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Abstract
The standard model of physics classifies particles into elementary leptons and hadrons composed of quarks.
In this article the existence of an alternate ordering principle will be demonstrated giving particle energies to
be  quantized  as  a  function of  the  fine-structure  constant,  α.  The  quantization  can  be  derived  from the
relationship of a point charge and a photon representation of energy. Necessary input parameters are square
of the elementary charge divided by electric constant and one model specific constant. The value of α itself
can be approximated numerically by the gamma functions of the integrals involved.

1 Introduction
Particle  zoo is  the  informal  though fairly common nickname to  describe what  was formerly known as
"elementary particles" 1. The standard model of physics 2 divides these particles into leptons, considered to
be the fundamental "elementary particles" and the hadrons, composed of two (mesons) or three (baryons)
quarks. Well hidden in the data of particle energies lies another ordering principle which can be derived by
interpreting particles as electromagnetic objects. There exist numerous attempts to calculate particle energy
with electromagnetic models going back as far  as 1881 with the work of J.J.Thomson  3 4.  In the work
presented here, to obtain quantifiable results, the electromagnetic field will be modified with an appropriate
exponential function, Ψ(r, e2/ε, ρ, α), serving as probability amplitude of the field, with r = distance from
origin, e = elementary charge, ε = electric constant and ρ = model specific constant. The two integrals needed
to calculate energy in point charge and photon representation exhibit the following two relations:  
1) Their product - resulting from energy conservation - is characterized by containing the product of the two
gamma functions Γ(1/3)|Γ(-1/3)| ≈ α-1/(4π), 
2) their ratio features a quantization of energy states with powers of 1/3 n over some base α0, a relation that
can be found in the particle data with α0 = α as:

Wn /We  = 1.509( yl
m)-1/3 Π k=0

n α^(-1/3k ) (1)

with n = {0;1;2;..}, We = energy of electron, Wn= energy of particle n and yl
m being a function of the spherical

harmonics. For spherical symmetry y0
0 = 1 holds, corresponding particles are e, µ, η, p/n, Λ, Σ and Δ. The

factor 1.509 is related to angular momentum |J| = 1/2. 
The particles are interpreted as some kind of standing electromagnetic wave originating from a rotating
electromagnetic field with the E-vector pointing towards the origin. Neutral particles are supposed to exhibit
nodal planes and corresponding equal volume elements of opposite polarity. The terms for calculating energy
do not distinguish between charged and neutral particles and have to be considered a first approximation,
accurate only within order of magnitude of the spread of energies of particle families. Typical relative error
of calculated parameters compared to experimental values is in a range of ± 0.01, within the same range the
approximations made below are valid.
Many details of the model still have to be worked out, yet the basic equations presented below are considered
sufficient proof for relation (1) to be more than mere coincidence.
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2 Results

2.1 Calculation of energy - point charge

To calculate particle energies the integral over the electrical field E of a point  charge is used as a first
approximation. However, it can not be expected that the expression derived from Coulomb's law for two
interacting particles can be used unaltered and it will be demonstrated below that a factor 4π is needed as
modification to yield a half integral angular momentum, giving:

WCoul,n = 4 π∫
0

∞

ε0 E(r)2 d3 r = 4 π∫
0

∞
e2

4 πε0 r2 dr = 4 π b0∫
0

∞

r−2 dr  (2)

with bo = e2 /(4πε0) used for brevity.
The field E is modified with a function

Ψ(r) = exp(-{(σ τ b0
2 r - 3) + [(σ τ b0

2 r - 3)2 – 4 τ b0
2 r - 3]0,5} /2) (3)

The first term,  exp(- σ τ b0
2 r -3), avoids divergence of the E-field for  r  ̶ > 0, the part in square brackets

provides an integration limit, rl, where the root term equals zero. rl of particle n can be given by:

rl,n = (σ2
 τn b0

2/4)1/3 (4)

providing a boundary condition for the problem. 
Coefficient σ is a constant (σ = 1.76E+8[-]) related to constant angular momentum J (see below), τ is a
parameter representing particle energy, τn ~ Wn

-3. The coefficient τn+1 of a particle can always be expressed by
a term multiplying the coefficient of its predecessor n (defined in this work by W n < Wn+1) with a parameter
ατ,n+1:  τn+1  = τn  ατ,n+1. In general  for  the  coefficient  of  particle  n  a  partial  product  is  formed relative to  a
reference particle, chosen here to be the electron, τe (electron coefficient τe = 1.68E+6 [m/J2]):

