6.5) 

      (6.6) 

       (6.7) 

      (6.8) 

Here the function  is defined from (3.15). For directional derivatives (6.3) and (6.4) we 

obtain 

     (6.9) 

     (6.10) 

 
21 The regularization here is performed in such a way that at 1 =  , the kernel has a finite value, and the derivative vanishes. 

22 Here the last expression implies the scalar product in the Hilbert space ( )2

2L S  of functions integrable on the sphere of 

unit radius with modulus squared. 
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From relations  and (3.15) one can obtain useful relations: 

      (6.11) 

       (6.12) 

      (6.13) 

Let us substitute representation (6.9) into expression (6.2) and integrate by parts in the first integral

 

 (6.14) 

But, on the other hand, from definition (6.1), the same form is expressed in terms of the function F obtained 

earlier: 

 (6.15) 

Comparison of expressions (6.14) and (6.15), provided that terms with total divergence under the integral 

vanish23, and taking into account arbitrary functions u, v, leads to the equation 

, 

      (6.16) 

which defines the desired function b. The general solution of this ODE has the form 

    (6.17) 

Substituting the expression (5.7) for F and performing the integration gives the expression 

      (6.18) 

    (6.19) 

If we put С = 0, then the expression for b vanishes at , and the expression has only one (integrable) 

singularity at . For , this expression has two (integrable) singularities at . The require-

ment that there be no singularity at  is quite natural, since the function F does not have a singularity also 

at this antipode point. 

Fig. 1 shows how expression (6.19) can be regularized and should be understood as a weak regularization 

limit. 

 
Fig. 1. Regularization effect for b. 

 

 
23 The vanishing depends on the nature of the singularity of the expressions for b and F at 1 →+ , since the singular point 

on the sphere creates the boundary of the integration region, which is absent for smooth functions. 
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Studies have shown that terms with total divergence in expressions (6.14), (6.15) vanish in the weak limit. 

7. Sommerfeld asymptotic for the operator DtN. At large distances , the role of the singular part 

S (5.14) or (3.24) rapidly decreases with increasing z due to the factor . Let us analyze the properties of the regular 

part: the sum  of expressions (3.22) and (3.23) 

 .     (7.1) 

The regular part has the property of localization of the kernel as the dimensionless radius z of the boundary 

sphere increases. Fig. 2 shows the behavior of the regular part of the mapping DtN: as z increases, it becomes more 

and more localized to the delta function (see below). 

 
Fig. 2. Numerical calculations of the imaginary (solid line) and real (dotted line) parts of the regular part K of 

the operator DtN divided by . The first 402 terms of se-

ries (3.22) at  (blue),  (red), and  (brown) are included. 

 

The Sommerfeld conditions (2.2) imply not only a large (dimensionless) distance  to 

the vicinity of the observation point, but also a fairly small size of the region  in which 

the radiation source is concentrated. Indeed, if we imagine that  also increases infinitely together with z, then it 

becomes obvious that the second of conditions (2.2) may not be satisfied. For example, two point sources of a field 

and an observation point form an equilateral triangle, the size of which (in wavelengths) increases indefinitely. At 

the observation point, we will get a picture of the interference of two plane waves propagating at an angle of 60 

degrees to each other, and such a field does not correspond to (2.2). Also, the first of the conditions (2.2) may not 

be satisfied if the field sources are allowed to be at a finite distance from the boundary sphere as its radius increases 

(that is, seek the limit  at ). Obviously, conditions (2.2) must be satisfied when passing 

to the limit . But this requirement is stronger than the one under which the problem was 

solved:  (or in dimensionless quantities ). The effect of an additional requirement lead-

ing to conditions (2.2) is to cut off the high-order angular modes24 before passing to the limit , which masks 

the effect of the lack of uniform convergence of the series  (7.1) defining the operator kernel. This additional 

requirement makes it possible to replace the Hankel functions in the representation (7.1) at large distances by their 

well-known asymptotic expression (3.7), which substitutes (7.1) with its asymptotic representation 

    (7.2) 

i.e., leads the kernel to localization in angles, and (3.19) to the formula for a plane wave. Indeed, we use the 

formulas: 

 

     (7.3) 

    (7.4) 

 
24 The number of significant angular modes is proportional to the number of wavelengths that fit on the length of the great 

circle of the ball О1. 



