
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-10 Issue-6, March 2022

83

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.F68510310622
DOI: 10.35940/ijrte.F6851.0310622
Journal Website: www.ijrte.org

Abstract: This paper presents a policy to replace the cached web
content named GDSF-EXT based on GDSF by adding an
extensible cache located in the network device. In processing,
these web contents will be retrieved instead of having to search in
other devices on the same network layer or at a higher network
layer. That helps to reduce the response time of the user's request.
The proposed algorithm is compared to GDSF original to evaluate
the performance of the network

Keywords: Web Cache, Internet Web Caching, Cache
Replacement Algorithms, GDSF.

I. INTRODUCTION

In recent years the rapid growth of Web-based services

being used by people all over the world via smartphones and
computers has led to a considerable exponential increase in
the amount of Internet traffic. Web caching is one of the best
solutions for improving the performance of Internet
Web-based services. Web caching is the temporary storage of
Web objects frequently referred to by clients on system
caches located closer to the clients, thereby helping to reduce
network bandwidth usage and reduce response delay to users
which will increase the service quality. It is very useful for
the development of high-bandwidth streaming and
multimedia services on the Internet and reducing the load on
Origin web servers. Web caching is used in a browser of the
client machine (client-side caching), the proxy server (proxy
caching), and/or the origin server (server-side caching).
Client-side caching refers to caches that are built into most
web browsers, which caches Internet objects for a single user
but from a variety of servers. In server-side caching (also
known as reverse caching) Web objects can be stored in a
cache that is placed in front of a particular server for reducing
the redundant computations and the server load. The proxy
cache is found in the proxy server, which serves as an
intermediary between users and web servers. The user’s

request is forwarded to the webserver by the proxy server.
When the webserver returns the requested resource to the
proxy server, the proxy stores a copy in its proxy cache such
that further requests to the same resource by the same user or
another user are met at the proxy without contacting the

Manuscript received on February 22, 2022.
Revised Manuscript received on February 28, 2022.
Manuscript published on March 30, 2022.
* Correspondence Author

Nguyen Xuan Truong*, Hung Yen University of Technology and
Education, Hung Yen, Vietnam. Email: truongnx@utehy.edu.vn

Ho Khanh Lam, Hung Yen University of Technology and Education,
Hung Yen, Vietnam. Email: hokhanhlam@utehy.edu.vn

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

webserver again. Web proxy caching plays a key role in
improving Web performance by keeping Web objects that are
likely to be visited again in the proxy server close to the user.

This Web proxy caching helps in reducing user-perceived
latency, i.e. delay from the time a request is issued until the
response is received, reducing network bandwidth utilization,
and alleviating loads on the original servers. As Web proxy
cache size is limited, a cache replacement policy is needed to
handle the cached content. If the cache is full when an object
needs to be stored, the replacement policy will determine
which object is currently in the cache to be evicted to allow
space for the new object. The optimal replacement policy
aims to make the best use of available cache space, improve
cache hit rates, and reduce loads on the origin server.
Therefore, many web cache replacement policies have been
proposed based on some important factors of Web objects
that can influence the replacement process [1] like recency
(recency based policies - LRU), frequency (frequency-based
policies - LFU), size (size-based policies -SIZE), cost of
fetching th object, access latency of object. These factors can
be incorporated into the replacement decision. Depending on
these factors, the traditional replacement caching policies can
be classified into five categories: Recency-based policies;
Frequency-based policies; Size-based policies; Randomized
policies; Function-based policies [1-8].

LFU-DA and LRU were enhanced using supervised
machine learning such as SVM, NB and C4.5 classifier in
works [9, 10]. SVM, NB and C4.5 are trained from Web
proxy logs files and then intelligently incorporated with
LFU-DA to form Intelligent Dynamic Aging (DA)
approaches. The proposed intelligent Dynamic Aging
approaches considerably improved the performances in terms
of HR and BHR of the conventional LFU-DA on a range of
real datasets. supervised machine learning techniques are
more effectively utilized in the GDS and GDSF to obtain
optimal and intelligent Greedy-Dual approaches that can
perform better in terms of both bytes HR and BHR.