τn = τe Πk=0
n α τ , k =  τe Πτ,n (5)

In all integrals over Ψ(r) given below equ. (6) may be used as approximation for (3) up to r = r l with relative
error <<  0.01:

Ψn (r < rl) ≈ exp(- σ τn b0
2 r - 3

 )  = exp(- βn/2 r - 3
 ) (6)

where βn = 2 σ  τn b0
2 is used for brevity. The factor 2 takes into account, that Ψ(r) appears squared in the

integrals below. 
There are four closely related integrals over the approximation of  Ψ(r) according to equ. (6) that are of
interest to the problem:

∫
r l

Ψ (r)2 r−(m+1)dr = Γ(m/3,  β/rL
3)  β- m/3 /3 (7)

with m = {-1;0;1;2;}. The term Γ(m/3, β/r l
3) denotes the upper incomplete gamma function, given by the

Euler integral of the second kind with s = m/3 and x = β/rl
3 as lower integration limit:

Γ(s,x) = ∫
x

∞

ts-1e-t dt (8)

It follows from the boundary condition (4) that the integration limit x =  β/rl
3 has to be a constant for all

particles:

βn/rl,n
3 = 2στnb0

2/ rl,n
3 = 8/σ (9)

For m = {1;2} Γ(m/3, β/rl
3))  ̶ >  Γ(m/3) gives a sufficient approximation for the equations of interest here

and will be used below.  For m = {-1;0} the integrals (7), (8) depend critically on the integration limit and
have to be integrated numerically. 
The integral for m = 1 is needed to calculate WCoul,n. Inserting (6) and (7) in equ. (2) will turn out:
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WCoul,n = 4 π∫
0

∞

ε0 E(r)2 Ψ n (r)
2d3 r = 4 π b0∫

0

r l , n

Ψ n(r)
2 r−2 dr = 4π b0 Γ(1/3) βn

-1/3 /3 (10)

Equation (10) is the source of  τn ~ Wn
-3. From (5) and (10) follows:

τn/τe = Πk=0
n ατ ,k =   Πτ,n = Πk=0

n αW , k
−3  =  ΠW,n

-3 (11)

with αW,k  being coefficients of  a general  partial  product  ΠW,n for  particle  energies.  Through equ.  (4) the
relations  τn ~ rl,n

3 and Wn ~ rl,n
-1 hold.

The factor 4π added in equ. (2) may be derived by applying a semi-classical approach for angular momentum
J, using J = r x p(r) = r Wn(r) /c0 (assuming Wkin,n = 1/2 Wn) : 

|J| = ∫
0

r l , n

J n(r)dr = 4 π
b0

c0

 ∫
0

rl ,n

Ψ n (r)
2 r−1 dr (12)

From (7), (8) follows for m = 0:

∫
0

r l , n

Ψ (r)2 r−1 dr = 1/3∫
8/ σ

∞

t-1 e-t dt = 5.447 ≈ α-1/8π (13)

yielding  the  constant  α-1/8π  for  all  particles.  Inserting  (13)  in  (12)   provides  a  half  integer  angular
momentum, |J| = 1/2:

 |J| = 4 π
b0

c0

 
α -1

8π
= 1/2 [ħ] (14)

Analogous to the postulate for neutral particles to be composed of volume elements of opposite charge,
integer spin particles as well as particles with J = 3/2, etc. are supposed to be composed of a combination of
half integer contributions of angular momentum J = ± 1/2, adding up accordingly.

2.2 Calculation of energy -  photon

For m = -1 equations (7), (8) give a relation between radii and Euler-integral: 

rx,n  = ∫
0

rx , n

Ψ n(r)2 dr  = βn
1/3

/3 ∫
β/r x , n

3

∞

t -4/3 e-t dt (15)

Using the value of the Compton wavelength, λC, in the term for the energy of a photon gives hc0/λC. With
equ. (15) λC can be given by:

λC,n = ∫
0

λC , n

Ψ n(r)
2 dr  = βn

1/3
/3 ∫

β/ λC, n
3

∞

t-4/3 e-t dt  ≈ βn
1/3/3  18π│Γ(-1/3)│ (16)

