
FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 1

Fast Context Adaptation in Cost-Aware
Continual Learning

Seyyidahmed Lahmer, Student Member, IEEE, Federico Mason, Member, IEEE,
Federico Chiariotti, Member, IEEE, and Andrea Zanella, Senior Member, IEEE

Abstract—In the past few years, DRL has become a valuable solution to automatically learn efficient resource management strategies
in complex networks with time-varying statistics. However, the increased complexity of 5G and Beyond networks requires
correspondingly more complex learning agents and the learning process itself might end up competing with users for communication
and computational resources. This creates friction: on the one hand, the learning process needs resources to quickly convergence to
an effective strategy; on the other hand, the learning process needs to be efficient, i.e., take as few resources as possible from the
user’s data plane, so as not to throttle users’ QoS.
In this paper, we investigate this trade-off and propose a dynamic strategy to balance the resources assigned to the data plane and
those reserved for learning. With the proposed approach, a learning agent can quickly converge to an efficient resource allocation
strategy and adapt to changes in the environment as for the CL paradigm, while minimizing the impact on the users’ QoS. Simulation
results show that the proposed method outperforms static allocation methods with minimal learning overhead, almost reaching the
performance of an ideal out-of-band CL solution.

Index Terms—Resource allocation, Reinforcement learning, Cost of learning, Continual learning, Meta-learning, Mobile Edge
Computing.

✦

1 INTRODUCTION

THE role of Artificial Intelligence (AI) in communication
networks has become more and more central with the

transition from 4G to 5G, and learning is at the core of
the 6G standardization process [1]. Mobile networks are
no longer designed as rigid entities that the final users
have to adapt to, rather are becoming customizable services
evolving according to the users’ needs [2]. The Network
Slicing (NS) paradigm supports this approach by enabling
the definition of multiple logical networks overlaying the
same physical infrastructure [3], with each slice devoted
to a specific class of service. This allows applications with
very different requirements to coexist and share spectrum
resources. However, managing NS, as well as other ad-
vanced application scenarios, requires judicious allocation
of both transmission and computational resources to users,
according to their Quality of Service (QoS) targets, in a fast-
paced scenario [4], which is expected to become even more
straining with 6G.

Hand-designed resource allocation strategies may not be
up to this challenge, so that growing attention has been ded-
icated to machine-learning approaches. In particular, Deep
Reinforcement Learning (DRL) is considered a promising
framework for deriving adaptable and robust strategies for
network orchestration [4] and resource allocation [5].

DRL’s effectiveness in dealing with complex scenarios
is indeed well-established: with proper training, the DRL

This work was supported by the EU H2020 MSCA ITN project Greenedge
(grant no. 953775) and by the European Union, under the Italian National
Recovery and Resilience Plan (NRRP) of NextGenerationEU, as part of the
REDIAL (SoE0000009) Young Researchers grant and the partnership on
“Telecommunications of the Future” (PE0000001) - program “RESTART.”

agents can find foresighted policies aiming for long-term ob-
jectives [6], significantly improving network performance.
Such promising results, however, have been typically ob-
tained in stationary environments: if this assumption is not
satisfied, the performance of pre-trained DRL agents may
dramatically decrease when the network dynamic shifts
away from the training environment.

Approaches based on the Continual Learning (CL)
paradigm [7] are designed to deal with non-stationary sys-
tems. CL enables the adaptation of a learning agent to a
series of subsequent tasks that, in a network scenario, may
represent different network configurations. We observe that
combining CL and DRL for managing network resources in
non-stationary scenarios has a non-negligible cost in terms
of energy, computation, and communication resources [8].
These resources are necessarily subtracted to the data plane,
i.e., the part of the system that is responsible for transmit-
ting, processing, and forwarding user data packets. There-
fore, supporting the learning represents an overhead for
the system, which can negatively impact users’ QoS. We
use the term cost of learning to indicate the impact that the
learning process can have on users’ performance due to the
resources it requires. Considering such a cost implies that
the learning framework, in addition to being effective, must
also be efficient, that is, require as few resources as possible to
achieve its goals. The cost of learning problem is particularly
critical considering the ever-larger size of most recent DRL
neural networks, and the growing demand for efficient
systems, as for the green networking paradigm [9]. We
observe that Mobile Edge Computing (MEC) [10] solutions
does not solve the problem, but just move it at the network
edge. In fact, while MEC allows computationally-expensive
tasks (such as the training of DRL algorithms) to be carried

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 2

out directly in dedicated edge nodes physically close to the
data sources, still the limited transmission, computational
and energetic resources of such nodes have to be shared
between data and learning planes.