Function-based policies generally associate each object in
the cache with a utility value. The value is calculated based
on a specific function incorporating different factors such as
time, frequency, size, cost, latency, and different weighting
parameters. The object with the smallest value is evicted first.
Greedy-Dual-Size (GDS) [11] is the representative policy of
the Function-based category. To get better BH and BHR
parameters, Greedy-Dual-Size (GDS) seems to be the best
BH and BHR [12, 13]. It uses an extension of the SIZE
policy. The algorithm combines several factors and assigns a
key value for each object stored in the cache. When cache
space becomes saturated and a new object is required to be
stored in the cache, the object with
the lowest key value is
removed [5, 6, 8, 9].

Development of Web Caching Replacement in
Internet Service Based on GDSF

Nguyen Xuan Truong, Ho Khanh Lam

http://www.ijrte.org/
mailto:truongnx@utehy.edu.vn
mailto:hokhanhlam@utehy.edu.vn
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.F6851.0310622&domain=www.ijrte.org

Development of Web Caching Replacement in Internet Service Based on GDSF

84

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.F68510310622
DOI: 10.35940/ijrte.F6851.0310622
Journal Website: www.ijrte.org

GDS removes objects which are no longer requested by
users and therefore overcomes the drawbacks of the SIZE
policy. But GDS does not take the previous frequency of
access for web objects in the account. And
Greedy-Dual-Size-Frequency (GDSF) is extended of GDS by
containing the access frequency aspect in assigning key
value, which is helpful in the web cache replacement
algorithm [14]. Nowadays, the hardware becomes more and
more perfect, special the memories is bigger. To upgrade the
system that already exists based on GDSF, we propose a new
method named GDSF-EXT that uses two memories: main
memory (main caching in original GDSF) and a second
memory for new caching (extended caching). Thus,
GDSF-EXT has more cache than the original GDSF, so it
could improve the performance of hits with different
frequencies. To evaluate the proposed algorithm, a
programing writing in C# is developed and shows the ratio of
the hit for each step of request. GDSF-EXT shows that are
higher performance than GDSF in both theoretical and
simulation.

This paper is organized into four parts: system overview,
development of our proposal named GDSF-EXT, simulation
and calculations to show the performance of algorithms and
conclusion.

II. SYSTEM OVERVIEW

A. Submission of the paper

In the Hierarchical Web Caching architecture [15], we
choose a hybrid architecture and analyze and evaluate the
performance using a queueing model with cache levels:
Institution Caches (IC), Regional Caches (RC), Central
Caches (CC), Origin Caches (OC) [16].

Typically, ICs connect at the local Point-Of-Presence
(POP) nodes, RCs connect at regional nodes, and CCs
connect in the national backbone and OCs in the origin
network Web Servers. Cache Engine systems could install for
ICs, RCs, CCs, and OCs. Thus, the cache systems must
implement the algorithm to replace the Web Cache
distributed layer by layer and between layers.

The average response time for HTTP access in an ISP's
layered Web caching architecture has been suggested in our
previous publication [16]:

3 3 2 2 1 1 0[] [] ()([] ()([] ()([])))WC H H H HE R E R Miss E R Miss E R Miss E R= + + + (1)
Where 3 2 1 0[], [], [], []H H H HE R E R E R E R - Average access

response time of respective cache levels: IC, RC, CC, and
OC; 3 2 1, ,Miss Miss Miss - Cache miss ratio at respective cache

levels: IC, RC, CC, and OC.
We propose the process of responding to HTTP requests of

the ISP network with the hybrid Web caching architecture
shown in Figure 1. Herein, the IC response process is shown
by the process at the RC, CC, and similar to OC levels. Given
that the IC has n Proxy Caches (from Proxy Cache 0 to Proxy
Cache n-1), where Proxy Cache 0 is closest to the HTTP
request and Proxy Cache n-1 (Root-level Cache proxy) is
farthest away from the HTTP request. The priority of object
search for an HTTP request at the IC is to look at the peer
level (from Proxy Cache 0 to Proxy Cache n-1). Only when
missed at the IC will the HTTP request be forwarded to the
RC. A similar way is applied for RC and CC, CC and OC.

