
A Machine-Learning-Based Cyberattack Detector for a
Cloud-Based SDN Controller

Alberto Mozo1, , Amit Karamchandani1, , Luis de la Cal1, ,
Sandra Gómez-Canaval1, , Antonio Pastor2, and Lluis Gifre 3,

1 ETSI Sistemas Informáticos, Departamento Sistemas Informáticos,
Universidad Politécnica de Madrid, 28031 Madrid, Spain;

a.mozo@upm.es (A.M.); amit.kbatra@alumnos.upm.es (A.K.);
l.delacal@alumnos.upm.es (L.d.l.C.); sm.gomez@upm.es (S.G.-C.)

2 Telefónica I+D., 28050 Madrid, Spain; antonio.pastorperales@telefonica.com (A.P.)
3 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA),

08860 Castelldefels , Spain; lluis.gifre@cttc.es (L.G.)

Abstract

The rapid evolution of network infrastructure through the softwarization of network ele-
ments has led to an exponential increase in the attack surface, thereby increasing the com-
plexity of threat protection. In light of this pressing concern, European Telecommunications
Standards Institute (ETSI) TeraFlowSDN (TFS), an open-source microservice-based cloud-
native Software-Defined Networking (SDN) controller, integrates robust Machine-Learning
components to safeguard its network and infrastructure against potential malicious actors.
This work presents a comprehensive study of the integration of these Machine-Learning
components in a distributed scenario to provide secure end-to-end protection against cyber
threats occurring at the packet level of the telecom operator’s Virtual Private Network
(VPN) services configured with that feature. To illustrate the effectiveness of this integra-
tion, a real-world emerging attack vector (the cryptomining malware attack) is used as a
demonstration. Furthermore, to address the pressing challenge of energy consumption
in the telecom industry, we harness the full potential of state-of-the-art Green Artificial
Intelligence techniques to optimize the size and complexity of Machine-Learning models in
order to reduce their energy usage while maintaining their ability to accurately detect po-
tential cyber threats. Additionally, to enhance the integrity and security of TeraFlowSDN’s
cybersecurity components, Machine-Learning models are safeguarded from sophisticated
adversarial attacks that attempt to deceive them by subtly perturbing input data. To ac-
complish this goal, Machine-Learning models are retrained with high-quality adversarial
examples generated using a Generative Adversarial Network.

Keywords: software-defined networking; machine learning; energy efficiency; green AI;
adversarial attack; cryptomining attack; cybersecurity

1 Introduction

As technology advances, the importance of security in network operations increases
as software components take on a larger role and human intervention becomes less neces-
sary. As a result, a top priority for next-generation SDN controllers is to ensure a secure
environment [1]. To achieve this goal, the TeraFlow project [2] developed a novel SDN
controller (TeraFlowSDN) for the 5G and beyond network era that integrates technologies,

https://orcid.org/0000-0001-9743-8604
https://orcid.org/0000-0002-0311-6610
https://orcid.org/0000-0002-1798-8743
https://orcid.org/0000-0003-2849-9782
https://orcid.org/0000-0002-9757-7871
https://orcid.org/0000-0001-9936-9411


such as today’s Network Function Virtualization (NFV) and supports new capabilities for
flow management and device integration. Importantly, TeraFlowSDN was established by
the European Telecommunications Standards Institute (ETSI) as a reference implementation
for SDN controllers, and the Open Source Group TeraFlowSDN (OSG TFS) Working Group
was established within ETSI specifically to focus on the development and advancement of
this open-source controller [3].

The evolution of security threats, many of which are due to technological advances,
creates new attack vectors (as in the case of NFV [4]) that require the protection of both
network services and the network controller. To this effect, multiple Network Intrusion
Detection Systems have been proposed in previous works. However, most of them rely on
outdated methods, such as Snort [5, 6], that are unable to handle the encrypted nature of
modern traffic [7]. It is also common for previous studies to rely on the NSL-KDD Dataset
as the training data for the systems [8].

This dataset has been heavily criticized and shown to not be a realistic reflection of
modern traffic [9], which makes many of the aforementioned studies not directly applicable
to real-life scenarios. Furthermore, when studies do take into account novel methods
for attack detection and mitigation, such as Machine-Learning [10], they fail to consider
both the intrinsic vulnerabilities of these methods and the energy needs for such systems.
On the one hand, it has been shown that ML models are susceptible to adversarial attacks,
which can compromise the system by slightly altering the input and, thus, producing false
negatives [11, 12].

On the other hand, as telecommunication traffic scales up, it becomes critical to im-
plement optimization strategies aimed at reducing energy consumption, which poses a
significant challenge in this industry. In this regard, this paper presents work performed
using the TeraFlowSDN controller to address some of these needs from several perspectives,
incorporating a distributed and scalable cybersecurity solution to the TeraFlowSDN archi-
tecture that (i) relies on standard interfaces to facilitate future extensions and modifications,
(ii) defends not only the network but itself against attacks and (iii) is optimized to reduce
its energy consumption.

To detect malicious flows in the data and control planes, our work proposes to integrate,
in TeraFlowSDN, a distributed Intrusion Detection System (IDS) based on Machine-Learning
(ML) and Deep-Learning (DL) components placed at the network edge and in the SDN
controller. A distributed IDS is expected to improve the scalability and decrease the
bandwidth and response time for detecting malicious flows while reporting back to the
controller for an assessment of network security. Many IDSs have been proposed to identify
different types of attacks [13], but proposals that address scalability, bandwidth and latency
issues are lacking.

In this context, our work was conceived in three complementary dimensions: (i) a
distributed ML-based IDS solution (Cybersecurity NetApp) that is integrated within the
TeraFlowSDN architecture, (ii) a Green AI solution to reduce the energy consumption of the
ML cybersecurity components of the solution and (iii) a fortification mechanism of the ML
components to defend themselves against adversarial examples, a new type of attack that
attempts to fool ML models introducing small perturbations in their inputs. To exemplify
these goals, a recently appeared cryptomining attack is proposed as a showcase scenario.

The Cybersecurity NetApp is designed to address the challenge of network threat
capture, identification and mitigation. To achieve this task, the Cybersecurity NetApp
includes two centralized components in the TeraFlowSDN controller, the Centralized
Attack Detector (CAD) and the Attack Mitigator (AM), as well as a distributed component,
the Distributed Attack Detector (DAD), which is placed at a remote site.

The DAD component receives network traffic at the network edge and generates statis-
tical summaries of the network flows by aggregating packets from the same connection at



regular intervals of time. The DAD component then transmits these statistics to the CAD
component, which uses them as input to an ML-based network traffic classifier running
within it. After a network attack has been detected in the ML classifier, the confidence of the
prediction as well as the flow connection identifier are sent to the AM component. The AM
component then communicates with several core TeraflowSDN components to enforce and
apply the corresponding mitigation strategy in the network elements. For example, based
on a predefined policy, it can be decided that flows with the same connection identifier as
the attack are blocked on the access router.

It is worth noting that the proposed design is distributed, modular and heavily relies
on de facto industry standards based on open-source high-performance Remote Procedure
Call (RPC) frameworks, such as gRPC and Protocol Buffer, making it highly adaptable
to integrate the detection and mitigation of other attack scenarios into the TeraFlowSDN
Cybersecurity solution.

To address the pressing challenge of energy consumption in the telecommunications
industry, this study proposes a solution that, taking advantage of the latest Green AI
techniques [14], optimizes the energy consumption of the ML models deployed on the
TeraFlowSDN controller, ensuring significant energy savings without compromising perfor-
mance. To this end, a set of optimization experiments were designed to reduce the energy
consumption of the DNN model that is deployed in the CAD component.

First, a deep exploration of the state of the art of energy efficiency was conducted,
identifying a collection of different techniques that were combined into 11 optimization
strategies. An experimental evaluation was performed on all the different optimization
strategies using the original DNN model designed and trained for the CAD. The resultant
models that achieved a significant reduction in energy consumption while maintaining a
good level of performance in attack detection were selected.

To obtain a reliable metric regarding the power consumption during the training, model
optimization, inference and model-loading phases, the experiments were performed using
the Running Average Power Limit (RAPL) interface. It is worth noting that our study fo-
cused on the inference phase, since it is the most energy-consuming in ML applications that
are going to be deployed in a real-time environment, such as the TeraFlowSDN controller.
At the end of the experiments, the total average energy consumption was reduced by up to
83.30% with a minimal performance degradation of only 0.08% in the Balanced Accuracy
score.

In recent years, adversarial attacks have highlighted the weakness of state-of-the-art
ML techniques in terms of robustness and generalisation, inspiring malicious adversaries
to exploit this weakness to attack systems that integrate ML models at the core of their
decision-making process to achieve their purposes. More specifically, adversarial attacks
(AAs) are referred to as a type of attack in which an attacker deliberately manipulates the
inputs to an ML model by adding carefully crafted perturbations to them, which are often
imperceptible to humans.

The malicious samples obtained can be used to cause an ML model to misclassify
an input or to cause the model to classify the provided samples with an arbitrary label
according to the purpose of the attacker. To minimize the impact of this type of attack in
the ML models deployed in the TeraFlowSDN controller, this work proposes a strategy to
fortify ML models against AAs that consists of crafting high-quality AAs that will be used
later in the retraining of an ML model to fortify it against AAs.

To produce AAs, the experiments rely on a realistic “black-box” setting where the
attacker only has access to the model output and has to design an attack without knowing
the model architecture or parameters or the training dataset used for model learning. A very
promising approach to elaborate AAs in a black-box environment is the use of Generative
Adversarial Networks (GANs). GANs have been shown to be capable of generating data



samples that are indistinguishable from real data samples when used for training ML
models [15].

In addition, GAN-based attacks (e.g., MalGAN [16] and AdvGAN [17]) have been
successfully applied to a variety of ML models. In order to generate high-quality AAs,
this work proposes, as a novelty, to significantly enhance the performance of the MalGAN
architecture using an activation function based on the Smirnov transformation that is added
in the output of the generator [18]. In sharp contrast with other solutions, our enhanced
MalGAN equipped with the new activation function allows us to generate high-quality
AAs, whose statistical distribution is very close to the real data but maintains good evasion
rates when input into the attacked ML models.

1.1 Contributions

• This work proposes a novel and scalable architecture of distributed cybersecurity
components integrated within TeraFlowSDN, the open-source ETSI reference imple-
mentation for SDN controllers.

– The proposed design is integrated as a series of ML-based security components
into a microservice-based cloud-native SDN architecture. By using open and
standardized interfaces (e.g., Protocol Buffers and gRPC), this solution allows
an easy interconnection, exchange and substitution of security components in a
seamless and modular way that does not impact the remainder of the compo-
nents in the controller. Furthermore, the standardized design of the proposed
components is general enough to be used by other ML-based components that
the TeraFlowSDN controller could require in the future.

– Contrary to other solutions that only offer either network attack detection or
mitigation solutions, our components offer a fully integrated pipeline, including
both of these actions.

• Existing energy optimization techniques were examined and compiled into a novel
set of 11 optimization strategies to reduce the energy consumption of deep neural
networks. These novel strategies were applied to the TeraFlowSDN ML-based attack
detectors without a noticeable negative impact on the models’ performance. This
allowed for a reduction in the average energy consumption by up to 83.30% with
minimum performance degradation.

• In order to protect TeraFlowSDN ML-based components against adversarial attacks,
this study proposes a new mechanism to generate high-quality adversarial examples
that can be used to retrain and fortify ML models. To this end, we present, as a
novelty, an extension of the MalGAN generative network equipped with a Smirnov
Transform in the generator network to produce adversarial examples that can fool
ML models but are still very close to real attack examples.