Finding a balance between the number of resources to
be used for improving the system reactivity to variations
and those to be allocated for serving the users may be a
very difficult task. This is particularly critical in the case of
CL systems, in which agents must constantly adapt to new
working conditions. As the very same network resources are
also used for the training, a trade-off between the capability
of DRL agent to learn new tasks and its performance during
the current task arises.

Note that, although at a first sight this problem may
recall the well-known exploration-exploitation problem in
learning systems, it is actually fundamentally different. In
fact, the exploration-exploitation problem involves finding
a balance between exploring new strategies, with the risk
of temporarily losing some performance, and exploiting the
currently learned strategy that, however, may be globally
suboptimal, thus wasting part of the system capacity. In this
setting, the resources required by the learning process are
typically ignored: whatever action is taken, the outcome
is assumed to be available to the learner, enriching its
experience, without any cost. In this paper, instead, we look
at the resources needed to transfer such information to the
learner and turn it into experience, irrespective of whether it
originates from an exploration or exploitation action. From
a theoretical perspective, the scenario we look at is hence
a Meta Learning (MeL) one, in which the agent’s actions
determine the efficiency of the learning data aggregation
and processing.

The cost of learning is therefore a fundamental aspect
to be considered in modern network design, and recent
works have proposed learning-based frameworks that are
computation-aware [11]. Despite the high interest of the
scientific community in this field, the cost of learning for
DRL models is still a relatively unexplored subject in the
networking literature, and even the most recent works on
resource allocation and NS ignore the true cost of combining
DRL and CL in modern networks [12], making the effective-
ness of state of the art DRL solutions questionable.

In this work, we analyze the trade-off between effective-
ness and efficiency in CL, formally defining the resource al-
location problem and presenting a heuristic solution to allo-
cate resources to the data and learning planes. The proposed
scheme effectively controls training in a CL framework,
maximizing the efficiency of the training (i.e., reducing
the learning plane overhead) while still achieving effective
resource allocation (i.e., the same QoS as the ideal approach
that assumes learning does not consume users’ resources)
in a reasonable time. Although we applied our optimization
framework to a networking scenario, it is actually more
general and can be adapted to any learning-based allocation
problem in which the allocated resources are also required
for the agent training, such as MEC job scheduling.

The major contributions of our work are the following:

• We define a theoretical model to analyze the trade-off
between effectiveness and efficiency of learning-based
resource allocation schemes;

• We propose a CL strategy to enable the resource
allocation scheme to adapt to sudden changes in
traffic dynamics;

• We test the proposed model in a NS use case, in
which learning agent and system users compete the
same network resources;

• We compare the benefits and drawbacks of the
proposed approach against a static resource-sharing
scheme between data and learning planes, and an
ideal strategy that considers out-of-band resources
for the agent training (or, equivalently, assumes the
learning agent does not consume any user-plane
resources). Our simulation results show that the pro-
posed heuristic performs closely to the ideal (out-of-
band) approach, minimizing the impact of learning
plane traffic during the training.

A partial and preliminary version of this work was pre-
sented in [13]. In this paper, we extend that work by in-
troducing the CL approach, providing a much richer set of
results, and deepening the discussion and analysis of our
observations.

The rest of this paper is organized as follows: first, Sec. 2
reports the most significant related work. We then present
the model for optimizing data and learning plane in Sec. 3
and the NS use case definition in Sec. 4. Successively, Sec. 5
presents the simulation results. Finally, Sec. 6 concludes the
paper and discusses some possible avenues for future work.