Figure 1. Find object (Web page) in IC for Client HTTP
request

Set HR (Hit Rate) cache hit rate to H and the average
response of each Proxy Cache is R. Then for the IC cache
level, there are corresponding values:

0 0 1 1 1 1, , , ,.., ,IC IC IC IC ICn ICnH R H R H R− − .Similar to RC and

CC 0 0 1 1 1 1, , , ,.., ,RC RC RC RC RCm RCmH R H R H R− − , 0 0 1 1 1 1, , , ,.., ,CC CC CC CC CCk CCkH R H R H R− − .

 For OC, the probability of the OC miss is always 1, (HOC
=1, Miss0 =0). So we do not consider OC in the following
formulas. The average response of each cache level is:

3 0 0 1 1 2 2 3[] [] (1)((1)((1)(...)))IC H IC IC IC IC IC IC ICE R E R R H R H R H R= = + − + − + − + (2)
2 0 0 1 1 2 2 3[] [] (1)((1)((1)(...)))RC H RC RC RC RC RC RC RCE R E R R H R H R H R= = + − + − + − + (3)
1 0 0 1 1 2 2 3[] [] (1)((1)((1)(...)))CC H CC CC CC CC CC CC CCE R E R R H R H R H R= = + − + − + − + (4)
0 0 0 1 1 2 2 3[] [] (1)((1)((1)(...)))OC H OC OC OC OC OC OC OCE R E R R H R H R H R= = + − + − + − + (5)

Combination Eqs. (1-5), we have
1 1 1

3 2 1
0 0 0

(1); (1); (1)
n m k

ICi RCi CCi
i i i

Miss H Miss H Miss H
− − −

= = =

= − = − = −   (6)

The larger the number of Web caches (Proxy Cache), the
higher the cache hit ratio (HR) of each Web cache, the
smaller the miss rate (Missi) at each cache level. This depends
on factors such as the size of Web objects, the capacity of the
Web Cache systems, the cache replacement algorithm, the
structure of the entire cache level (IC, RC, CC, and OC) on
Internet Web Caching architecture.

In fact, depending on the population index of each region,
the development of fast mobile communication services, and
the young population, according to Zipf [17]: Web proxy
cache systems set up there should have an investment in
capacity and capacity to meet demand. So, even though they
have the same network level, the Web proxy cache systems
will differ in capacity and capacity because the number of
popular websites is different, and the sizes of Web objects are
also different. In addition, some Web sites may at one point
go unnoticed by users and are susceptible to being superseded
by a cache replacement policy, but later on, they can be
referred to by an explosion of references. or need to be
accessing history for important groups of users. At that time,
these websites have to search the Internet on other Web cache
systems, which are unlikely to exist.

III. DEVELOPMENT OF GDSF-EXT ALGORITHM

GDS algorithm used the cost of fetching an object, the size
of an object, and an aging factor to compute the key-value
following Eq. (7).
K(i) = L+ C(i)/S(i) (7)

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-10 Issue-6, March 2022

85

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.F68510310622
DOI: 10.35940/ijrte.F6851.0310622
Journal Website: www.ijrte.org

where C(i) is the cost of fetching object i from the server
into the cache; S(i) is the size of object i; L is an aging factor.
L starts at 0 and is updated to the key value of the last
replaced object. The key value K(i) of object i is updated
using the new L value since object i is accessed again. Thus,
larger key values are assigned to objects that have been
visited recently. If the cost is set to 1, it becomes GDS (1),
and when the cost is set to P = 2+size /536 [11], it becomes
GDS(P).

While Greedy-Dual-Size-Frequency (GDSF) is extended
of GDS by containing the access frequency aspect in
assigning key value. GDSF has considered the access
frequency as in Eq. (8).

K(i) = L+F(i)*(C(i)/S(i)) (8)

where F(i) is the frequency of the visits of object i.