• Previous works have typically relied on outdated network traffic datasets, such as the
NSL-KDD dataset for training IDS. Our work makes use of 5G network traffic gener-
ated in a new environment based on a fully virtualized 5G network that generates
realistic traffic reflecting current standards.

1.2 Paper Structure

The remainder of the manuscript is organized as follows. Section 2 provides an overview
of previous work related to the integration of ML-based IDS into SDN solutions. Section 3



describes the setup of the cryptomining attack scenario selected as the use case and provides
a detailed description of how cryptomining attacks are performed and detected as well as
the mitigation strategy adopted to counter them.

Section 4 shows the integration of the Cybersecurity ML-based components into the
TeraFlowSDN architecture describing the components and their interfaces as well as the
workflows implemented to integrate the end-to-end attack detection and mitigation process
into the TeraFlowSDN controller.

Section 5 describes the ML model used to integrate the cryptomining attack-detection
capability into TeraFlowSDN. In particular, it details the setup in Telefonica premises to
obtain the dataset used to train the model, the model architecture and the training and
evaluation procedures. Section 6 presents the results of the energy efficiency optimization
of the ML models and highlights the main trade-offs between performance and energy
efficiency. Section 7 shows how adversarial attack resilience is added to the ML-based
TeraFlowSDN cybersecurity components. Finally, in Section 8, our main conclusions and a
summary of the main findings of this work are presented along with a proposal for future
research and development in this field, highlighting the areas that require more attention
and exploration.

2 Related Work

Since the introduction of the OpenFlow protocol [19] in 2008, many aspects of the field
of softwarization of telecommunication networks have evolved. SDNs decouple the control
and data plane so that they are managed by a centralized controller [20]. Since the SDN
controller has a global view of the network, it can access a variety of information from both
the network and the data plane. This centralization of information facilitates the creation of
Machine-Learning solutions in SDNs to make knowledge-based decisions in diverse areas
of networks.

In recent years, great efforts have been made in the industry to develop and integrate au-
tomation and decision making in the network field. This has led to a variety of applications
of Machine-Learning to solve different problems related to Software Defined Networks
(SDNs). For instance, some of these works [21] integrated Machine-Learning techniques
in SDNs to automate the traffic classification of slices. Others [22] used Deep-Learning
techniques, such as Long Short-Term Memory and Gated Recurrent Units to predict net-
work traffic, thus, allowing the SDN controller to predict and manage traffic congestion by
rerouting the flow to a path with more available bandwidth.

In [23], the authors showed how security vulnerabilities have been found in multiple
widely used SDN architectures, such as OpenDaylight (ODL) [24] and the Open Network
Operating System (ONOS) [25]. Among other security issues, tampering with network
information, service interruption and unauthorized access to system information have been
reported on SDN networks.

Previous works [5, 6] have presented Network Intrusion Detection Systems (NIDS)
that use Snort to detect attacks in traffic and later apply specific countermeasures, such as
network reconfiguration. Although these tools may work in specific scenarios, Snort is a
signature-based detection system and is, therefore, not equipped to detect unknown attacks
or attack patterns outside of its ruleset. Furthermore, it has been shown that rule-based
heuristic methods, such as Snort, are not suitable for NIDS when dealing with encrypted
traffic [7].

The layer of encryption makes it difficult for Snort to inspect the contents of the packet,
and therefore, attackers can use this to bypass this detection method. This is a significant
problem as increasingly traffic is being encrypted, making it increasingly difficult for NIDS
to detect attacks. For that reason, this study focuses on deep-learning solutions as they



do not rely on packet inspection, and our training dataset includes both encrypted and
non-encrypted traffic to ensure that the extra layer of encryption will not prevent our system
from detecting malicious traffic.

The literature includes works where a deep analysis of the creation of a NIDS in relation
to an SDN can be observed [8]. The authors of this study performed a series of tests on
different Machine-Learning classifiers, such as Random Forest, Decision Trees and XG-Boost,
to find the best-performing algorithm to detect attacks. The experiments were performed
using the NSL-KDD dataset, which is a data-mining dataset containing different traffic
features with their corresponding tag that determines whether the traffic is normal or part
of an attack. This dataset also contains a variety of attacks, containing Denial-of-Service,
User-to-Root, Remote-to-Local and Probe attacks.

This paper achieved good results in the detection of attacks and their classification
but does not go into detail on how to proceed with these attacks. In contrast, our solution
offers a full pipeline of components that interact with each other within the SDN to stop
the attack connections from their source. Furthermore, even though the NSL-KDD dataset
is one of the most popular and complete IDS datasets, it still suffers from some of the
problems [9] that prevent it from being a perfect representative of existing real networks.
These excerpts from the KDD Cup 1999 dataset do not represent realistic traffic and do
not contain traffic belonging to 5G networks, such as in our study. In contrast, the traffic
that was used to train and test our models was generated in a fully virtualized 5G network
and represents normal and attack traffic faithfully according to the latest network traffic
patterns and encryption methods.

Another work in the literature implements an NIDS to detect Distributed Denial-of-
Service (DDoS) attacks using an Openflow SDN controller [26]. Their method uses Self-
Organizing Maps and an unsupervised artificial neural network, which was trained with
standard and DDoS traffic generated by them to classify traffic. In their study, they also
focused on the lightweight nature of their method. Since they only used a small number of
relevant features, they achieved a lower overhead than traditional approaches based on the
KDD-99 dataset.

This study offers novelty in the selection of a small number of features and the creation
of a custom dataset to detect DDoS attacks. However, it does not include any type of
countermeasure once the attack has been detected. The purpose of NIDS in this study is
merely informative, since it alerts the system administrator of the predicted threat. This
research served as a seminal contribution to the field of Network Intrusion Detection (NID)
in Software-Defined Networking (SDN); however, despite its initial significance, its efficacy
as a detection system remains untested in light of recent developments, such as the advent
of 5G network traffic, which may have altered network traffic patterns.

Some works have focused on addressing attack mitigation in IoT networks by using
an SDN controller and previously assuming that the attacks have already been detected
by a NIDS present in an IoT system [27]. This study proposes the use of an in-system SDN
controller as a honeypot to isolate the attacker’s traffic. The purpose of this controller is
two-fold: to isolate the attacker and maintain a connection with them through network
spoofing and the use of phantom nodes. Network spoofing is a technique in which the
controller creates false network elements, such as fake IP addresses, to mislead the attacker.

Phantom nodes are network elements that do not actually exist but appear to be present
to the attacker. Using these techniques, the controller can maintain a connection with the
attacker while isolating their traffic in a quarantined environment. This allows the controller
to detect the attacker’s malicious activities without placing the actual system at risk. This
study presents an innovative approach to attack mitigation and the tracking of malicious
activity utilizing an SDN controller. However, it should be noted that the study does not
provide information on the initial step of attack detection and, therefore, represents only



part of the entire threat detection and prevention pipeline.
Other studies offer a complete pipeline of intrusion detection and attack mitigation in

different fields, for example, in the context of Industrial Healthcare Systems using an SDN
controller and Reinforcement Learning [10]. This paper follows the detection of attacks
on telecontrol equipment and systems in the medical field and tests a series of Machine-
Learning methods, including Logistic Regression, Random Forest, SVM and CART Decision
Tree Classifiers, which offer the best results against the TCP/IP network and device payload
flow statistics.

Once the attacks are classified, the cost of the attack is computed, and this information
is used to select an appropriate mitigation strategy. This work offers promising results
in the context of cyberattack detection and mitigation using Machine-Learning in SDNs
but does not consider the possible vulnerabilities of the models to adversarial attacks. Our
work takes this concept one step further by evaluating the models against sophisticated
adversarial attacks techniques that could potentially mislead the Machine-Learning models
by introducing slight disturbances in the input features [11, 12] making them resilient
against them.

Many recent works have highlighted the good results obtained by applying ML tech-
niques to NIDS, which achieved results of over 99.46% F1-score in DoS attack detection [28],
97.29% F1-score in DDoS attack detection [29] and over 99.95% F1-score detecting different
types of connection flooding [30]. All of these show the good applicability of DL techniques
for cyberattack detection. However, all of them fail to consider the energy needs of such
systems when scaled to the dimensions of telecommunication systems. Even though some
of them mention feature reduction to reduce model complexity [30], relating this to a faster
processing time, the studies, overall, do not offer other possible optimization strategies that
could make the models more energy-efficient and applicable to real-life traffic dimensions.

In conclusion, after performing a thorough inspection of the literature, it is evident that
most works lack a complete pipeline of network attack detection and mitigation. Many
of the solutions focus only on one of the two components of a complete system and do so
in a case-specific way that does not make them applicable to other ML-based scenarios.
Furthermore, none of the previous SDN controller proposals (e.g., ODL, NOX and ONOS)
contemplated that IDS and its ML components that use industry standard protocols and
interfaces or that are integrated within their architecture by design as TeraFlowSDN does
with its components.

This lack can limit the scalability and flexibility of previous solutions, which is not
the case in TeraflowSDN, where the ML components can access the rest of the internal
components in a flexible and efficient way using the interfaces and protocols established
within the microservice-based architecture. In addition, to the best of our knowledge,
previous works lack information regarding two vital points.

On the one hand, they failed to analyse how the energy consumption impacts their ML-
based cybersecurity solutions, and they did not attempt to take any steps towards making
their ML models more energy efficient by applying optimization strategies. This is a critical
point, especially considering the scale of real-world telecommunication applications. On the
other hand, previous solutions that have applied ML towards the creation of NIDS in SDN
solutions failed to test the resilience of their models against novel adversarial attacks, which
could leave their systems vulnerable to false negatives by introducing small perturbations
in the input data.

Table 1 presents a summary of the primary findings and contributions of previous
studies in the research field that this article addresses. As demonstrated in the table, the
fortification of ML models against adversarial attacks has been largely overlooked in the
current literature. On the other hand, although there are some works that address the issue
of optimizing the energy efficiency of ML models in this context, these works are largely



speculative and lack experimental validation. Our proposal departs from related works
by addressing these two crucial issues by providing empirical evidence and experimental
validation of the proposed techniques.

The table also shows how, even though most of the proposed solutions base their
experiments on open-source SDN controllers, the availability of their code in most cases is
non-existent or limited to pseudo-code. This can hinder their applicability to other problems
and is a main distinguishing point in our proposal. In sharp contrast, the solution proposed
in this work is integrated in TeraFlowSDN (TFS) (an open-source controller with publicly
available code) and utilizes standardized interfaces to make it easily adaptable to other ML
problems in an SDN controller. The open nature and modularity of our approach are key
characteristics that distinguish it from previous proposals.

3 Cyberthreat Analysis and Protection Use Case

The scenario presented in this work introduces scalable and reliable security assessment
of the services established using the TeraFlowSDN controller. TeraFlowSDN is an innovative
open-source, cloud-native Software-Defined Networking (SDN) controller that integrates
with existing Network Function Virtualization (NFV) and Multi-Access Edge Computing
(MEC) frameworks and offers revolutionary capabilities for both service-level flow man-
agement and the integration and management of the underlying network infrastructure,
including transport network elements (optical and microwave links) and Internet Protocol
(IP) routers, while incorporating cybersecurity capabilities through ML and forensics for
multi-tenancy based on Distributed Ledgers.

3.1 Cyberthreat Analysis and Protection Scenario

The use case presented in this work demonstrates that novel approaches enabled by
Machine-Learning techniques allow TeraFlowSDN to cope with new cyber threats, such as
the detection of malicious encrypted traffic (e.g., cryptomining malware). Since the detection
and identification of malware network flows traversing the data plane cannot be performed
on a central ML-based component due to scalability issues and slow response times, this
work proposes the implementation of a distributed solution where ML components are
deployed on Point of Presence (PoP) nodes. To this end, a feature extractor is deployed at
the network edge to collect and summarize the packets. The flow statistics aggregated by
the feature extractor are sent to an ML classifier. Based on the real-time identification of
malicious flows, the ML model is able to report to the TeraFlowSDN controller at scale to
perform a security assessment.