2 RELATED WORK

While the latest advances in AI have made it possible to
reach stunning performance levels in multiple fields, there
is still a large gap between human cognition and AI models
in terms of adaptation. Most of the current learning models
need to be retrained from scratch every time a new task
has to be accomplished, with a high cost in terms of com-
putational power and time. For this purpose, the scientific
community has recently leveraged the CL paradigm, which
focuses on learning a series of subsequent data, associated
with different tasks, without catastrophically forgetting the
past knowledge [14]. Therefore, in CL scenarios the goal is
to adapt to a time-varying environment, working on one
task at a time and assuming that future information is
inaccessible. This model appeals to the resource allocation
problem considered in this manuscript, since in realistic
networks the type, number and requirements of the users
keep changing over time, making the system non-stationary
(though stationarity can be assumed during the coherence
intervals, i.e., the time periods during which the main system
parameters do not change).

A baseline CL solution may involve a pre-trained model
that is iteratively adapted to new tasks (or to changes in the
environment), e.g., taking advantage of curriculum learn-
ing, as done in [15]. Replay-based methods form a more
recent class of CL algorithms, which store past experience
in memory or exploit a generative model to reproduce it,
using this information as model input while training on new
tasks [16], [17]. Regularization-based methods, which intro-
duce a penalty term in the model’s loss function with the
goal of avoiding performance degradation in past tasks [18],
[19], form another class of solutions. An extension of the

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 3

aforementioned class is proposed in [20], where the authors
estimate the importance of each learned parameter and
prevent the modifications of such parameters that most
affect performance in past tasks. Finally, architecture-based
methods define an additional branch of the model for
each task, freezing the previously learned parameters when
training the model on new scenarios [21], [22]. An example
is provided in [23], where the authors developed a model
organized into two blocks: the first is retrained every time
a new task arises, while the latter distills the knowledge
acquired for future reuse.

From a different perspective, CL algorithms aim at defin-
ing a strategy to detect the best settings for training a
learning model in new scenarios. This concept falls within
the MeL paradigm, which focuses on convergence speed
and stability [24]. MeL methods differ in the output of
the learning optimization, which may include the weight
initialization strategy [25], the optimizer algorithm [26], the
loss function [27], the dimensions of the learning architec-
ture [28], and other hyper-parameters.

The methodology used for the MeL optimization task
may be based on gradient descent [29], evolutionary algo-
rithms [30], or learning-based approaches. For instance, the
authors of [31] develop a CL model in which a DRL agent
has to define the optimal settings of the task-specific block,
balancing between validation accuracy and model complex-
ity. Besides, MeL methods differ in terms of optimization
goals, which may either be fully based on the model perfor-
mance on a validation set or consider more specific aspects,
such as the adaptability of the solution to multiple tasks [32],
the greater importance of fast adaptation than asymptotic
performance [33], and the difference between online and
offline learning scenarios [34].

In particular, the use of MeL methods for optimizing
DRL models is a relatively new field. In this scenario, the
combination of CL and MeL avoids the need for a central-
ized agent that can handle each possible state-action pair
and enables the definition of multiple and more straight-
forward policies. The authors of [35] show the benefits
of MeL in a real-world scenario, analyzing a DRL robotic
system that exploits a recurrent module to preserve past
knowledge and speed up the training process. Interestingly,
when applying MeL combined with DRL, a fundamental
parameter is the choice of the exploration policy by which
the agent interacts with the environment, which is an absent
aspect in classification tasks. For instance, the authors of [36]
develop a MeL model where prior information is used to
define agnostic exploration policies enabling a better agent
adaptation to multiple learning problems.

In the context of CL and MeL for 5G and 6G network
management, drift detection is a critical task: if the envi-
ronment changes abruptly, the MeL paradigm requires the
learner to first become aware of the change, and delayed
detection may lead to a violation of the service require-
ments [37]. Drifts can be classified as abrupt or gradual
depending on the period during which the system perfor-
mance degrades. The literature presents several drift detec-
tion algorithms, usually considering the prediction error of
the learning model for estimating environment changes. It
is possible to consider both heuristic [38] or learning-based
strategies [39], with different advantages and drawbacks in

terms of, e.g., false alarm probability and assumptions on
the drift characteristics.