According to (10) particle energy is proportional to βn
-1/3 and  λC,n ~ βn

1/3 has to hold, requiring the lower
integration limit of the Euler integral and the factor ≈ 18π to be a constant for all particles. Energy  of a
photon can be expressed by:

WPhot,n = hc0/λC,n  =
hc0

∫
λC , n

Ψ n(r )2dr

=
3hc0

18 π|Γ (−1/3)|βn
1/3 (17)
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2.3 Relation of integrals for WCoul,n  and WPhot,n  with α

The energy of a particle has to be the same in both photon and point charge description. From (10) and (17)
follows:

WCoul,n = WPhot,n = 4πb0 Γ(1/3) βn
-1/3 /3 =

3 hc0

18 π|Γ (−1/3)|βn
1/3 (18)

which my be rearranged to emphasize the relationship Γ(1/3) |Γ(-1/3)| = 2.679 ∙ 4.062 = 0.998 α-1/(4π) ≈ α-1/
(4π) and expanded by 2π to transform h into ħ, giving:

 Γ(1/3)│Γ(-1/3)│≈ α-1/4π =
2π 9hc0

2 π 4 π 18 π b0

=
ħc 0

4 π b0

 (19)

2.4 Coefficient 1.509 and related parameters

It is unclear if equation (19) can be used to directly link α with the quantization condition given in (1).
However,  the  first  term in  (1),  Wµ/We =  206.8  =  1.509  α-1 is  within  the  accuracy  of  the  calculations
identically to the factor determing the integration limit, 1.501 α -1 ≈ 1.5 α-1, being a key factor related to |J| =
1/2.
According to equation (15) rl,n may be given by :

rl,n = ∫
0

r l,n

Ψ (r)2 dr = βn
1/3

/3∫
8/σ

∞

t -4/3 e-t dt  ≈ 1.501 α-1│Γ(-1/3)│ βn
1/3 /3 (20)

Consequently the equivalent term from (1) will cancel in the expression for  rL,µ  (note: Wn ~ 1/rl,n) : 

rl,e  ≈ 1.5 α-1│Γ(-1/3)│βe
1/3 /3 (21)

rl,µ  ≈ 1.5-1 α+1 [1.5 α-1│Γ(-1/3)│βe
1/3/3 ] = │Γ(-1/3)│βe

1/3/3  = 1.5 α-1│Γ(-1/3)│βµ
1/3/3 (22)

Assuming an identity of both terms, the value for Wµ/We = 1.509 α-1 will be used in all calculations as least
biased value for ≈ 1.5 α-1, see discussion section. The coefficient σ is related to factor 1.509 α-1 by equ. (9)
and (20) to be:

σ = 8 rl,n
3 / βn  = 8 (1.509 α-1│Γ(-1/3)│/3)3 = 1.76E+8[-] = 68.3 α-3 [-] (23)

Coefficients 1.5 α-1 and σ are part of the terms setting the integration limits in equ. (13), determining the
value of J=1/2.
In analogy to σ the coefficient τe will be defined as 

τe = ρ 1.5093 α-3 = ρ 3.4 α-3 , (24)

the coefficient ρ being the dimension bearing remainder. The actual value used in this work is obtained from
a least square fit of energies of particles of the y0

0 group,  ρ = 0.193 [m/J2].

2.5 Quantization with powers of 1/3n over α

To find a source for the quantization with powers of 1/3n over α the ratio of the integrals used in (10) and
(17) for the point charge and photon representation of energy may be examined.
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Q(ψn) = 
∫
r l , n

Ψ n(r)2r−2 dr

∫
λC, n

Ψ n(r)2 dr

=
Γ (1/3)

18 π  Γ (−1 /3)βn
2/3 ~

Γ (1 /3)

Γ (−1/3)

α τ ,0
1/3 ατ ,1

1/3 .....α τ ,n
1/3

α τ ,0α τ ,1 .... ατ , n

τ ,0 (25)

with n = {0;1;2;..}. The term given by (25) is related to the boundary condition (4) (see discussion) and via
(10)  and  (17)  to  the  square  of  particle  energy Wn