The setup considered for this demonstration is illustrated in Figure 1. Assuming a
typical telecommunication MPLS-based network, a Level 3 Virtual Private Network (VPN)
service (L3VPN) is deployed using the TeraFlowSDN controller. The controller activates this
service using provisioned templates over the standardized Internet Engineering Task Force
(IETF) Network Configuration Protocol (NETCONF) South-Bound Interface against the
different Provider Edge (PE) routers from the ADVA manufacturer. In this demonstration, a
traffic generator, emulating a branch office, is connected to one PE to replay a mix of normal
traffic with cryptomining malware activity. The second PE, the central office, provides
internet access offered by the L3VPN service and leverage by the malware. This specific
malicious traffic is represented as a red dashed line in Figure 1.



Table 1: Comparative analysis of the contributions of the proposals related to our work.

Proposals Public
Code

SDN
Controller

Used
Dataset Attack

Types

NIDPS
Imple-
menta-

tion

Detection
Method

Mitigation
Strategy

Energy
Effi-

ciency
Opti-

mization

Fortifi-
cation

Against
Adver-
sarial

Attacks

Our work Yes TeraFlowSDN
(TFS)

Synthetic
Dataset

Cryptomining
Attacks Complete Deep Neural

Network

Drop
packets of
detected

attack
connections

Yes Yes

Xing et al.
[5] No SDNIPS

controller
Synthetic
Dataset ICMP Complete Snort

Network
Reconfigu-

ration
No No

Chung et
al. [6]

No
(Pseudo-

code
available)

non-specified
controller

Synthetic
Dataset DDoS Complete Snort Countermeasure

pool No No

Alzahrani
et al. [8] No POX SDN

controller
NSL-
KDD

DDoS,
PROBE,

R2L, and
U2R

Only
detection

Decision Tree,
Random

Forest, and
XGBoost

No No No

Radoglou-
Grammatikis
et al. [10]

No
(Pseudo-

code
available)

Ryu
controller

Custom
IEC 60

870-5-104
dataset

IEC 60
870-5-104
cyberat-

tacks

Complete CART
classifier

Security
strategies
including

asset
isolation

No No

Zhou et al.
[11]

No
(Pseudo-

code
available)

N/A UNSW-
SOSR2019

Hierarchical
Adversar-
ial Attack

NA N/A NA No No

Aiken et
al. [12] Yes Faucet SDN

controller
CICIDS
dataset

Adversarial
Attacks NA N/A NA No No

Perera et
al. [21] No RYU

Controller

P
Network

Traffic
Flows

(Kaggle)

NA None

K-Means,
SVM,

Decision Trees,
and Random

Forest

NA Limited No

Prabhavat
et al. [22]

No
(Pseudo-

code
available)

RYU
Controller

Synthetic
Dataset NA None

LSTM and
Gated

Recurrent
Units

NA Limited No

Braga et
al. [26] No NOX

Controller
Synthetic
Dataset DDoS Only

detection

Self-
organizing

Maps
No No No

Lin et al.
[27] No

SDN-enabled
hardware

switches and
ONOS SDN
Controller

Synthetic
Dataset

IoT cyber
attacks

Only miti-
gation N/A

Honeypot
traffic

rerouting
No No

Kamel et
al. [28] No No imple-

mentation

DDOS-
attack
SDN

dataset

DDoS Only
detection Decision Trees No No No

Makuvaza
et al. [29]

No
(Pseudo-

code
available)

No imple-
mentation

CICIDS
2017 DDoS Only

detection
Deep Neural

Network No No No

Alzahrani
et al. [30] No RYU

Controller
Synthetic
Dataset

Fin flood,
UDP flood,

ICMP
flood, OS

probe scan,
port probe
scan, TCP

bandwidth
flood, TCP-

synflood

Only
detection

KNN,
AdaBoost,

Decision Trees,
Random

Forest, Naïve
Bayes,

Multilayer
Perceptron,
SVM, and
XGBoost

No No No



Figure 1: Global overview of the cyber threat analysis and protection process [31].

As part of the VPN provisioning process, a request for mirroring only the traffic in the
logical interfaces that conform to the L3VPN is also included to copy the traffic towards a
logical component co-located to the ADVA (grey dash-dot-dot line in Figure 1). This dis-
tributed component (detailed in Section 4.2.1 as the Distributed Attack Detector) will extract
and calculate statistical features from network flows to be delivered to the TeraFlowSDN
controller for further processing.

The Cybersecurity TeraFlow NetApp component identifies the attack as a cryptomining
activity and proposes a mitigation solution to the TeraFlow Core components, which triggers
the mitigation. This mitigation is instantiated (the green dash-dot line in Figure 1) as a new
customized Access Control List (ACL) rule in the ADVA router with specific parameters (the
protocol identifier (Transmission Control Protocol), destination IP address and destination
port). Figure 1 shows an additional branch office to represent multisite L3VPN functionality
where the same rule can be enforced in additional PE routers, thus, providing protection to
all offices of the L3VPN client.

3.2 Cryptomining Attack Detection

One of the most prevalent contemporary networking threats is the misuse of computing
resources for cryptomining attacks. As described in [7], cryptomining entails the validation
of transactions on a decentralized cryptocurrency blockchain. A cryptomining attack
involves the creation of a botnet, which consists of compromised devices that act as miners
to validate transactions and earn digital currency rewards, such as Ethereum (ETH) and
Monero (XMR), for the attacker.

The attacker may exploit devices already infected with malware or infect new devices
to enlist their resources to create the botnet for cryptomining. The attacker may use
various methods, such as spreading malicious links on social networks, phishing attacks,
and disseminating malicious applications, to infect devices.

Additionally, the attacker must choose the cryptocurrency to mine and the cryptomining
pool to join to validate transactions. A mining pool is a service that enables miners to pool
their resources to validate transaction blocks and receive rewards. After obtaining all the
necessary components, the attacker can establish the botnet to mine cryptocurrencies for
their gain.

According to [32], the network is the most effective place to detect cryptomining traf-
fic promptly and accurately. However, detecting such activity on the network can be
challenging due to encryption methods that protect the payload and obscure its contents.
For instance, attackers can leverage the Secure Sockets Layer/Transport Layer Security
(SSL/TLS) encryption protocol to conceal the cryptomining protocol within the encrypted



communication’s payload. This renders traditional techniques, such as Deep Packet In-
spection (DPI) or Cryptomining Pool Domain Name Identification (in the case of using
Server Name Indication (SNI) or web proxies) ineffective in detecting cryptomining activ-
ity in current networks. Consequently, more advanced techniques are required to equip
cybersecurity professionals to deal with these real-world situations.

To address these challenges, ML techniques can be employed to train models that
accurately identify the presence of cryptomining traffic in real-time, even when encrypted,
by leveraging network and transport-level data-flow characteristics [32]. Accordingly, in this
study, an ML model was trained using a substantial set of network features derived from
network flow statistics to detect cryptomining activity for both encrypted and unencrypted
links with a high degree of accuracy. This ML model forms part of the Cybersecurity
TeraFlowSDN NetApp, which enables the detection of cryptomining traffic in the network’s
data plane in real-time, thereby facilitating appropriate remediation measures to safeguard
the network.

4 Integration of an ML-Based Cybersecurity Detector and Mitigator in the
TeraflowSDN Controller

In this section, first, we provide a brief overview of the TeraFlowSDN architecture. Then,
we discuss the integration of the ML-based cybersecurity detector and mitigator in the
TeraFlowSDN architecture. Finally, we present the workflows of the proposed integrated
system for detecting and mitigating cyber-attacks in TeraFlowSDN networks.

4.1 TeraFlowSDN Architecture

TeraFlowSDN is an open-source, cloud-native reference implementation for Software-
Defined Networking (SDN) controllers that has been endorsed and sponsored by the
European Telecommunications Standards Institute (ETSI) to support high-capacity IP and
optical networks and to provide a toolbox for experimentation with innovative network
technologies and use cases beyond 5G. ETSI is a pre-eminent non-profit organization that
specializes in the development and publication of global standards for Information and
Communication Technologies (ICT).

TeraFlowSDN is a collaborative effort of the Open Source Group TeraFlowSDN (OSG
TFS), a dedicated working group within ETSI focused on the development of TeraFlowSDN
to provide a comprehensive set of tools and platforms for the rapid prototyping and experi-
mentation of novel network technologies and use cases. OSG TFS builds upon the results
of the EU-funded TeraFlow 5G PPP research project and has developed a microservices
architecture that is designed to facilitate network transformation. The software platform
provides support for features, such as flow aggregation, management, network equipment
integration, AI/ML-based security and forensic evidence for multi-tenancy. The software
will also be a valuable tool for research projects and ETSI groups working on network trans-
formation.

The software platform will be instrumental in addressing the challenges of autonomous
networks and cybersecurity, which are prevalent in the telecommunications industry. Addi-
tionally, the software will be beneficial to several ETSI industry specification groups that are
focused on network transformation and will facilitate the integration of existing Network
Functions Virtualization (NFV) and Multi-Access Edge Computing (MEC) frameworks.
Furthermore, the software is designed to interoperate with the ETSI Open Source MANO
(OSM) platform.

TeraFlowSDN also strives to gain support and foster collaboration with existing and
future research projects in the 5G PPP and the Smart Grid and Services Joint Undertaking



(SNS JU) domains. The TeraFlowSDN source code is publicly accessible in the reposi-
tory (https://labs.etsi.org/rep/tfs/controller, accessed on 5 April 2023) under the
Apache 2.0 license, making it accessible and available to a wide range of stakeholders in the
ICT industry.

The TeraFlowSDN controller architecture consists of stateless microservices interacting
with each other to fulfil network management tasks in addition to a few stateful microser-
vices responsible for keeping the state of the network. TeraFlowSDN relies on Kubernetes
to handle the containers supporting the microservices. Kubernetes is a state-of-the-art
container orchestrator that provides a broad set of management capabilities and can operate
geographically distributed infrastructures.

Figure 2 shows the proposed microservice-based architecture. Following the design
principles from cloud-native applications, each component is implemented as a microservice
that is able to export a set of Remote Procedure Call (RPC) services to other components.
Each microservice can be instantiated once or with multiple replicas, which allows the
application of load-balancing techniques. By adopting stateless microservices, requests can
be handled by any replica of the microservice.

Figure 2: TeraFlowSDN architecture [33].

Load balancing works by establishing an endpoint that will receive all the requests for
a service. The endpoint acts as a load balancer by delegating each request to one of the
replicas of the service. The load balancer is also responsible for keeping track of the replicas,
i.e., tracking the addition and deletion of replicas and updating its internal list of replicas.
Depending on the RPC implementation adopted, the built-in Kubernetes load balancer
may be used, or an external one may be adopted. Each replica is composed of a pod, i.e., a
collection of containers that are managed by Kubernetes as a single entity.

The Context component stores the network configuration (e.g., the topologies, devices,
links and services) and its status as managed by the TeraFlowSDN components in a No-SQL
database to optimize concurrent access. Internally, it implements a database API enabling
switching between different backends. The TeraFlowSDN controller uses its North-Bound
Interface (NBI) component (previously known as Compute) to receive Layer 2 Virtual

https://labs.etsi.org/rep/tfs/controller


Private Network (L2VPN) requests and convert them to necessary connectivity services or
Transport Network Slices via the Slice and Service components.