Despite the numerous works investigating CL and MeL
in supervised and reinforcement learning scenarios, to the
best of our knowledge none of them considers the trade-
off between efficiency and effectiveness proposed in this
manuscript. In the following sections, we will take ad-
vantage of solutions inspired by the literature, analyzing
their impact in terms of both training efficiency and user
performance. We will consider a baseline CL system where
the models trained for previous tasks are stored in a central
memory, similarly to what is done in [15]. Besides, we will
consider a simple drift detection algorithm to monitor the
environment statistics and trigger the retraining of the learn-
ing model. We chose relatively simple techniques for both
drift detection and CL in order to focus on the main aspect
of our analysis, which is the trade-off between efficiency and
effectiveness in resource allocation problems, as represented
by the cost of learning.

3 SYSTEM MODEL

Let us consider a generic resource allocation problem, which
is modeled as an infinite horizon Markov Decision Process
(MDP) defined by the tuple (S,A,P, R, γ): S represents
the state space, A is the action space (which is potentially
different for each state), P : S × A × S → [0, 1] is the
transition probability matrix, which depends on the current
state, the action chosen by the agent, and the landing state,
R : S × A × S → R is the reward function, and γ ∈ [0, 1)
is the discount factor. Time is divided in slots, and the slot
index is denoted by t ∈ Z+. The ultimate objective of a
DRL agent is to find the optimal policy π∗ : S → A, which
maximizes the expected long-term reward:

π∗ = argmax
π:S→A

E

[∞∑
t=0

γtR(st, π(st), st+1)

]
. (1)

Let us assume that, in each time slot t, the system can
allocate N resource blocks, which may represent commu-
nication bandwidth, computational cycles, or energy units,
depending on the specific application: the type of resource
may affect the definition of the specific MDP, but is imma-
terial for our reasoning. In the following we hence generally
refer to a request, which can be a packet to be transmitted, a
computing job to be executed, or an action to be taken, and
we assume that each request requires exactly one resource
block of some kind (transmission capacity, computational
power, or energy).

The system resources are assumed to be partitioned into
M different slices, where a slice may serve a single user, or a
group of users with the same features. The action space then
contains all possible resource allocation vectors that split the
N resources among the M slices:

A =

{
a ∈ {0, . . . , N}M :

M∑
m=1

am = N

}
. (2)

Furthermore, we assume that each slice is associated to a
First-In First-Out (FIFO) queue of requests: each queue has a
limited size Q, after which the system starts dropping older
requests for that slice to make room for newer ones.

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 4

Fig. 1: Schematic of the learning control loop in a communication scenario: nodes on the left-hand side represent users, belonging to two different slices (blue and
magenta). The connection between the base station and the Internet is used to carry both the users’ traffic (blue and magenta streams) and the data needed to train the
learner in the cloud (green stream), according to the allocation scheme graphically shown above the link.

In this work, we focus on Key Performance Indicators
(KPIs) tied to the latency with which the requests of the
different slices are served. However, the approach can be
generalized to consider other metrics.

We hence indicate by Tm,i the latency of the i-th request
from slice m, which depends on the time it spends in the
queue before being assigned a resource. Dropped or rejected
requests have an infinite latency by definition. The i-th
request from slice m is generated at time tm,i, and age
∆m,i(t) is defined as:

∆m,i(t) = t− tm,i. (3)

We can then define the reward function:

R(s,a, s′) =
M∑

m=1

am∑
i=1

fm
(
∆qm(i)

)
, (4)

where ∆qm(i) is the age of the packet in position i of the m-th
queue at the current time t, and fm : N → [0, 1] is a function
mapping the latency of each request to slice m’s resulting
QoS. With a slight abuse of notation, we define f(∅) = 0,
where ∅ indicates that there is no packet in that position
in the queue. We can distinguish between slices with hard
timing requirements, for which the QoS of a request is 1 if it
is served within a maximum latency, and 0 if it exceeds that
deadline; and soft timing requirements, for which the QoS is
a generic monotonically decreasing function of the latency.