2 ~  τn
-2/3.  The  last  expression  of  (25)  is  obtained  by

expanding Πτ,n
-  2/3 of βn

-  2/3 with  Πτ,n
1/3 From this term it is obvious that a relation αn+1 = αn

1/3 such as in
equation (1) yields a distinct solution for Q(ψn), Q(ψn) being a function of coefficient αn and α0 only. By
comparison with experimental data ατ,0 can be identified as ατ,0 = α3 and Q(Ψn) can in general be given by (n =
{0;1;2;..}):

Q(ψn) ~
Γ (1/3)

Γ (−1 /3)

α 1α 1/3 α1 /9 ....α ^(1 /3n
)

α3 α1 α 1/3 ....α ^ (3/3n
)

=
Γ (1/3)

Γ (−1 /3)
α ^(1 /3n

)/α 3
(26)

where all intermediate particle coefficients cancel out.
All  other  particle  parameters  of  successive  particles  have to  be related by a  corresponding 1/3 rd power
relationship as well. Equation (5) turns into (n = {0;1;2;..}):

τn = τe 0.291 Π k=0
n α ^ (3 /3  k) = ρ α−3 Π k=0

n  α ^ (3 /3k) =  ρ α-3 Πn (27)

The factor 0.291 = 1.509-3 has to be taken from the experimental Wµ /We ratio.

2.6 Extension to non-spherical symmetry

Up to here only spherical symmetry is considered, introduced through equ. (2), (10). For a simple test if the
model might be extendible to other symmetries equ. (26) is used. The integral over r-2  in Q(Ψn) actually
represents a volume integral, the factor 4π being included in equ. (2), (10) and thus implicitly in all related
terms and coefficients. For non-spherically symmetric states an appropriate spherical harmonic factor, y l

m,
should be added to equ. (26), given by the integral over non-normalized spherical harmonics i.e. the inverse
of the square of the normalization factor Nl

m, corrected by 4π:

yl
m
=

1
4π

∫P l
m cos(ϑ )eimφ P l

m cos(ϑ )e−imφ sin (ϑ )dϑdφ=
1

4 π (N l
m
)
2

(28)

turning relation (26) into

Q(Ψn) ~ y l
m α ^ (1/3n

) /α3 (29)

For  the  second spherical  harmonic  this  gives  y1
0 =  4π /(4π3)  = 1/3,  providing a second set  of  particle

coefficients which is given by the coefficients according to (27) divided by 3. Table 1 shows results for y 0
0,

y1
0 relative to experimental values in col. 5. These are calculated according to equ. (10) using the coefficients

of col. 4 in βn. Relative energy values calculated by equ. (1) with the coefficients of col. 3 would be shifted
by + 0.003 due to the electron becoming a reference particle.
For the transition from y0

0  to y1
0 the factor 1/3 in the coefficients τ (col.  4) appears as 3-1/3  =1.44 in the

coefficients for energy ratio (col. 3). A change in angular momentum is expected for this transition which is
actually observed with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2.
Included  is  a  particle  energy  derived  by  expanding  the  model  to  energies  below  the  electron  with  a
coefficient of α3 in equ. (1): Wν /We  = 1.509 α3. This gives a state with energy 0.3eV (for y0

0) which is in a
range expected for a neutrino 6. 
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Table 1: Particles up to tau energy; calculated values for y0
0 (bold),  y1

0 (italic) ; col. 2: energy values from
literature 5 except *: calculated from model; Exponent of -3/2, 9/2 for Δ and tau is equal to the limit of the
partial products in (1) and (27);

The wave function character of Ψ(r) in the model has potential for quantitative description of other particle
properties. Calculation for angular momentum has been demonstrated above. Using m = e π r2 /T (period T =
2 π r/c0) with r = rl,n as simple approximation for the absolute value of the magnetic moment, mn

|mn| = 1/2 e c0 rl,n (30)

gives the values in tab 2.