The Service component is responsible for selecting, configuring and deploying the
requested connectivity service through the South-Bound Interface (SBI). To this end, the SBI
component interacts with the network equipment through pluggable drivers. In addition,
a Driver Application Programming Interface (API) has been defined to facilitate the addition
of new network protocols and data models to the SBI component. The Automation com-
ponent implements several Event Condition Action (ECA) loops to define the automation
procedures in the network.

Monitoring manages the different metrics configured for the network equipment and ser-
vices, stores monitoring data related to selected Key Performance Indicators (KPI) and pro-
vides the means for other components to access the collected data. Internally, the Monitoring
component relies on a database to store the monitoring data as a time series, exploiting its
powerful querying and aggregation mechanisms for retrieving the collected data.

The North-Bound Interface (NBI) component serves as the interface for internal gRPC
(gRPC Remote Procedure Call) and protocol buffers towards external Representational State
Transfer (REST)-like requests. It provides a Representational State Transfer API (REST-API)
that is based on NBI external systems, such as Network Function Virtualization (NFV)
and Multi-Access Edge Computing (MEC) frameworks. Another component included is
a Web-Based User Interface (WebUI) that uses the gRPC-based interfaces made available
by the TeraFlowSDN components to inspect the network state and to issue operational
requests to the TeraFlowSDN components.

TeraFlowSDN provides extended and validated support for OpenConfig-based routers
and interaction with optical SDN controllers through the Open Networking Foundation
(ONF) Transport API (TAPI). Moreover, TeraFlowSDN release 2 includes complete inte-
gration for microwave network elements (through the Internet Engineering Task Force
(IETF) network topology YANG model) and Point-to-Multipoint integration of XR optical
transceivers and P4 routers. New features for P4 routers include loading a P4 pipeline
on a given P4 switch, obtaining runtime information (i.e., flow tables) from the P4 switch
and pushing runtime entries into the P4 switch pipeline, thus, allowing total usage of the
P4 switches.

Cybersecurity components are integrated in the architecture for attack detection (either
distributed or centralized) and mitigation in order to protect the network from known
and unknown cyberthreats at the IP and optical levels. The integration of the IP layer
cybersecurity components is described in detail in the next section.

4.2 Integration of the Cybersecurity Components in the TeraFlowSDN architecture

The TeraFlowSDN controller utilizes a robust cybersecurity framework to protect the
network from potential cyberthreats that could compromise the integrity or performance of
the network. The Cybersecurity NetApp, consisting of three main modules, is focused on
detecting and mitigating network attacks to ensure seamless and secure functioning.

This section delves into the details of the different components that compose the cy-
bersecurity framework and how they cooperate to provide a continuous assessment of the
security status of IP services on the network. The Cybersecurity NetApp focuses on the
capture, identification and mitigation of network threats, implementing a protection layer
that is crucial for the correct functionality that SDN controllers need to provide.

The Cybersecurity NetApp includes two core centralized components, the Centralized
Attack Detector and the Attack Mitigator, along with a distributed component, the Dis-
tributed Attack Detector, to be placed at a remote site (e.g., a Point of Presence (PoP) node).
The distributed attack detection and mitigation workflow provides TeraFlowSDN with



a continuous assessment of the security status of IP services. Figure 3 depicts the three
cybersecurity and other core components that live in the TeraFlowSDN controller and
how they are connected together to implement the end-to-end cyber threat analysis and
mitigation process in the network.

Figure 3: Cybersecurity component architecture.

4.2.1 Distributed Attack Detector

The Distributed Attack Detector (DAD) component monitors the network data plane
for the presence of malicious network flows by receiving IP traffic from co-located packet
processors. The DAD is deployed at the edge of the network (e.g., at the central office
or edge data centre) to improve the scalability and response time in the attack-detection
process and enable the real-time detection of malicious traffic. For this purpose, a packet
processor is used to generate statistical summaries of the network flows by aggregating
packets into flow-level statistics, where each flow is an aggregate of packets belonging to
the same packet flow (same source IP address, source port, destination IP address and
destination port).

This approach of sending summary statistical characteristics of monitored traffic to the
CAD also favours scalability, as it eliminates the need to send full traffic information to the
centralized controller. Monitoring traffic at the IP layer is expected to use a considerable
amount of bandwidth between the packet processors and the DAD, but avoiding the
transmission of huge amounts of telemetry to the TeraFlowSDN controller is a major
improvement in terms of preserving the network bandwidth to the controller and, therefore,
improving the scalability. In addition, processing traffic at the edge of the network allows
for reduced delays in the attack-detection process.

Unlike the other components, the DAD does not expose a gRPC server but rather runs a
script to obtain and process network traffic. In the current deployment, the packet processor



is emulated by re-injecting network packets previously stored in a PCAP file using tcpreply,
which is a standard tool available on Linux systems. The injected packets are processed with
the Tstat [34] tool to generate statistical summaries of the network flows by aggregating all
new packets arriving within a specific time window that can be configured.

In addition, Tstat obtains additional information about the status of the connection
and stores this information in the log file. The DAD continuously reads the information
generated from this log file, processes it to extract the information in a structured way and
adjusts it to apply the gRPC message format expected by the CAD. Once this is completed,
the DAD communicates with the CAD to send this information.

In the current implementation, it uses unary gRPC messages to report the traffic monitor-
ing summary information collected by Tstat to the Centralized Attack Detector component,
which makes inferences with the ML model to detect IP-level attacks. In later versions, flow
messages will be implemented to avoid the delay limitations that can occur with current
unary messages.

4.2.2 Centralized Attack Detector

The Centralized Attack Detector (CAD) component provides IP-layer attack-detection ca-
pabilities and a consolidated attack-detection mechanism based on DAD reports. The CAD
consolidates information collected from multiple instances of the DAD. This allows for the
monitoring of malicious network traffic while forming a view of the security status of IP
traffic. The CAD stores the information it receives from multiple instances of the DAD
within a certain time interval, and this can be parameterized in a buffer. From the sum-
marized traffic statistics received from the different instances of the DAD, this component
performs attack detection using an embedded ML model.

After the configured time interval elapses, the ML model classifies each connection
in the buffer as normal traffic or as part of an attack, and a confidence level decision is
derived. From this inference, the CAD produces a description of the connection, including
a confidence value indicating the probability that the connection is an attack or normal
traffic. If a connection is detected to be part of an attack with a confidence level at or above
a configurable threshold, the CAD notifies the Attack Mitigator component with the attack
description, providing a full characterization of the attack properties and other relevant
information to perform an attack-mitigation strategy.

In the current implementation, the ML model used is the Random Forest model that was
previously converted and stored in the ONNX (Open Neural Network Exchange) format.
This format allows the embedding of a compiled model with an optimized graph that can
reduce the overall size of a model, speed up the prediction inference time and reduce the
use of computing resources.

In addition, security monitoring cycles are run periodically with a configurable time
interval to collect Key Performance Indicators (KPIs) that provide an overview of the
security status of the network. This information is stored in a database for further anal-
ysis and security audits. In addition, these KPIs are displayed on a Grafana dashboard
to provide the network administrators with a real-time view of the current state of the
network cybersecurity.

4.2.3 Attack Mitigator

The Attack Mitigator (AM) component is responsible for computing viable attack-
remediation solutions to prevent the execution of attacks identified by the CAD component.
Upon receiving an attack notification, the role of the AM component is to instruct certain



core components of TeraFlowSDN to enforce appropriate actions that can mitigate the
attacks detected on the network.

For example, in the case of detecting a cryptomining attack, the AM component commu-
nicates with the Service component, which is responsible for managing the services that are
running on the TeraFlowSDN controller, to update the configuration of the service on which
the attack has been detected in order to implement a new ACL rule to block the malign
connection. This ACL rule is then configured by the Device component in the network
devices through the standardized OpenConfig protocol over the South-Bound Interface.
In particular, the ACL rule is configured in the ingress interface of the device located at the
edge of the network (see Figure 1).

In its current state, the AM component possesses only one mitigation strategy, which
consists of adding an ACL rule to the corresponding router that blocks traffic from a specific
source that has been classified as an attack. The plan is to evolve this component in the future
to add more complex functionalities and different network-aware mitigation strategies.
For example, before deciding to permanently block a source, a module could be added to
assess the severity of the threat or the confidence that the traffic is an attack. If the potential
attack is classified as having low confidence or a small impact, the AM component could
wait to receive more alerts corresponding to that source to activate any countermeasures
or could activate less severe strategies. The AM could, for instance, consider the risk level
to add a timer to the instruction to block traffic and allow it to expire in a certain amount
of time.

In addition to this, several interesting mitigation strategies that could be integrated into
the AM have been studied in previous works [35]. One of the strategies is threat-based
routing in which traffic that is classified as an attack can be redirected through the path with
the least-utilized links in terms of bandwidth consumption. This would allow traffic to still
reach its destination through a longer route but would minimize the impact on standard
traffic.

This solution is very forgiving of false positives and could be a good alternative for
attacks classified as low impact or with low confidence in classification. Other solutions
proposed by the study are to assign long timeouts to the flows detected as malicious and
to aggregate them to occupy the least amount of space in the TCAM (Ternary Content
Addressable Memory) tables, thus, reducing the communication from component to com-
ponent. Another possible mitigation would be to redirect potentially harmful traffic to a
separate component that monitors the traffic more closely to ensure that it is not harmful.

The isolation of traffic from the central system was also proposed as an effective mitiga-
tion strategy in another study [27], where an in-system SDN controller acted as a honeypot
to isolate the attacker’s traffic. That study used a separate controller to protect the system
while maintaining the connection with the attacker and to mislead them through network
spoofing to gather more data about their intentions. Obtaining more information about
possible attacks could help develop better security measures in the future.

In summary, although the current implementation of the AM would protect the system
against detected attacks by blocking the traffic from the source on the router, the com-
ponent is still a work in progress, and it is expected to evolve with new functionalities
that help it adapt to the context and information of the attack with an array of complex
mitigation strategies.

4.3 Attack Detection and Mitigation Workflows

This section presents the main workflows that illustrate how the Cybersecurity Ne-
tApp interacts with other TeraFlowSDN core components to implement the detection and
mitigation of network attacks at the IP layer.



When a new service is created on TeraFlowSDN, the Cybersecurity NetApp communi-
cates with the core components during the different stages of the process. The Cybersecurity
NetApp starts by subscribing to service events from the Context component during start-up.
When a service request is received, the service setup stage is triggered, which involves
changes to several components of TeraFlowSDN. The service identifier is then returned to
the customer who requested the service. The KPI setup stage then starts with the Context
component notifying the Cybersecurity NetApp about the new service.

The Cybersecurity NetApp will then begin performing the attack detection and mitiga-
tion process on the service and tracking relevant KPIs through the Monitoring component.
To implement the detection and mitigation of network IP-level attacks, four workflows
were created with each workflow focusing on a specific part of the system.

The first workflow focuses on the DAD component and covers the process of collecting
traffic statistics from IP-level traffic and reporting to the CAD component. The second
workflow focuses on the CAD component and covers the process of processing the traffic
statistics reported by the DAD component and making inferences with the ML model to
detect IP-level attacks. The third workflow focuses on the AM component and covers
the process of computing attack-remediation solutions in response to attack notifications
from the CAD component. Finally, the fourth workflow focuses on the monitoring of
cybersecurity KPIs and covers the process of collecting and storing KPIs related to the
security status in the network.