We can then distinguish between rejected and dropped
packets, the first being packets that find a full queue and
are immediately discarded, the second referring to queued
packets whose age is higher than the deadline and, in case of
hard timing requirements, are hence dropped before service
since they would not contribute to the QoS of the slice and
just waste resources. We remark that only slices with hard
timing requirements can experience dropped packets, while
packet rejection can occur in any slice.

It should also be noted that dropped or rejected requests
do not generate any rewards, as they are never included in
the sum. The state of the system is then represented by the
age of each request contained in each queue, so that in the
most general case, S = ({∅} ∪ N)M×Q.

The objective of the learning agent is then to learn how
to allocate resources among users, so as to maximize their
QoS parameters; it should also be aware of the slices that
have a higher risk of violating hard timing requirements and
schedule resources to avoid missing deadlines. However,
learning is also a computational process, and the DRL agent
may take up some of the same resources that may be
allocated to the users in order to improve its policy. As
we highlighted in our previous work [11], considering the
cost of learning can lead to significantly different choices,
limiting the amount and type of experience samples that are
selected for training: this is also true regardless of the type
of resource the learning requires.

However, even that work only considered static policies,
which set up a separate virtual channel (either divided in
time or in frequency) for the learning data, strictly sepa-
rating the learning and data planes. Equivalently, an agent
learning how to schedule tasks in an edge server could
reserve a certain percentage of computation time to self-
improvement, but the amount was decided in advance. This
is clearly suboptimal: intuitively, the relative returns from
policy self-improvement decrease over time, as the agent
gradually converges to the optimal policy. After conver-
gence, and as long as the environment statistics are stable,
the value of further improvements to the policy is zero by
definition. A dynamic policy for adapting the allocation
between requests and learning should then take this into
account.

Furthermore, the current state of the system also needs
to be taken into account: if delaying the queued requests
further does not have a large impact on the QoS, the

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 5

system can take away resources from the slices in order
to improve the resource allocation policy, but if the impact
is big, e.g., if some requests from a slice with hard timing
requirements are already close to the deadline, they need
to be prioritized, choosing immediate gains over potential
future improvements.

This is particularly important for non-stationary envi-
ronments, in which the coherence time of the MDP statistics
is finite: in this kind of system, the learning agent needs
to adapt the allocation to the changing statistics of the
environment, and cannot rely on offline training, but must
keep learning from experience and adapt to the changes
proactively.

3.1 Learning Plane Resource Allocation

One of the problems of including the learning plane in the
resource allocation policy is the circularity of the policy: in
order to learn when to allocate resources to policy improve-
ment, a DRL agent needs to first learn when learning is
important. As the policy evolves over time and learning
becomes less of a priority, this makes the reward that the
agent perceives dependent on the agent’s own reduced
resources demand, making the learning more difficult.

In order to avoid this problem, we set an external rule
to regulate learning, so that the environment that the agent
sees is stationary. We define a generic resource allocation
vector space Z as follows:

Z =

{
z ∈ {0, . . . , N}M :

M∑
m=1

zm ≤ N

}
. (5)

We remark here that Z is not the action space, but rather a
superset of it, i.e., A ⊆ Z : the definition of the action space
in (2) indeed only considers allocations that assign all of the
available resources to the users’ slices, while Z also includes
actions that allocate only part of the resources to the users:
if
∑M

m=1 zm < N , the remaining resources are allocated to
the learning.

We can then divide the time slots in two categories,
which we name DRL and learning: in DRL slots, all the
resources are allocated to the users’ slices according to the
action chosen by the DRL agent, while in learning slots the
resources are divided between the learning process and the
users’ slices, according to a simple, empirical strategy. We
also remark that learning slots are not considered as experi-
ence samples for the DRL training, as the action z in these
slots might not belong to the action space A considered in
the DRL slots.