Initially, when object i is requested by the user, F(i) is
initialized to 1. If object i is in the cache, its frequency is
increased by one. Similar to GDS, we then have GDSF(1)
and GDSF(P). GDSF has the best BHR. However, GDSF
does not predict future accesses. GDS and GDSF are used
effectively in Root-level proxies.

Our algorithm proposes called GDSF-EXT to overcome
this drawback by including in each Web cache system a
LEWC extended local web cache (Local Extended Web
Cache) to temporarily store discarded Web objects when
executing GDSF. For Proxy Cache levels GDSF algorithm
gives a good HR and BHR ratio. However, the fact that the
variety of Web objects, especially the contents of multimedia
services, does not make these algorithms highly efficient.
Because at one time a Web object i is considered to have the
least access frequency with the smallest K(i) value, it is
discarded, but at other times it has a high access frequency.
Or conversely the object at a time object i is considered to
have large K(i) so it is cached, but then it has the smallest K(i)
and is discarded.

The GDSF-EXT implementation process is as follows
(Fig. 2): when you slide the first object in the Web cache, you
must search the LEWC extended cache to see if any previous
objects have been replaced that match the HTTP request. If
so, it's hit the Web cache. Only when not in LEWC should the
HTTP request be forwarded to the next Web cache at the
same level. Figure 2 shows the implementation of the
GDSF-EXT replacement algorithm for the Web Cache case
at IC levels: IC0 and IC1.

When performing a replacement, first finding the
least-referenced region of a size that fits the replacement (not
necessarily the last), the replaced object is written to LEWC,
and a new Web object from neighboring web cache is moved
into the alternate zone. If not found in the less-referenced
region, then search outside this area from the beginning (by
SIZE), which means that the replacement object is large. The
replaced object will also be written to the LEWC. In case
there is no area of sufficient size, two neighboring regions
must be selected instead. The proposed algorithm’s HR needs

to include web objects that are replaced but written to LEWC
and then passed back to the Web cache for HTTP request
responses.

Figure 2. GDSF-EXT algorithm

Based on Fig. 2, the cache hit ratio of the GDSF-EXT and

GDSF algorithms are calculated as:

()
objectsrequestedofnumberTotal

LEWCinobjectshitofNumbercachewebinobjhitofNumber
TN

LEWCinHNCinHN
EXTGDSFHR

)(+

=
+

=−

(9)

objectsrequestedofnumberTotal

cachewebinobjectshitofNumber

TN

CHN in
GDSFHR ==

(10)

From Eqs. (9) and (10), it is clear that GDSF EXT GDSFHR HR−  when

the same value of HNinC.

http://www.ijrte.org/

Development of Web Caching Replacement in Internet Service Based on GDSF

86

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.F68510310622
DOI: 10.35940/ijrte.F6851.0310622
Journal Website: www.ijrte.org

In addition, the web objects are retrieved directly from
LEWC in response to HTTP requests. The system will make
small the response delay, and the replacement algorithm is
fast. The process of replacing caches in Web Caches is
similar at all cache levels. The disadvantage of GDSF-EXT is
that it requires additional cache expansion to store the
replaced Web objects. However, the problem of memory
capacity is easily solved with current memory technology.

To demonstrate that the GDSF-EXT algorithm has high
performance for many web caches at each cache level in the
internet web caching architecture of the ISP network which
will be necessary to simulate and test a large number of
HTTP requests and calculation Eq (1).
Cache replacement algorithm GDSF-EXT
 Input: the sequence of web objects requested: w1,w2,….,ws

Cache content queue: Top: web object with the maximum
value K(Ik), bottom: web object with the minimum value
K(I1)
Ext-cache: store web object evicted from cache: R(wi),…
Output: the processing of each object by the cache
replacement algorithm, and then return the requested object
sequence.