38 The scientific heritage No 114 (2023) 

The first equality is the addition theorem (3.17). Equality (7.3) is the series expansion of the delta function in 

Legendre polynomials, it follows from the orthogonality and normalization of Legendre polynomials [13-15]: 

. 

Indeed, for any continuous function  we have: 

 

 

 

But by definition we have also .  

Equality (7.4) is the expansion of a two-dimensional delta function on a sphere into a series in terms of 

spherical functions; it follows from the orthogonality and normalization (3.6) of spherical functions. Indeed, we 

rewrite (3.6) as 

 
Multiply by  and sum over primed indices 

 
Let's represent the result in the form 

 

 

Multiply by  and sum over all indices 

 

 
Since f is arbitrary, we conclude that 

 
The spectral expansion (7.4) expresses a well-known fact: the spectrum of an identical operator consists of a 

single point, unity. 

We substitute asymptotic (7.2) into (3.19): 

 
Singular part (3.24) of the kernel DtN is not localized at large distances because it is a product of a function 

of z -variable and the operator depending on directions  only. Taking into account the disappearance of the 

singular part at large distances due to the factor , we get: 
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      (7.5) 

And this is the Sommerfeld asymptotic (2.2). 

8. Conclusions. Here, the problem of transferring the Sommerfeld radiation boundary condition from infinity 

to a sphere of finite radius is solved for a boundary value problem with a three-dimensional Helmholtz equation. 

The boundary condition has the form of a linear integro-differential relation (3.19), which relates the value of the 

desired function and its normal derivative on the boundary of the spherical region in a non-local way: 

 

   (8.1) 

The kernel of the operator on the boundary sphere can be divided into the regular part K (the sum of (3.22) 

and (3.23), an integral operator) and the singular part S (3.24). The latter, with subtraction the operator of averaging 

over angles, can be represented as a product of two commuting self-adjoint operators: integral and differential 2nd 

order (5.14). The regular part of the operator K can be decomposed into the analytical part A (3.25) and the com-

putational part R (3.22), the latter is computable using an absolutely and uniformly convergent series. 

The bilinear form (6.1) generated by the singular part (3.24) of the boundary condition operator (3.14) admits 

a symmetric representation (6.2) containing derivatives of at most 1st order. This favors the future development 

of the finite element method (FEM) for solving boundary value problems with a new type of boundary conditions. 

This enables to represent the boundary condition in the form (3.19): 

 
where the kernel of the Dirichlet-Neumann mapping is defined by the formulas 

  (8.2) 

Or in operator form: 

     (8.3) 

 

 

 

    (8.4)

 

Here the symbols  are defined 

by formulas (5.10), (3.15), (5.9), (6.18), (5.9) (in 

primed variables), respectively. The kernel M is a de-

generate symmetric real  matrix. The singular 

part is reduced to a symmetrical form25, containing only 

first-order derivatives  of the boundary value of the 

desired function on the sphere. 

This new type of boundary condition is proposed 

to be called the boundary condition of the 4th kind. The 

boundary condition of the 3rd kind (the Robin condi-

tion) is a generalization of the historically initial condi-

tions of the 1st kind (Dirichlet) and the 2nd kind (Neu-

 
25 The symmetry is meant in the sense of the generated bilinear form, it is similar to the symmetry of the Legendre operator 

( )( )( )21d d d d  − . 

mann). The boundary condition of the 4th kind is a fur-

ther generalization of the condition of the 3rd kind to the 

nonlocal case. There is a limit at which the boundary 

condition of the 4th kind (nonlocal) passes into the 

boundary condition of the 3rd kind (localized). If the ra-

dius R of the boundary sphere has many wavelengths 

(wave zone), and the radius of the ball R1, in which the 

radiation source is enclosed, is much less than R, then 

the relationship between the function and its normal de-

rivative is localized, and the nonlocal boundary condi-

tion can be approximately replaced by a local condition 

of the third kind (the Robin condition): 

  (8.5) 
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The latter is known also in the literature as the 

Sommerfeld radiation condition (2.2). 

Currently, such well-known packages as “Wolf-

ram Mathematica” and COMSOL are not prepared for 

solving problems with non-local boundary conditions. 
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