Fig. 1 shows a basic schematic of the process in the
communication use case: the two classes of users, corre-
sponding to Internet of Things (IoT) (magenta) and human
communications (blue), transmit over a shared link, and the
resources in each time slot (which correspond to bandwidth
and time resources in the uplink to the Cloud) are allocated
following a dynamic division. Slots 3 and 6 in the figure
are learning slots: a significant portion of the resources
is allocated to the learning plane (green line). We remind
the reader that this networking example, while being the
main motivation for our study, is not the only application
of the model, which may also be used to allocate scarce

Fig. 2: Schematic of the learning plane resource allocation policy.

computational or energy resources to different users in a
dynamic scenario.

For the sake of simplicity, we assume that each slot
will be used as a learning slot with probability ρ(t), which
decreases linearly over time as the learned policy becomes
more stable. The actual shape of ρ(t) (i.e., the learning curve)
shall be defined based on the coherence time of the scenario,
i.e., the number of slots τ over which the statistics of the
environment will be approximately stationary. As explained
later (see (14)) here we choose a linear function, but other
choices are possible. We now need to define an allocation
strategy in learning slots.

3.2 Greedy Allocation Strategy

To define an strategy for splitting resources in the learning
slots, we consider two contrasting objectives: minimizing
the loss of QoS for users, and maximizing the number of
experience samples that can be transferred to the learner.

To capture the first aspect, we define a function R̂ :
S × Z → R that represents an approximation of the in-
stantaneous reward for each resource allocation, considering
only the information available in the current state. If the QoS
functions {fm(·)} are known, we can consider the following
function:

R̂(s, z) =
M∑

m=1

 zm∑
i=1

fm
(
∆qm(i)

)
−

L∑
j=zm+1

fm
(
∆qm(i) + 1

) .
(6)

Note that maximizing (6) may lead to suboptimal resource
allocations, since R̂(s, z) does not account for the long-term
reward.

To model the second aspect, we consider that each DRL
slot generates an experience sample, which requires ℓ pack-
ets (and as many resources) to be transferred to the learner.
Due to memory limitations, we assume that the number of
samples that can be buffered cannot exceed E. We hence de-
fine a second function S(z, e) that captures the effectiveness
of the allocation z in transferring the e ∈ {0, . . . , E} samples
in the experience queue. In this paper, we define S in terms
of the number of experience samples that we manage to
transmit in the learning slot, defined by (17) in our use case,
but, once again, this is a reasonable but arbitrary choice and
other options might be more suitable for other scenarios.

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 6

The greedy strategy is then the solution to the following
optimization problem:

z∗(s, z, e) = argmax
z

(
M−1R̂(s, z) + E−1S(z, e)

)
. (7)

If fm is concave for all slices with a soft timing requirement,
we can exploit the FIFO nature of the queue to provide a
simple iterative solution, starting from the empty assign-
ment and gradually assigning resources to either one of
the slices or the learning process, depending on the value
of the utility function. Fig. 2 shows a schematic of the full
learning plane resource allocation strategy in a simple case
with M = 2: at each time step, the node randomly selects
either the DRL agent or (with probability ρ(t)) the greedy
allocation, which reserves some resources for the learning
plane.

3.3 Continual Learning
We assume the environment can be characterized by a set
of parameters ω, which determine its stochastic dynamic.
From time to time, this parameters can instantaneously
change, making the environment non-stationary (in the DRL
jargon, changing the task) and requiring the strategy to be
updated in order to pursue the new task.

To cope with such a non-stationary context we proposed
a CL strategy similar to the work in [15], but including con-
siderations on the cost of learning. When a context-change
is detected, say from ω to ω′, we consider its significance
by means of a distance function η(ω,ω′): if it is larger
than a threshold ηthr, we consider the environment to be
novel enough to warrant a retraining. On the other hand,
if the change is smaller than the threshold, we implictly
assume that the policy is close enough to the optimum that
maintaining it is cheaper than running a new training phase.