4.3.1 Workflow 1—Capture and Label Traffic at the Edge of the Network

The DAD component workflow is specified in Figure 4. First, the DAD component
requests the features that serve as input to the ML model in the CAD component via an
RCP method to this same component. The DAD stores the list of these features in a local
variable. The DAD then communicates via RCP methods with the Context component in
order to obtain the service_id and endpoint_id attributes so that the connection is traceable in
the TeraFlowSDN System and the mitigation strategies can later be implemented on the
correct devices.

Figure 4: Distributed Attack Detector component workflow.



After the traffic is received in the machine where a DAD instance is deployed, it is
grouped into flow-level statistics using the Tstat tool. The DAD component selects the
appropriate features that will later serve as input for the ML model using the local list of
these features as a guide. Once all of these features and the connection data are grouped into
a L3CentralizedattackdetectorMetrics object, this object is sent via the RCP method SendInput
to the CAD.

4.3.2 Workflow 2—Detect Cryptomining Malware Connections using Super-
vised ML

As described in Figure 5, the CAD component receives and stores flow statistics in the
form of L3CentralizedattackdetectorMetrics objects. It then calls a function with these objects
as the parameters to perform inference with the ML model using these objects as input
features. As a result, the ML model classifies the statistics contained in each of these objects
as either belonging or not belonging to a crypto-mining attack. If the statistics belonging
to a particular flow are classified as a cryptomining attack, the SendOutput RCP method is
called and sends the confidence score and the result of the attack classification to the AM,
together with the corresponding flow information (source and destination IP address and
port, protocol, service_id, etc.) in an L3AttackmitigatorOutput object.

Figure 5: Centralized Attack Detector component workflow.

4.3.3 Workflow 3—Mitigate Detected Cryptomining Attacks

The workflow of the AM component is given in Figure 6. In this diagram, it can be seen
that, after the component receives the connection data belonging to a cryptomining attack,
it creates a mitigation strategy. At the moment, this strategy consists of creating an ACL
rule to drop the traffic belonging to that particular connection. AM then communicates with
the Context component to receive the instance representing the service where the attack
was detected (i.e., the service specified by the service_id contained in the flow information).
After receiving the service object, the ComposeMitigation method is responsible for adding
the new ACL rule to drop the traffic belonging to the flagged connection.

After calling the RCP method UpdateService with the modified service instance, the Ser-
vice component propagates the newly created configuration rule to the Device component,
which is responsible for incorporating the ACL rule in the corresponding router using the
OpenConfig protocol to drop the malign connection, thus, completing the implementation
of the current mitigation strategy.



Figure 6: Attack Mitigator component workflow.

4.3.4 Workflow 4—Monitor Relevant Cybersecurity-Related Key Performance In-
dicators

CAD monitors five relevant KPIs for each active service. Below, the cybersecurity KPIs
that are observed and recorded and their associated KPI sample type are listed:

• Cryptomining detector confidence in security status over the last time interval (KPI
ML CONF).

• Security status against cryptomining attacks of the service in a time interval (KPI L3
CRYPTO SECURITY STATUS).

• Number of attack connections detected in a time interval (KPI UNIQUE ATTACK
CONNS).

• Number of unique compromised clients of the service in a time interval (KPI UNIQUE
COMPROMISED CLIENTS).

• Number of unique attackers of the service in a time interval (KPI UNIQUE ATTACK-
ERS).

The values of KPI L3 ML CONFIDENCE are collected for predictions that take place
during a specific time interval (e.g., 5 s). This is performed separately for predictions that
correspond to an attack and predictions that correspond to normal traffic. At the end of
each time interval, the values of both lists are aggregated independently to calculate the
average. If an attack connection occurred during that time interval, the average confidence



of the predictions corresponding to an attack is sent to the Monitoring component as KPI L3
ML CONFIDENCE with “1” as the KPI L3 SECURITY STATUS SERVICE.

Otherwise, the average confidence of the predictions corresponding to normal traffic
is sent to the Monitoring component as KPI L3 ML CONFIDENCE with “0” as the KPI L3
SECURITY STATUS SERVICE. The KPI L3 UNIQUE ATTACK CONNS counts the number of
unique attack connections that were detected in each time interval. As with the previous
KPIs, these values are collected during each time interval. Once the interval is over, these
values are aggregated and sent to the monitoring component. Note that the packet aggrega-
tor running in the DAD component aggregates the new packets from the same connections
as soon as they are received, and the characteristics are sent to the ML model.

For this reason, if subsequent packets are received from the same connections, the DAD
will produce new statistics that the ML model will also ingest. For this reason, connections
may be detected as an attack more than once. However, in KPI L3 UNIQUE ATTACK
CONNS, these repeated connections will only be counted as one. Similar to KPI L3 UNIQUE
ATTACK CONNS, KPI UNIQUE COMPROMISED CLIENTS measures the number of com-
promised cryptocurrency clients in each time interval by counting the number of flows that
correspond to the same source IP.

On the other hand, KPI UNIQUE ATTACKERS measures the number of unique attackers
in each time interval by counting the number of flows that correspond to the same destina-
tion IP. KPI L3 UNIQUE ATTACK CONNS provides a measure of the intensity with which
compromised clients attack the network. KPI UNIQUE COMPROMISED CLIENTS and KPI
UNIQUE ATTACKERS extend this information by revealing the scale of the compromised
network and quantifying how many attackers are involved in attacking the network.

CAD creates these KPIs at launch time by registering KpiRequest for each KPI through the
Monitoring client and thereby requesting the Monitoring service process to create and add
them to the Management DB as depicted in Figure 7. For each KpiRequest, a KpiDescriptor is
provided that includes the service information, device and endpoint identifiers as well as
the description and KPI sample type of each KPI. Once successfully created, the KPIs can
be effectively monitored by sending samples to the Monitoring service via the RPC method
IncludeKpi. As each sample is received by the Monitoring service, they are inserted into the
QuestDB database, which collects the TeraFlowSDN metrics to be accessible through the
Grafana dashboard, where they are displayed in a linear time-series representation.

Figure 7: Monitoring component workflow.

5 Analysis of the Attack Detector

In this section, we describe, in detail, the ML model that we trained for the task of
detecting cryptomining attacks in the CAD component. First, we describe the setup that



we used to collect the data used to train the model. Next, we present the structure of the
model and the procedure that was followed to train it. Finally, we evaluate the model using
several standard performance metrics.

5.1 Cryptomining Dataset Creation and Traffic Labelling

It is common for other works to make use of the NSL-KDD dataset, which is a data-
mining dataset containing different traffic features with their corresponding tag that de-
termines whether the traffic is normal or part of an attack. The dataset contains a variety
of attacks, containing Denial-of-Service, User-to-Root, Remote-to-Local and Probe attacks.
Even though the NSL-KDD dataset is one of the most popular and complete IDS datasets, it
still suffers from some problems [9] and is, therefore, not a perfect representative of existing
real networks.

In contrast to these excerpts from the KDD Cup 1999 dataset that do not represent
realistic traffic, all of our experiments and the training of our models were performed
using 5G network traffic generated in a real environment based on a fully virtualized 5G
network [7]. This environment allowed us to emulate real 5G traffic in a controlled way that
was on demand and to take into account this new standard that had not been considered in
most of the solutions proposed in the past.

The dataset that was used to train the model that will serve as a target in the demon-
stration of the proposed methodology was developed for the precise task of detecting
cryptomining attacks [32]. This dataset was generated in the Mouseworld lab [36], an open
lab for 5G experimentation that provides Network Digital Twin emulation capabilities [37]
and is located at the Telefonica I+D premises.

This emulation environment allowed us to configure and execute specific attacks mixed
with normal traffic (e.g., web, file hosting and streaming) by instantiating virtual machines
that deployed normal traffic and specific attack clients connected to real servers located at
different points on the internet. In this way, the Mouseworld lab can be used to set up and
emulate attack scenarios in a controlled way and to generate and collect, in a PCAP file, all
packets of the attack and normal traffic to be used later for the training and testing of ML
algorithms. One key feature of the Mouseworld Lab is the repeatability capacity, which
allows us to evaluate different mitigation tools or versions under the same conditions and
using similar statistical patterns.

The data that were collected for our study in the Mouseworld lab contain traffic samples
represented by a set of flow (TCP connection) statistics derived from network packets
using the Tstat tool. The statistics of a TCP connection were calculated periodically (at
fixed intervals or when a new burst of packets was received), resulting in many different
examples in the dataset for the same flow representing the state of the connection over its
lifetime. This traffic data was labelled to create the dataset that was used to train and test
the cryptomining detector.

In particular, two types of traffic can be found in the dataset, samples corresponding to
normal traffic and samples corresponding to cryptomining attacks. In this case, each sample
of the dataset was tagged as either 0 (normal traffic) or 1 (cryptomining attack traffic) using
the IPs and ports of the known attack connections.

5.2 Training of the Machine-Learning Model for Cryptomining Detection

The architecture employed to implement the model for the task of cryptomining de-
tection utilized a Fully Connected Neural Network (FCNN) architecture. This approach
accurately predicts the labels of the dataset with a high degree of accuracy. This architecture
was chosen based on its superior performance in the context of the cryptomining attack



Table 2: Selected features of the Crypto dataset to train the baseline model.

CS ID SC ID Name Type Description

13 27 SYN count Numeric Number of SYN segments observed (including rtx).

- 90 window scale - Scaling values negotiated [scale factor]

70 - MSS Bytes MSS declared

71 94 max seg size Bytes Maximum segment size observed

72 95 min seg size Bytes Minimum segment size observed

73 96 win max Bytes Maximum receiver window announced (already scaled by the window scale factor)

74 97 win min Bytes Minimum receiver window announced (already scaled by the window scale factor)

76 99 cwin max Bytes

Maximum in-flight-size computed as the difference between the largest sequence number so far,

and the corresponding last ACK message on the reverse path. It is an estimate of the congestion

window

77 100 cwin min Bytes Minimum in-flight-size

78 - initial cwin Bytes First in-flight size, or total number of unack-ed bytes sent before receiving the first ACK segment

CS: Client to server traffic.
SC: Server to client traffic.

as demonstrated in a previous study that performed an exhaustive comparison with other
similar techniques [32].

The TensorFlow library was used to train a FCNN-based classifier to predict whether a
connection corresponded to cryptomining activity or not according to all features derived
from Tstat statistics except for the IPs and ports, which were used only to label the dataset
(class labels). Note that source and destination IPs and ports can be easily changed by the
attacker; therefore, they do not provide significant information to the ML-based detector.

The structure of the FCNN model is specified below. In particular, the model consists
of a stack of three fully connected layers with 20, 30 and 10 neurons with ReLU activation
followed by a fully connected layer with two neurons and SoftMax activation as output
layer. The training hyperparameters are as follows: a batch size of 4096 and the Adam
optimizer with a learning rate of 0.001. Furthermore, the early stopping technique is used
to automatically terminate the training process if the validation loss does not improve for
20 epochs, restoring the model weights to those obtained in the epoch with the lowest
validation loss after training is complete. For the validation procedure, 20% of the training
data are reserved for the validation split. Finally, as a loss function, the categorical cross-
entropy function is used.

During the experimentation, it was observed that, although the model’s accuracy
using all available features was high, a considerable number of these features did not
significantly contribute to the predictive performance. Therefore, in order to enhance the
training efficiency and model inference, a random selection of the most commonly utilized
features was made. This resulted in a reduction of the required input to ten features while
maintaining a high F1 Score (>95%). The selected features are enumerated in Table 2, where
it is worth noting that, if a feature has a CS (Client–Server) and SC (Server–Client) identifier,
it is because it has been measured in both directions. On the other hand, if a feature has only
one identifier, it is because it has been measured in the direction indicated by the identifier
type (CS or SC).