1. Initialize ;
2. For each object wi in w1,w2,….,ws F(wi) is initialized to

1 if object wi is requested by the user is not in the cache
3. If wi is already in the cache then
4. K(wi) = L+F(wi)*(C(wi)/S(wi));
5. End if;
6. If wi is not in cache then
7. If wi is not in Ext-cache then
8. While there is not enough room in the cache

for wi ;
If S(Ii) >= S(wi) and K(Ii) is the minimum value of all
the objects in the cache then evict Ii from cache and
store Ii into Ext-cache

9. End while;
10. Bring wi into cache;
11. K(wi) = L+F(wi)*(C(wi)/S(wi));
12. If wi is in Ext-cache then
13. While there is not enough room in the cache

for wi ;
If S(Il) >= R(wi) and K(Ii) is the minimum value of all
the objects in the cache then evict Rl from the cache and
write Ii from Ext-cache into the cache

14. End while;
15. Bring Ii into cache;
16. K(Ii) = L+F(Ii)*(C(Ii)/S(Ii));
17. End For;

18. Return to requested web object sequence;

IV. SIMULATION AND CALCULATIONS

A. Illustrating The Implementation GDSF-EXT
Algorithm

Illustrating the implementation of the GDSF-EXT
algorithm is shown in Figure 3 between two Proxy Cache
systems 0 and 1 (or Web Cache). Assuming that in Proxy
Cache 0 has size =25 and free. Similarly in Proxy Cache 1
with Web objects: a=9, b=7, c=5, d=2, n=11, m=7, k=2.
Thus, the HR hit rate is 3/10 based on 10 hits. If DGSF is
used, these objects b, a, and m must be discarded, they are not

recoverable for Proxy Cache 0 when re-referenced.
Therefore, the HR = 0/10 is achieved with GDSF.

The following table simulates the array of objects accessed
in cache 0: k, b, d, c, a, m, n, d, a, m

Figure 3. Illustrating the implementation of the

GDSF-EXT algorithm

B. Setting and simulation

In this simulation, we used the request from Table. 1. The
main caching has size 1000. And GDSF-EXT is considered
in two cases: extended cache size 30, extended cache size 100
and extended cache size 500.

Table. 1. All requests for the simulation
Time request ID Size

1 26 1
2 3 2
3 3 2
4 341 2
5 3 2
6 3 2
7 28 8
8 0 1
9 0 1

10 103 1
11 4 1
12 7 1
13 335 4
14 165 2
15 688 1
16 18 1
17 10 1
18 46 10
19 22 1
20 237 1
...

10492 853 1

(a) Number of HITs for 100 first requests

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-10 Issue-6, March 2022

87

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.F68510310622
DOI: 10.35940/ijrte.F6851.0310622
Journal Website: www.ijrte.org

(b) Number of HITs for 100 last requests

(c) Number of HITs for all requests

Fig. 3. Simulation result of original GDSF and
GDSF-EXT with the difference extended caching

Table 2. Hit of original GDSF and GDSF-EXT With the

Difference Extended Caching

Algorithm Original
Extended cache

with size 30
Extended cache

with size 100

Percent of hit 86.44% 86.71% 87.27%

Based on the result in Fig. 3, we can see all algorithms

have a similar result within 100 first requests (Fig. 3a)
because the main caching is not full at this time. It is a really
big change in 100 last requests (Fig. 3b) when the number of
hits meets 9156, 9098, and 9096 related to original GDSF,
GDSF-EXT with extended cache with size 30, and
GDSF-EXT with extended cache with size 100. Thus, both
theoretically and simulations show that the GDSF-EXT has
higher performance than the original GDSF algorithm by
using a new extended caching

V. CONCLUSION

This paper presents a new algorithm named GDSF-EXT
based on GDSF for the web caching replacement by using an
extended cache as a second memory. Therefore, the
frequency of requests is considered better than GDSF. From
the equation of theoretically and code C# for simulation, all
results show that GDSF-EXT has a higher performance of
HIT than GDSF. Then our proposal could be applied to the
web caching replacement area to make better consummation.
In future work, we will use a queueing model and a
random-time Petri network to perform simulations and
performance analysis for a full system

REFERENCES

1. S. Podlipnig and L. Böszörmenyi, "A survey of Web cache
replacement strategies," J ACM Comput. Surv., vol. 35, no. 4, pp.
374–398, 2003.