We define the environment index k ∈ N, which starts
from 0 and is incremented at every significant change in the
environment. Our solution maintains a record of the past
environments and the respective learned policies, so that as
the environment shifts into the new context ωk+1 = ω′, we
can find the closest past environment:

j∗ = argmin
j∈{0,...,k}

η(ωj ,ω
′). (8)

If the previously experienced environment is close enough
to the new one, i.e., η(ωj∗ ,ω

′) < ηthr, we can apply the
stored policy directly, relying on a short training phase with
increased exploration rate and training probability ρ(t) to
adapt to the small change. If no environment in the memory
is close enough, training needs to begin from scratch, with
slower and more expensive training phase.

4 NETWORK SLICING USE CASE

To substantiate the approach on a practical but easy to an-
alyze use case, we consider the resource allocation problem
in a simple network slicing scenario. We assume a common
communication link is used to transmit both the data pack-
ets generated by the users, which belong to two different
network slices, and the pieces of information used to feed
the learner. Time is divided in slots of constant duration
τ , and in each slot the transmission channel can carry N

TABLE 1: Use case and learning parameters.

Parameter Symbol Value

Communication system

Number of subchannels N 15
Slot time duration τ 1 ms

Packet queue length Q 1500
Packet size L 512 B

Link capacity C 7.68 MB/s

Learning plane

Discount factor γ 0.95
Learning queue length E 1500

Packets required for each sample ℓ 3
Initial learning slot probability ρ0 0.2
Final learning slot probability ρf 0.01

Learning slot probability decay σ 8× 10−4

Learning slot decay pace H 1000
Queue pressure parameter χ1 1400

orthogonal and identical resource blocks. The scenario fits
the general model presented in the previous section, as the
communication resources are shared between the data and
learning planes. The full parameters for the scenario, which
we will describe in this section, are given in Tab. 1.

4.1 Communication System Model
We consider two slices, corresponding to the two types of
data sources:

• Slice 1 is for bulky file transfer, for which we do not
set any strict latency constraints. However, we want
the system to have the highest possible reliability
to ease the burden on the higher layers. As such,
f1(T) = 1 for all finite values of T , but the QoS is
0 if T is infinite (i.e., if the packet is dropped);

• Slice 2 is intended for interactive traffic, such as
video conferencing or Virtual Reality (VR) traffic,
with a strict latency deadline: packets need to be
transmitted with a maximum latency T

(2)
soft . For the

sake of simplicity, we assume that, after T
(2)
soft , the

utility decreases linearly with time, dropping to 0
if the latency is higher than T

(2)
max ≥ T

(2)
soft , i.e.,

f2(x) = 1 if 0 ≤ x ≤ T
(2)
soft , and f2(x) =

max
(
0, 1− (x− T

(2)
soft)/(T

(2)
max − T

(2)
soft)

)
if x > T

(2)
soft .

We remark that, although these QoS functions are reason-
able, they may not be the most appropriate to represent
the considered slices. Since the purpose of this study is to
gain insights on the cost of learning in dynamic systems,
more than proposing a quantitative performance analysis of
the use-case, we prefer these neatly-shaped functions that
allow for a qualitative performance analysis while easing
the interpretability of the results.

The number of active users in each slice is variable,
making traffic non-deterministic. We consider a maximum
number of active users Um ∈ N for each slice m ∈ {1, 2}.
Each user follows a on-off model, which can be modeled as
a Gilbert-Elliott binary Markov chain with transition prob-
ability matrix O(m). In state 0, the user does not transmit,

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 7

TABLE 2: Traffic Model Parameters

Env. Index Policies Slice 1 Params Slice 2 Params

ωstart ωend U1 R1 O(1) E [U1] U2 R2 O(2) E [U2] T
(2)
soft T

(2)
max

ω0 θ ∼ N (0, 0.1) θω0 28 512kB/s

(
0.617 0.382

0.544 0.455

)
11.561 5 512kB/s

(
0.156 0.843

0.763 0.236

)
2.625 50ms 70ms

ω12 θω1 θω12 15 512kB/s

(
0.158 0.841

0.218 0.781

)
11.908 30 512kB/s

(
0.925 0.074

0.672 0.327

)
2.976 50ms 70ms

ω102 θω23 θω102 20 512kB/s

(
0.797 0.202

0.316 0.683

)
7.810 83 512kB/s

(
0.949 0.050

0.547 0.452

)
6.944 50ms 70ms

ω110 θω75 θω110 9 512kB/s

(
0.696 0.303

0.156 0.843

)
5.937 37 512kB/s

(
0.804 0.195

0.620 0.379

)
8.870 50ms 70ms

while in state 1, it transmits packets of size L with a constant
bitrate Rm.