Additionally, to ensure that one variable did not dominate the results due to its scale,
all data underwent standardization to achieve a mean of 0 and a standard deviation of 1.
This standardization greatly improved the results obtained from the FCNN model.



5.3 Performance Evaluation of the Machine-Learning Model for Cryptomining Detection

Once trained, the model was evaluated in an offline fashion. For this purpose, a test
dataset representing 20% of a reserved portion of the total dataset that was never used for
model training was first selected, and then inference was run on it. The performance of the
model was then evaluated by comparing the predicted results with the actual labels in the
data. The metrics used to measure the model performance include the well-known metrics
of the Precision, Balanced Accuracy, F1 Score and Confusion Matrix. Balanced Precision
was incorporated among the evaluation metrics to account for the imbalances that exist
in the dataset. A brief explanation of the metrics used and other relevant definitions is
provided in the following.

• True Negative (TN): number of cases in which the model correctly predicted a
negative outcome. The True Negative Rate (TNR) measures the rate of negative
outcomes that were correctly predicted as negative.

• False Positive (FP): the number of cases in which the model incorrectly predicted
a positive outcome. The False Positive Rate (FPR) measures the rate of negative
samples that were mislabelled as positives.

• False Negative (FN): the number of cases in which the model incorrectly predicted
a negative outcome. The False Negative Rate (FNR) measures the rate of positive
samples that were mislabelled as negative.

• True Positive (TP): the number of cases in which the model correctly predicted a
positive outcome. The True Positive Rate (TPR) measures the rate of positive samples
that were correctly labelled as positive.

• Accuracy: the rate of correct predictions made by the model. It is calculated by taking
the ratio of True Positives and True Negatives to the total number of predictions.
The formula is given by: Accuracy = (TP + TN)/(TP + TN + FP + FN).

• Balanced Accuracy: the Accuracy of the model in predicting both positive and
negative classes. The formula is given by: Balanced Accuracy = (TP/P + TN/N)/2,
where P is the total number of positive examples and N is the total number of negative
examples.

• Precision: the True Positive Rate of all positive predictions made by the model.
The formula is as follows: Precision = (TP)/(TP + FP).

• Recall: the true positive rate of all True Positive examples in the dataset. The formula
is as follows: Recall = (TP) / (TP + FN).

• F1 Score: it is calculated by taking the harmonic mean of the Precision and Recall.
The formula is given by: F1 Score = 2 × (Precision × Recall)/(Precision + Recall).

• Confusion Matrix: The Confusion Matrix (Figure 8) is a visual representation of the
model’s performance and is used to analyse the model’s ability to correctly classify
the data into different classes.

The results of the evaluation are shown below.

• Accuracy: 0.99996.

• Balanced Accuracy: 0.99543.



Figure 8: Confusion matrix showing the results of a classification model and comparing the
actual values to the predicted outcomes. The table displays the number of True Positives,
True Negatives, False Positives and False Negatives.

• Precision: 0.99998.

• Recall: 0.99543.

• F1 Score: 0.99541.

From the evaluation results, it can be seen that the FCNN model achieved excellent
performance with an Accuracy of 0.99996, a Balanced Accuracy of 0.99543, a Precision of
0.99998, a Recall of 0.99543 and an F1 Score of 0.99541. This shows that the model is capable
of accurately predicting the labels of the dataset with a high degree of accuracy.

6 Energy Efficiency

In this section, an evaluation of the energy efficiency optimization of the DNN model de-
ployed in the CAD component responsible for the cryptomining detection task is provided.
We present a comparison of the energy efficiency achieved with a set of 11 optimization
strategies that we designed combining different state-of-the-art techniques. Then, we dis-
cuss the energy efficiency trade-offs arising from the model optimization and identify the
best performing approaches for the task at hand according to a variety of criteria considering
different energy efficiency and accuracy requirements.

First, in Section 6.1 an analysis of the ways in which energy consumption is measured is
performed. After that, Section 6.2 presents all of the different state-of-the-art optimization
strategies that have been tested. Once the strategies have been specified, Section 6.3 provides
some final details and parameters that were taken into account for the experimental setup.
Finally, Section 6.4 offers a comprehensive analysis of the results and conclusions derived
from the conducted experiments.

6.1 Measuring Energy Consumption

After evaluating the different state-of-the-art optimization techniques that were avail-
able, optimization strategies that combine the different techniques to measure the energy
consumption of the cryptomining detector deployed in the CAD component were designed.
To measure the energy consumption of the DL-based cryptomining detector, this study
leveraged the Performance Monitoring Counters (PMCs) due to their precise and granular
measurements and their ability to measure energy consumption in real time and with low
overhead [38].



For each combination of techniques to be applied, the baseline model that was analysed
in Section 5.3 was trained, and then the optimization techniques were applied sequentially
according to the order specified in the optimization strategy defined by the particular
combination to be applied. In the inference stage, the prediction performance was evaluated
using a batch size of 256 samples, which was determined to be the optimal batch size for the
application in terms of latency and energy efficiency. In each inference test, we calculated the
Accuracy and F1 Score as well as the Balanced Accuracy to account for the class imbalance
that exists in our data. Once all the repetitions were performed, the metrics obtained at each
time step among all the repetitions were aggregated using the mean, standard deviation
and maximum value.

6.2 Selected Model-Optimization Strategies

Several different optimization strategies were selected to offer combinations of the most
promising state-of-the-art techniques [39, 40]. Table 3 displays the different sets of strategies
divided by post-processing quantization, training-aware model compression techniques
and a combination of both of them.

6.3 Experimental Setup

An experimental evaluation in which all combinations of optimization techniques
defined in Section 6.2 were applied to the cryptomining detector described in Section 5
was performed. In addition, the experiments were repeated five times with a 1 s time
interval for sample measurements to collect energy efficiency metrics. In the experiments,
a balanced profile was established, defining, as a performance threshold, a minimum
acceptable reduction in energy consumption concerning the non-optimized model of 25%
and a minimum Balanced Accuracy of 0.9. Furthermore, to apply the balanced profile,
the ratio of these two factors was set to 0.5 for both to obtain the optimization strategy that
leads to the most balanced results between the two objectives.

6.4 Analysis of the Results Obtained

Figure 9 shows the percentage of the total average CPU power consumption obtained
for each optimization strategy during the inference phase. The values represented were
obtained from the aggregation of measured values collected during the duration of model
inference at 1 s intervals and over five iterations for each optimization strategy using a
batch size of 256 (medium size) to perform the prediction.

In summary, it can be observed that almost all optimization strategies lead to a signifi-
cant reduction in energy consumption, exceeding, in most cases, the threshold of reduction
in energy consumption with respect to the non-optimized model that was set at the begin-
ning of the experimental evaluation. The knowledge distillation technique provided the
largest reduction in energy consumption in most cases studied, reducing the total average
energy consumption by up to 82.304% with a minimal performance degradation of only
0.08% in the Balanced Accuracy, 0.016% in the Accuracy and 0.11 in the F1 Score. Conversely,
the optimization strategy that achieved the worst results for the percentage of total average
CPU energy consumption reduction, was the full integer quantization.



Table 3: Energy efficiency optimization strategies.

Set Opt. Strategy Id. Opt. Strategy

N/A 0 No optimizations (baseline)

Post-Training
Optimization Techniques

1 Full 8-bit Integer (INT8) Weight Quantiza-
tion [41, 42, 43]

2 Half-Precision Floating-Point (FP16) Weight
Quantization [42, 44]

3 Full Integer Weight Quantization with 16-
bit Integer (INT16) Activations and 8-bit In-
teger (INT8) Weights [45]

Training-Aware
Optimization Techniques

4 Pruning-Aware Model Fine-Tuning [46]

5 Quantization-Aware Model Fine-Tuning
[42, 47]

6 (1) Neural Architecture Search [48]
(2) Knowledge Distillation [49]

Combined Optimization
Techniques

7 (1) Pruning-Aware Model Fine-Tuning [50]
(2) Quantization-Aware Model Fine-Tuning
[50]

8 (1) Neural Architecture Search
(2) Knowledge Distillation
(3) Pruning-Aware Model Fine-Tuning

9 (1) Neural Architecture Search
(2) Knowledge Distillation
(3) Quantization-Aware Model Fine-Tuning

10 (1) Neural Architecture Search
(2) Knowledge Distillation
(3) Pruning-Aware Model Fine-Tuning
(4) Quantization-Aware Model Fine-Tuning

11 (1) Pruning-Aware Model Fine-Tuning
(2) Optimal Post-Training Quantization

12 (1) Neural Architecture Search
(2) Knowledge Distillation
(3) Optimal Post-Training Quantization

13 (1) Neural Architecture Search
(2) Knowledge Distillation
(3) Pruning-Aware Model Fine-Tuning
(4) Optimal Post-Training Quantization



Figure 9: Energy consumption reduction obtained with each optimization strategy in the
inference phase with respect to the non-optimized model using a batch size of 256.

Although it did not have a significant negative impact on the Balanced Accuracy, it
caused a 97.14% increase in energy consumption, making it the only tested optimization
strategy that increased the baseline inefficiency.

Therefore, in our case, the use of the knowledge distillation technique to optimize
the DNN model implemented in the CAD component is the most recommended strat-
egy among the ones evaluated, as it provides the highest energy savings and minimal
performance degradation.

7 Resilient Cyberthreat Detector Against Adversarial Attacks

The technique of adversarial training was chosen to secure the Machine-Learning model
against the recently appeared adversarial attacks, which are inputs specifically designed
to deceive the Machine-Learning model and trigger incorrect predictions that benefit the
attacker. The adversarial training approach is a technique employed in the field of Machine-
Learning, which entails retraining a model with adversarial examples (AEs).

The goal of this technique is to enhance the model’s robustness and ability to defend
against potential attacks by exposing it to various adversarial scenarios. By undergoing this
process, the model can better adapt to the challenges presented by such attacks, thereby
increasing its overall efficacy in combating them. Specifically, this work proposes to retrain
the Machine-Learning model with high-quality adversarial examples to create a resilient
classifier that can defend itself against adversarial attacks.

Therefore, to strengthen the TeraFlowSDN ML-based attack detectors against adversarial
attacks, we designed a GAN-based solution to generate high-quality adversarial examples,
which are very similar to real attack data but are able to fool the ML-based attack detector by
misclassifying them. These high-quality AEs can be used later to retrain the TeraFlowSDN
ML models and fortify the attack detectors against this type of sophisticated attack.

Our solution is inspired by the standard GAN architecture proposed in [51], which
consists of two main components: the generator and the discriminator. In [15], it is shown
that this architecture can be used to generate synthetic network traffic data that can fully



replace real data in the training of ML models without significant performance loss. The
generative model developed in this work is an extension to the MalGAN architecture [16].
In this design, the discriminator is used to model a third component, the unknown black-
model target (e.g., the attacked TeraFlowSDN ML model). The discriminator in this specific
setting is referred to as a substitute model, as it will attempt to learn the black-box behaviour.

As a consequence, this configuration implies a higher complexity in the training process
compared with the standard GAN [52] as the behaviour of a given classifier that will act
as a black-box model during the training phase must also be tracked. Figure 10 shows an
overview of the MalGAN architecture, in which each box contains an ML model that is
producing predictions, and each circle contains input or output data.

These boxes are, from left to right: (i) the generator, which is the DNN to be trained for
AE generation; (ii) the black-box detector, which is the model that is the target of the attack;
and (iii) the substitute model, which will attempt to learn the behaviour of the target model
and will also serve as a trainer for the generator to learn how to produce effective AEs.
Benign data represent the normal traffic transmitted on the network and malign data model
the attack that will be manipulated to fool the ML (black-box) model into misclassifying it.