2. C. S. MukeshDawar, "A Review on Web CachingTechniques," J
International Journal of Advanced Research in Computer Science
Software Engineering, vol. 2277.

3. D. R. CH, "Study of The Web Caching Algorithms for Performance
Improvement of The Response Speed," J Indian Journal of Computer
Science Engineering, vol. 3, no. 2, 2012.

4. K. Arora and D. R. CH, "Web cache page replacement by using LRU
and LFU algorithms with hit ratio: a case unification," J Int. J.
Comput. Sci. Inf. Technol, vol. 5, no. 3, pp. 3232-3235, 2014.

5. W. Ali, S. M. H. Shamsuddin, and A. S. Ismail, "A Survey of Web
Caching and Prefetching," 2011.

6. W. Kin-Yeung, "Web cache replacement policies: a pragmatic
approach," IEEE Network, vol. 20, no. 1, pp. 28-34, 2006.

7. S. Hosseini-Khayat, "Investigation of generalized caching,"
Washington University, 1998.

8. O. A. Mohammed and S. A. Talab, "Novel Web Cache Replacement
Algorithm," International Journal of Computer Science and
Information Technology & Security (IJCSITS), vol. 8, no. 3.

9. W. Ali, S. M. Shamsuddin, and A. S. Ismail, "Intelligent Web proxy
caching approaches based on machine learning techniques," Decision
Support Systems, vol. 53, no. 3, pp. 565-579, 2012/06/01/ 2012.

10. W. Ali, S. Sulaiman, and N. B. H. Ahmad, "Performance
improvement of least-recently-used policy in web proxy cache
replacement using supervised machine learning," in SOCO 2014,
2014.

11. P. Cao and S. Irani, "Cost-Aware WWW Proxy Caching Algorithms,"
in USENIX Symposium on Internet Technologies and Systems, 1997.

12. T. Ma, J. Qu, W. Shen, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan,
"Weighted Greedy Dual Size Frequency Based Caching Replacement
Algorithm," IEEE Access, vol. 6, pp. 7214-7223, 2018.

13. L. Keqiu and S. Hong, "An Improved GreedyDual Cache Document
Replacement Algorithm," in IEEE/WIC/ACM International
Conference on Web Intelligence (WI'04), 2004, pp. 457-460.

14. L. Cherkasova, "Improving WWW Proxies Performance with
Greedy-Dual- Size-Frequency Caching Policy," 1998.

15. P. Rodriguez, "Web caching architectures: hierarchical and
distributed caching," 1999.

16. H. KL and T. NX, "Performance Analysis of Hybrid Web Caching
Architecture," American Journal of Networks and Communications,
vol. 4, no. 3, pp. 37-43, 2015.

17. G. K. Zipf, "Relative Frequency as a Determinant of Phonetic
Change," Harvard Studies in Classical Philology, vol. 40, pp. 1-95,
1929.

AUTHORS PROFILE

Mr. Nguyen Xuan Truong is Vice Head of
Department of Training, Hung Yen University
Technology and Education, Vietnam. He has
completed M.Sc (Information Technology) at Hanoi
University of Science and Technology. Currently, he is
pursuing his Ph.D. candidate in Mathematical

foundations for informatics at Military Institute of Science and Technology,
Vietnam. His interest is web caching replacement algorithms for internet
service and optimization networks.

Dr. Ho Khanh Lam has more than 17 years of
practical experience in the field of computer
technology and data transmission networks and the
internet. He is a lecturer at Hung Yen University of
Technology and Education at the faculty of
information technology since 2011. He got Ph.D.

degree in 1999 with the topic: improving the reliability
of communication networks. He has successfully guided 02 doctoral students
to successfully defend their doctoral thesis and published many scientific
works in the fields of optimization and performance evaluation of computer
network systems, parallel computing, supercomputers. He has successfully
guided 02 doctoral students to successfully defend their doctoral thesis and
published many scientific works in the fields of optimization and
performance evaluation of computer network systems, parallel computing
supercomputers...

http://www.ijrte.org/