Table 2: Absolute values calculated for magnetic moment 5

3 Discussion

3.1 Relation to standard model and classical quantum mechanics

The model presented derives its inspiration more from electrodynamics and quantum mechanics than from
the quarks of the standard model and does not directly reproduce the classification into leptons, mesons and
baryons of the latter. Mesons constitute a separate group of particles due to their integer angular momentum
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which is considered to be a combination of half-integer contributions in both models. However, there is no
obvious difference in the group of particles identified as leptons and baryons to be found on the present level
of understanding of this model and the tentatively assigned y0

0 and y1
0 groups each include all three particle

types of the standard model. Any rigorous analysis of symmetry properties and an in-depth comparison with
the standard model requires more detailed information about the wave function used here, which in turn
requires a differential equation providing an exact solution for Ψ(r, ϑ, φ). This subject is still under research. 
The relation of this model to classical quantum mechanics may be given by interpreting Ψ(r) as probability
amplitude applied to a field instead of a particle. This implies that concepts such as orthonormalization and
calculation of eigenvalues may not be applicable on the level of the differential equation. Properties have to
be calculated by integration over the spatial extent of the field. 
The quantization condition itself is not exclusive. The special solution of (26) coincides with the rest mass of
particles  of  sufficiently  high  mean  lifetime  to  be  experimentally  observable  but  does  not  prohibit  the
existence of particles with any other mass. 
As for the number of parameters needed to calculate energy states the model resembles the simplicity of
basic quantum mechanical models, relying essentially on 4π b0 = e2 /ε and J = 1/2 to yield the expression (1).
The second parameter ρ is needed to transform the relative energy scale of (1) into an absolute one.

3.2 Boundary condition

Equation (26) features not only the 1/3rd power relationship characteristic for all particle parameters but also
the inverse relation of coefficients with the first/reference coefficient as well as a coefficient ≈ 1.5 in form of
the ratio │Γ(-1/3)│/ Γ(1/3) = 1.516. A relation with the boundary condition (4) is given by replacing rl,n  in
equation (9) by r,  multiplying with Ψn(r)2 and integrating, yielding the following term (left side): 

βn∫
0

∞

Ψ n(r)2 r−3 dr =
Γ (2 /3)βn

3 (βn)
2/3 =

Γ (2 /3)βn
1/3

3
(31)

where the integral ∫Ψ(r)2r-3  dr of (31) is directly proportional to Q(Ψn), equ. (25), via the term  βn
-2/3. Since

Q(Ψn) ~ ατ,n+1 equ. (31) is proportional to Πτ,n αn+1 = Πτ,n+1 and may be used to calculate particle coefficients
τn+1. 
The integral over the right side of (9) gives:

8
σ∫0

rX

Ψ (r)2 dr = 8
σ

βn
1/3

/3∫
x

∞

t-4/3 e-t dt = βn
1/3

/3∫
y

∞

t-4/3 e-t dt = 1
3

Γ (−1/3)β n
1 /3/3 (32)

To match (31) the integration limit has to be adapted accordingly by either replacing the limit  8/σ of equ.
(20) with the limit x ≈ 1/σ 3 or y ≈ 1. The term on the right results from comparison with the right term of
equ. (31) using the relation |Γ(-1/3)| = 3 Γ(2/3).  Setting βn = βe basically reproduces the inverse relation of
equ. (22), i.e. for any given particle parameter τn equation (31) produces the particle radius rl,n+1 of the next
particle.
The various relationships between the terms given above as well as their significance are not completely
understood and subject of further research. A particular simple interpretation may be given, considering that
the ratio rl,n / rl,n+1

3 is constant, which gives using (4):

rl,n  /rl,n+1
3 = (σ βe Πτ,n /8)1/3) / (σ βe Πτ,n+1 /8) = const (33)

To be valid for all n this implies Πτ,n  Πτ,n+1 v Πτ,n
1/3 Πτ,n+1. Since Wn+1

3
 /Wn  ~ λC,n /λC,n+1

3  ~ rl,n  /rl,n+1
3 this

result is a restatement of the relations given above though suggesting that some geometrical interpretation in
r- or k-space might be conceivable.

3.3 Accuracy

The values  calculated  for  y0
0  agree  within  ±  0.01  with  experimental  data.  There  are  two major  causes

preventing a significant improvement of accuracy. 
1) Especially in the case of particle families effects on top of the relations given in this work have to play a
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role  to  explain  different  energy  levels  for  differently  charged  particles.  This  limits  accuracy  and  the
possibility to precisely identify candidates for calculated energies (e.g. both ρ0 and ω0 are given for 1.44 α-1α-

1/3 in tab. 1).
If possible, particles chosen for y0

0 in table 1 are of charge ± 1. In cases such as Σ with three energy levels,
the intermediate  energy level  is  chosen.  For  y1