Unfortunately, experimental observations showed that, although the AEs generated by
MalGAN achieved a very good ratio of misclassification when input to the black-box model
(very close to a 100% evasion ratio), they were very different from real both malign and
benign examples, which can favour their detection by using simple statistical filters (e.g.,
based on the mean of the real benign and malign data distributions).

Figure 10: Overview of the enhanced GAN solution based on MalGAN.

As a novelty, our enhanced version of the MalGAN architecture uses a custom activation
function based on the Smirnov Transform (ST) [18] as the last layer of the generator to
help to generate AEs that mimic the statistical behaviour of real malign examples, thus,
transforming the generator output variables into variables that, from a statistical perspective,
are distributed exactly the same as the input variables. Our proposal is related to a key
problem with GANs: typically, without further tuning, the output distribution of each of
the random variables obtained in the generator output is approximately normal.

This is related to the mode-collapse problem, a well-reported behaviour of the GANs. To
address this problem, the job of the generator is facilitated by using, as an activation function
of each output variable, a customized function that is able to capture the statistical subtleties
of each variable of the malign data. Each customized function implements the inverse of
the Smirnov Transform of each malign data variable. This transformation converts random
vectors with normal marginal distributions (the output of a normal GAN) into random
vectors with approximately the marginal distribution of the malign data variable.

In addition, the ST activation function is fully deterministic and differentiable, which
allows it to be seamlessly integrated into the backpropagation step during the GAN training



processes. In [18], the experimental results demonstrated the significant improvement
provided by this custom activation function when applied in GAN architectures in terms of
the quality of the generated samples.

The GAN was trained with the same datasets used in Section 5.1 and previously de-
scribed in [32]. The generator and discriminator networks were defined as three-layer
FCNNs (Fully Connected Neural Networks) assuming a moderate complexity in the black-
box model. In the case that the black-box model is supposed to be more complex, more
layers and neurons can be added to the generator and discriminator. The details of the
training process and hyperparameters used are similar to those described in [18].

In Figure 11, the results obtained for the Vainilla MalGAN are compared to our proposal
(MalGAN equipped with ST activation functions). The top row shows the Vainilla MalGAN
distances (Figure 11a) and evasion ratios (Figure 11b) at each epoch, and the bottom row
plots the distances (Figure 11c) and evasion ratios (Figure 11d) for a MalGAN equipped
with ST activation functions.

It can be seen that, although the evasion ratios of the Vainilla MalGAN are roughly 1.0,
this architecture completely fails to generate synthetic adversarial examples that are close
to the malign data and far from the benign data since its distances between (i) malign and
generated malign data (MG), (ii) malign and generated malign data that fool the black-
box model (MGF) and (iii) benign and generated malign data (BG) are very far from the
expected: BG should be similar to the distance between benign and malign data (BM) and
MG and MGF should be small and close to the distance between two samples of malign
data (MM).

This is a clear symptom that the generator is producing adversarial (synthetic) examples
that are very different from the real malign examples, and therefore, they could be identified
in a real environment using a simple statistical filter. Note that, to effectively fortify an
ML model against these types of attack, AEs should be virtually indistinguishable from
the real malign data. It is worth noting that the Vainilla MalGAN training process was
slightly modified to avoid generating synthetic data that were very far from the real data by
substituting the black-box labels that were added to the synthetic adversarial examples by
their real labels.

However, as can be seen in Figure 11a, the distances of the generated synthetic data with
respect to benign and malign data still did not achieve the expected good behaviour as they
are far from both the benign and malign data. In sharp contrast, our proposal (MalGAN
equipped with ST activation functions) generated adversarial examples that are close to
the real malign data (Figure 11c), as (i) the MG and MGF distances are small and close to
MM, and (ii) the BG distances are very similar to BM. The trade-off of this solution is that
the evasion ratios (the blue line in Figure 11d) are not as good as those obtained with the
Vainilla MalGAN but are at least greater than the ratio of misclassified malign data (the
orange line in Figure 11d).

Finally, after high-quality adversarial examples were produced, the black-box model of
the CAD component was retrained using these high-quality adversarial examples to create
a resilient ML-based classifier that can defend itself against the suggested threat model.

In order to test the degree of resilience of the retrained ML model, we reserved a dataset
of malign data that was not used for training the GAN. The reserved data had not been
seen by the GAN during its training and can, therefore, be considered as data similar to
what could appear in a real scenario.



(a) Distances (Vainilla MalGAN) (b) Evasion rate (Vainilla MalGAN)

(c) Distances (MalGAN with ST activation) (d) Evasion rate (MalGAN with ST activation)

Figure 11: (Left column) Distances between samples of real and synthetic data distributions:
BM (benign and malign data), MG (malign and generated malign data), MGF (malign and
generated malign data that fool the black-box model), BG (benign and generated malign
data), GG (two samples of generated malign data) and MM (two samples of malign data).
(Right column) Evasion ratios: (blue) generated malign examples (AEs) and (orange) real
malign examples that are classified as benign by the black-box model. In all figures, the x-
axis represents the GAN training epochs.

By using examples from this dataset along with Gaussian noise vectors, we generated
synthetic samples that were statistically very similar to an attack generated by a malicious
attacker. To measure the degree of resilience that the ML model offers in real-time, we
counted the synthetic samples that managed to deceive the new version of the ML model
that was strengthened with our adversarial examples. This approach enabled us to assess
the robustness of the model to adversarial attacks in a real-world scenario.

The end result in our scenario was a retrained ML model in which the Accuracy in
detecting new AEs generated with different MalGANs increased to 99% (i.e., the evasion
ratio decreased from the original 48% to 1%).

8 Conclusions

In this work, a proposal for a standardized and distributed approach to cyber-attack
detection and mitigation in the context of the TeraFlowSDN controller was presented. Ter-
aFlowSDN is an open-source, next-generation, cloud-native Software-Defined Networking
(SDN) controller that has been specifically designed to support the evolving requirements of
5G and beyond networks. As TeraFlowSDN is the European Telecommunications Standards



Institute reference implementation for SDN controllers, the solution proposed in this article
can serve as a reference framework for future developments of cybersecurity solutions
within commercial SDN controllers.

First, this study proposed a novel distributed component architecture based on Machine-
Learning (ML) and Deep Learning (DL) within the TeraFlowSDN controller to implement
scalable attack detectors in the data and control plane. To this end, a set of ML-based
cybersecurity components were integrated into the microservice-based TeraFlowSDN ar-
chitecture. The integration of these cybersecurity components was exemplified with an
end-to-end security analysis and mitigation process based on the detection of cryptomin-
ing activity, an emerging attack vector that is becoming increasingly common in today’s
telecommunication networks.

The proposed solution consists of two centralized components, the Centralized Attack
Detector and the Attack Mitigator, as well as a distributed component, the Distributed
Attack Detector, placed at the edge of the network. Although a specific attack model
(cryptomining) was used to demonstrate the integration of the cybersecurity components
in TeraFlowSDN, the proposed architecture based on microservices and the adoption of
standard interfaces and protocols (Protocol Buffers and gRPC) commonly used in the telco
industry will allow for the seamless integration of new types of attack detectors into the
TeraFlowSDN controller.

Second, the energy efficiency of the proposed architecture is deemed crucial in our
design considerations as it is expected to become a major limiting factor for the deployment
of new services. To address this challenge, this work proposed a systematic process based
on state-of-the-art optimization techniques that were combined in a set of 11 optimization
strategies that can be applied to reduce the energy consumption of the DL-based attack de-
tection models used in the TeraFlowSDN Centralized Attack Detector component. Various
optimization strategies were evaluated, achieving energy consumption reduction of up to
83.30% with a minimal performance degradation of 0.08% in Balanced Accuracy. It is worth
noting that the proposed method is general enough to be applied in the same way to any
DL-based model before being deployed in the TeraFlowSDN controller.

Last but not least, to strengthen TeraflowSDN ML models against sophisticated adver-
sarial attacks that can mislead them into making the wrong decisions and allow malicious
traffic to bypass the security system, this study proposed a technique to add resilience to ML
models based on retraining the models with high-quality adversarial examples. To produce
these high-quality adversarial examples, MalGAN (an adversarial example generator based
on Generative Adversarial Networks for highly restrictive black-box attack scenarios) was
extended by adding, to the generator network, a recently proposed activation function
based on the Smirnov transformation. This improvement allowed us to generate high-
quality adversarial examples that were used to retrain and fortify the ML model deployed
on the TeraFlowSDN controller. After retraining, the resilient ML model reduced its original
evasion ratio from 0.50 to 0.01.

9 Future Work

Given the growing demand for more efficient and sustainable computing systems, fu-
ture work should focus on addressing the concern of energy consumption in deep neural
networks by exploring the impact of different model architectures and varying numbers
of parameters in the existing trade-off between the performance and energy consump-
tion of the model as well as the energy efficiency that can be achieved with the different
optimization techniques presented in this article.

Furthermore, in upcoming research, it could be interesting to investigate the interplay
between energy efficiency and model resiliency in the development of a comprehensive



model that exhibits both energy efficiency and resiliency towards adversarial attacks. Fur-
ther studies will be necessary to understand the relationship between these two important
factors, such as whether optimizing the energy consumption negatively impacts the model’s
ability to withstand attacks and whether enhancing the resiliency requires increased energy
consumption. Additionally, alternative approaches should be investigated for combining
these properties for optimal performance.

The proposed Attack Mitigator component is slated for further development and en-
hancement with the integration of advanced functions to enable autonomous network-based
decision making and the deployment of tailored mitigation strategies based on the confi-
dence level of the attack and the perceived threat level. These complex functions can be
considered as Zero Touch Provisioning actions that can be triggered in response to a specific
detected cyberthreat.

Funding

This work was partially supported by the European Union’s Horizon 2020 Research
and Innovation Programme under Grant 101015857 (TeraFlow) and Horizon Europe SNS
R&I Work Programme under Grant 101097122 (ACROSS).

References

[1] Tooska Dargahi, Alberto Caponi, Moreno Ambrosin, Giuseppe Bianchi, and Mauro
Conti, “A survey on the security of stateful sdn data planes,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1701–1725, 2017.

[2] Ricard Vilalta, Raul Munoz, Ramon Casellas, Ricardo Martínez, Victor López, Os-
car González de Dios, Antonio Pastor, Georgios P Katsikas, Felix Klaedtke, Paolo
Monti, et al., “Teraflow: Secured autonomic traffic management for a tera of sdn
flows,” in 2021 Joint European Conference on Networks and Communications & 6G Summit
(EuCNC/6G Summit). IEEE, 2021, pp. 377–382.

[3] Sabine Dahmen-Lhuissier, “Tfs,” https://www.etsi.org/committee/2064-tfs.

[4] Shankar Lal, Tarik Taleb, and Ashutosh Dutta, “Nfv: Security threats and best prac-
tices,” IEEE Communications Magazine, vol. 55, no. 8, pp. 211–217, 2017.

[5] Tianyi Xing, Zhengyang Xiong, Dijiang Huang, and Deep Medhi, “Sdnips: Enabling
software-defined networking based intrusion prevention system in clouds,” in 10th
International Conference on Network and Service Management (CNSM) and Workshop, 2014,
pp. 308–311.

[6] Chun-Jen Chung, Pankaj Khatkar, Tianyi Xing, Jeongkeun Lee, and Dijiang Huang,
“Nice: Network intrusion detection and countermeasure selection in virtual network
systems,” IEEE Transactions on Dependable and Secure Computing, vol. 10, no. 4, pp.
198–211, 2013.

[7] Alberto Mozo, Antonio Pastor, Amit Karamchandani, Luis de la Cal, Diego Rivera,
and Jose Ignacio Moreno, “Integration of machine learning-based attack detectors into
defensive exercises of a 5g cyber range,” Applied Sciences, vol. 12, no. 20, 2022.

[8] Abdulsalam O. Alzahrani and Mohammed J. F. Alenazi, “Designing a Network Intru-
sion Detection System Based on Machine Learning for Software Defined Networks,”
Future Internet, vol. 13, no. 5, pp. 111, May 2021, Number: 5 Publisher: Multidisci-
plinary Digital Publishing Institute.



[9] John McHugh, “Testing intrusion detection systems: A critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory,”
ACM Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 262–294, nov 2000.

[10] Panagiotis Radoglou-Grammatikis, Konstantinos Rompolos, Panagiotis Sarigiannidis,
Vasileios Argyriou, Thomas Lagkas, Antonios Sarigiannidis, Sotirios Goudos, and
Shaohua Wan, “Modeling, detecting, and mitigating threats against industrial health-
care systems: A combined software defined networking and reinforcement learning
approach,” IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 2041–2052,
2022.

[11] Xiaokang Zhou, Wei Liang, Weimin Li, Ke Yan, Shohei Shimizu, I Kevin, and Kai Wang,
“Hierarchical adversarial attacks against graph-neural-network-based iot network
intrusion detection system,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9310–
9319, 2021.

[12] James Aiken and Sandra Scott-Hayward, “Investigating adversarial attacks against
network intrusion detection systems in sdns,” in 2019 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), 2019, pp. 1–7.

[13] Chaoyun Zhang, Paul Patras, and Hamed Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications surveys & tutorials, vol. 21, no. 3,
pp. 2224–2287, 2019.

[14] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni, “Green ai,” Commun.
ACM, vol. 63, no. 12, pp. 54–63, nov 2020.

[15] Alberto Mozo, Ángel González-Prieto, Antonio Pastor, Sandra Gómez-Canaval, and
Edgar Talavera, “Synthetic flow-based cryptomining attack generation through gener-
ative adversarial networks,” Scientific Reports, vol. 12, no. 1, pp. 2091, 2022.

[16] Weiwei Hu and Ying Tan, “Generating adversarial malware examples for black-box
attacks based on gan,” in Data Mining and Big Data: 7th International Conference, DMBD
2022, Beijing, China, November 21–24, 2022, Proceedings, Part II. Springer, 2023, pp.
409–423.

[17] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song, “Gener-
ating adversarial examples with adversarial networks,” arXiv preprint arXiv:1801.02610,
2018.

[18] Ángel González-Prieto, Alberto Mozo, Sandra Gómez-Canaval, and Edgar Talav-
era, “Improving the quality of generative models through smirnov transformation,”
Information Sciences, vol. 609, pp. 1539–1566, 2022.

[19] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, mar
2008.

[20] Junfeng Xie, F. Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, Chenmeng Wang, and
Yunjie Liu, “A survey of machine learning techniques applied to software defined
networking (sdn): Research issues and challenges,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 393–430, 2019.



[21] Menuka Perera Jayasuriya Kuranage, Kandaraj Piamrat, and Salima Hamma, “Net-
work Traffic Classification Using Machine Learning for Software Defined Networks,”
in Machine Learning for Networking, Selma Boumerdassi, Éric Renault, and Paul Müh-
lethaler, Eds., Cham, 2020, Lecture Notes in Computer Science, pp. 28–39, Springer
International Publishing.

[22] Sumet Prabhavat, Thananop Thongthavorn, and Kitsuchart Pasupa, “Deep learning-
based early detection and avoidance of traffic congestion in software-defined net-
works,” in 2022 14th International Conference on Information Technology and Electrical
Engineering (ICITEE). IEEE, 2022, pp. 1–6.

[23] Stefano Secci, Alessio Diamanti, José Manuel Sanchez Vilchez, Mamoudou Tahirou
Bah, Pedra Vizzarreta, Carmen Mas Machuca, Sandra Scott-Hayward, and David
Smith, Security and Performance Comparison of ONOS and ODL controllers, Ph.D. thesis,
ONOS, 2019.

[24] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray, “Opendaylight: Towards a
model-driven sdn controller architecture,” in Proceeding of IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks 2014, 2014, pp. 1–6.

[25] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, and
Guru Parulkar, “Onos: Towards an open, distributed sdn os,” in Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, New York, NY, USA, 2014,
HotSDN ’14, p. 1–6, Association for Computing Machinery.

[26] Rodrigo Braga, Edjard Mota, and Alexandre Passito, “Lightweight ddos flooding
attack detection using nox/openflow,” in IEEE Local Computer Network Conference,
2010, pp. 408–415.

[27] Hui Lin, “Sdn-based in-network honeypot: Preemptively disrupt and mislead attacks
in iot networks,” CoRR, vol. abs/1905.13254, 2019.

[28] Hasan Kamel and Mahmood Zaki Abdullah, “Distributed denial of service attacks
detection for software defined networks based on evolutionary decision tree model,”
Bulletin of Electrical Engineering and Informatics, vol. 11, no. 4, pp. 2322–2330, 2022.

[29] Auther Makuvaza, Dharm Singh Jat, and Attlee M Gamundani, “Deep neural network
(dnn) solution for real-time detection of distributed denial of service (ddos) attacks in
software defined networks (sdns),” SN Computer Science, vol. 2, pp. 1–10, 2021.

[30] Abdulsalam O. Alzahrani and Mohammed J. F. Alenazi, “Ml-idsdn: Machine learning
based intrusion detection system for software-defined network,” Concurrency and
Computation: Practice and Experience, vol. 35, no. 1, pp. e7438, 2023.

[31] “Secured autonomic traffic management for a tera of sdn flows. deliverable 5.2, im-
plementation of pilots and first evaluation. project h2020 teraflow.,” https://www.
teraflow-h2020.eu/.

[32] Antonio Pastor, Alberto Mozo, Stanislav Vakaruk, Daniele Canavese, Diego R López,
Leonardo Regano, Sandra Gómez-Canaval, and Antonio Lioy, “Detection of encrypted
cryptomining malware connections with machine and deep learning,” IEEE Access,
vol. 8, pp. 158036–158055, 2020.

https://www.teraflow-h2020.eu/
https://www.teraflow-h2020.eu/


[33] “Secured autonomic traffic management for a tera of sdn flows. deliverable 2.2, final
requirements, architecture design, business models, and data models. project h2020
teraflow.,” https://www.teraflow-h2020.eu/.

[34] Marco Mellia, Andrea Carpani, and Renato Lo Cigno, “TStat: TCP STatistic and
Analysis Tool,” in Quality of Service in Multiservice IP Networks, Marco Ajmone Marsan,
Giorgio Corazza, Marco Listanti, and Aldo Roveri, Eds., Berlin, Heidelberg, 2003,
Lecture Notes in Computer Science, pp. 145–157, Springer.

[35] Lobna Dridi and Mohamed Faten Zhani, “Sdn-guard: Dos attacks mitigation in sdn
networks,” in 2016 5th IEEE International Conference on Cloud Networking (Cloudnet),
2016, pp. 212–217.

[36] Antonio Pastor, Alberto Mozo, Diego R Lopez, Jesus Folgueira, and Angeliki Kapodis-
tria, “The mouseworld, a security traffic analysis lab based on nfv/sdn,” in Proceedings
of the 13th International Conference on Availability, Reliability and Security, 2018, pp. 1–6.

[37] Alberto Mozo, Amit Karamchandani, Sandra Gómez-Canaval, Mario Sanz, Jose Ignacio
Moreno, and Antonio Pastor, “B5gemini: Ai-driven network digital twin,” Sensors,
vol. 22, no. 11, pp. 4106, 2022.

[38] Eva García-Martín, Niklas Lavesson, Håkan Grahn, Emiliano Casalicchio, and Veselka
Boeva, “How to measure energy consumption in machine learning algorithms,” in
ECML PKDD 2018 Workshops, Carlos Alzate, Anna Monreale, Haytham Assem, Albert
Bifet, Teodora Sandra Buda, Bora Caglayan, Brett Drury, Eva García-Martín, Ricard
Gavaldà, Irena Koprinska, Stefan Kramer, Niklas Lavesson, Michael Madden, Ian
Molloy, Maria-Irina Nicolae, and Mathieu Sinn, Eds., Cham, 2019, Lecture Notes in
Computer Science, pp. 243–255, Springer International Publishing.

[39] Yunhui Guo, “A survey on methods and theories of quantized neural networks,”
arXiv:1808.04752 [cs, stat], December 2018.

[40] Jianping Gou, Baosheng Yu, Stephen John Maybank, and Dacheng Tao, “Knowledge
distillation: A survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789–1819, June 2021.

[41] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko, “Quantization and training of
neural networks for efficient integer-arithmetic-only inference,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, June 2018, pp.
2704–2713, IEEE.

[42] Pierre-Emmanuel Novac, Ghouthi Boukli Hacene, Alain Pegatoquet, Benoît Miramond,
and Vincent Gripon, “Quantization and deployment of deep neural networks on
microcontrollers,” Sensors, vol. 21, no. 9, pp. 2984, January 2021.

[43] “Post-training integer quantization | tensorflow lite,”
https://www.tensorflow.org/lite/performance/post_training_integer_quant.

[44] “Post-training float16 quantization | tensorflow lite,”
https://www.tensorflow.org/lite/performance/post_training_float16_quant.

[45] “Post-training integer quantization with int16 activations | tensorflow lite,”
https://www.tensorflow.org/lite/performance/post_training_integer_quant_16x8.

https://www.teraflow-h2020.eu/


[46] “Pruning comprehensive guide | tensorflow model optimization,”
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide.

[47] “Quantization aware training comprehensive guide | tensorflow model optimization,”
https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide.

[48] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, “Neural architecture search:
A survey,” arXiv:1808.05377 [cs, stat], April 2019.

[49] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the knowledge in a neural
network,” arXiv:1503.02531 [cs, stat], March 2015.

[50] “Pruning preserving quantization aware training (pqat)
keras example | tensorflow model optimization,”
https://www.tensorflow.org/model_optimization/guide/combine/pqat_example.

[51] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[52] Ángel González-Prieto, Alberto Mozo, Edgar Talavera, and Sandra Gómez-Canaval,
“Dynamics of fourier modes in torus generative adversarial networks,” Mathematics,
vol. 9, no. 4, pp. 325, 2021.


	Introduction
	Contributions
	Paper Structure

	Related Work
	Cyberthreat Analysis and Protection Use Case
	Cyberthreat Analysis and Protection Scenario
	Cryptomining Attack Detection

	Integration of an ML-Based Cybersecurity Detector and Mitigator in the TeraflowSDN Controller
	TeraFlowSDN Architecture
	Integration of the Cybersecurity Components in the TeraFlowSDN architecture
	Distributed Attack Detector
	Centralized Attack Detector
	Attack Mitigator

	Attack Detection and Mitigation Workflows
	Workflow 1—Capture and Label Traffic at the Edge of the Network
	Workflow 2—Detect Cryptomining Malware Connections using Supervised ML
	Workflow 3—Mitigate Detected Cryptomining Attacks
	Workflow 4—Monitor Relevant Cybersecurity-Related Key Performance Indicators


	Analysis of the Attack Detector
	Cryptomining Dataset Creation and Traffic Labelling 
	Training of the Machine-Learning Model for Cryptomining Detection 
	Performance Evaluation of the Machine-Learning Model for Cryptomining Detection 

	Energy Efficiency
	Measuring Energy Consumption
	Selected Model-Optimization Strategies
	Experimental Setup
	Analysis of the Results Obtained

	Resilient Cyberthreat Detector Against Adversarial Attacks
	Conclusions
	Future Work