0 particles  of  the  same charge as their  y0
0 equivalent  are

preferred in table 1. 
Remaining particles in table 1 may be explained by higher excitation or linear combinations of lower states.
At the present level of understanding and accuracy of the model it is considered too speculative to attempt to
assign additional particle states.
Conversely,  energy states  belonging  to  higher  terms  of  the  y0

0,  yl
0 partial  products  may be  missing  an

identifyable experimental counterpart. The next y0
0 particle following Σ0 is expected at 1217 MeV,  the next

yl
0 particle following Ω- is expected at 1726 MeV with J = 3/2. At least for the latter there exists a resonance

at 1720 MeV with J = 3/2 7 as possible candidate.
2) The second effect is due to ambiguity in fitting model parameters to experimental values. The results
presented  in  this  article  are  calculated  using  1.509  α-1 as  value  for  ≈  1.5  α-1 originating  from direct
experimental data of the energy ratio of µ and e. This value is used to calculate σ  via equ. (23). Parameter ρ
is calculated using a least square fit of energies of y0

0  particles using equ. (10). Replacing the approximation
(7) with the exact term (3) in equation (10) or choosing other sets of fitting particles may change results by
roughly ± 0.01. 
All procedures of this kind, i.e. fitting only energies with the parameter ρ seem to give systematically low
values of  |J| ≈ 0.998/2 [ħ] (calculated numerically with appropriate parameter set). To obtain exact values for
both energy and momentum requires a fit of both σ and ρ yielding a slightly higher value for rl.  Relative
errors of We and J significantly lower than ± 0.001 may be achieved with a parameter set of σ ≈ 1.83E+8[-]
and ρ ≈ 0.181 [m/J2]. As a consequence equ. (9) does not hold exactly, integration limits and values of the
Euler integrals change slightly, see below.

3.4 Approximation for the value of α

Equation (19) uses three approximations, calculated below with the standard parameter set and the values
from the σ, ρ fit as given in 3.3 in brackets:
1) Γ(1/3) is used in place of the incomplete Γ-function Γ(1/3, β/ rl

3 ) = 0.9960Γ(1/3) (0.9960)
2) the approximation for α-1 /(8π) in equ. (13) requires a correction factor of 0.9981 (0.9993) for 4π in the
equation for WCoul,n if the experimental value of α is used.
3) For the integration limit βn /rx,n

3 << 0 the result of the Euler integral in (15) is approximately given by

∫
β n/ rx ,n

3

∞

t−4 /3 e−t dt ≈ 3 (βn /rx,n
3)-1/3

(34)

Inserting this in equ. (16) gives the identity λC,n = (βn
1/3/3) (3 λC,n / βn

1/3) yielding 3 λC,n / (βn
1/3 Γ(1/3)) = 56.87 =

1.0057 (18π) as approximation for 18π.

All  three  factors  add  up  to  change  the  remaining  inequality  of  (19)  from 0.9980  to  0.9978  (0.9990).
Calculation errors, approximation residuals as well as possible higher order correction terms of e.g. QED
type have to be considered to contribute to the remaining discrepancy.

3.5 Other applications

Apart  from  calculating  properties  of  elementary  particles  the  model  might  have  some  other  useful
applications.

Using the equations above to calculate energies of Dirac magnetic monopoles7 is straightforward, replacing e
by the magnetic charge em
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em = e /(2α) (35)

turns b0 into bm.  The integral (13) yields only minor variations even when changing input parameters by
several orders of magnitude. This indicates the product 4πb0 = xbm has to be essentially a constant to provide
half  integer  spin.  The proportionality λC,n ~  βn

1/3 has  to  be  applicable  for  magnetic  monopoles  as  well,
yielding the same factor 18π in (16).  As a result equ. (19) holds for both electric and magnetic monopoles.
Using the same coefficients τn according to equ. (27)  as for electric monopoles in  equ. (10) would leave
(2α)4/3 = 1/280 as ratio between electric and magnetic particle energies placing the latter approximately in the
same energy range as their electric counterparts.

The model should be applicable in describing non-Coulomb particle-particle interaction.
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LibreCalc files:
1) Numerical calculation of particle energies:
Num Calc W.ods
http://doi.org/10.5281/zenodo.570158 
2) Results of tables:
Results.ods
http://doi.org/10.5281/zenodo.570159 
3) Numerical calculation of Euler integrals:
Euler.ods
http://doi.org/10.5281/zenodo.570160 
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