The aggregate traffic generated by slice m is then rep-
resented by the number um(t) of active users at time t,
multiplied by Rm. We can then define a Markov chain over
um ∈ {0, . . . , Um}, with the following transition probabili-
ties:

P (um(t+ 1) = v|um(t) = u) =

min(u,v)∑
w=max(0,u+v−Um)

(O
(m)
11)w(O

(m)
10)u−w

×
(
u

w

)(
Um − u

v − w

)
(O

(m)
01)v−w(O

(m)
00)Um−u−v+w.

(9)
The expected traffic Gm from slice m can be computed as:

E [Gm] =
O

(m)
01 UmRm

O
(m)
01 +O

(m)
10

. (10)

On the other hand, the total channel capacity is simply:

C =
NL

τ
. (11)

With the values in Tab. 1, we obtain C = 7.68 MB/s.
Note that, based on the definition, slice 1 can only expe-

rience rejected packets, while slice 2 can have both rejected
and dropped packets (if their age exceeds the deadline
T

(2)
max).

4.2 Learning Plane

In this part we define the two components of the learning
plane, i.e., the DRL agent, which will assign resources
during the DRL slots, and the greedy split approach, which
manages resource allocation in the learning slots.

DRL agent settings: We use a Deep Q-Network
(DQN) [40] for the agent, as the problem is simple enough
not to require more advanced architectures.

We consider a simplified state: for each slice m ∈ {1, 2},
the input to the network is given by the following values:

• The number qm ∈ {0, . . . , Q} of packets in the queue;
• The minimum latency Tmin

m for packets transmitted
in the previous slot;

• The maximum latency Tmax
m for packets transmitted

in the previous slot;
• The average latency T

avg
m for packets transmitted in

the previous slot;

• The number dm of discarded (dropped or rejected)
packets in the previous slot;

• The current number am of resource blocks allocated
to the slice.

The values for each queue are contained in the tuple
s(m) = (qm, Tmin

m , Tmax
m , T

avg
m , dm, am), to which we add

another parameter ξ(m), i.e., the difference in the utility for
slice m if packets are not transmitted in the next slot. For
slice 1, i.e., the latency-insensitive one, this corresponds to
the expected number of rejected packets; for the second slice,
it is only applicable if some packets are close to or over the
soft deadline T

(2)
soft . If the head-of-line packets are close to

T
(2)
max, this can even lead to packet drops. We can define it as

follows:

ξ(2) =

qm∑
i=1

f2
(
∆q2(i)

)
− f2

(
∆q2(i) + 1

)
. (12)

As the first slice does not have latency requirements, there
are no equivalent parameters for it. All the input values are
normalized to fit in the range between 0 and 1.

The input to the DQN is then given by s(m), ξ(m) which
corresponds to a total of 13 values; the training parameters
are defined in Tab. 1.

For what concerns the action space, we denote by at =
[a1, a2] the resource allocation vector during slot t. At each
step, the DRL makes an action δt to change the resource
allocation as:

at+1 = at + δt. (13)

For the sake of simplicity and interpretability of the results,
we admit only actions δt ∈ {(1,−1), (0, 0), (−1, 1)} that
change the allocation to each slice of at most 1 resource
block per step. The outputs of the DQN correspond to
the estimated long-term value of selecting each δt, so the
network only has 3 output values.

The full network architecture is given in Table 31.
Greedy split algorithm settings: We set the size of the

experience sample queue E = 1500, and implement an early
rejection policy. When a sample is generated, its rejection
probability is equal to e

E , i.e., to the current pressure on
the queue. Consequently, samples that find a full queue are
always rejected, but sometimes samples that could fit in the

1. The complete implementation of the DQN agent and dynamic
resource allocation is available at https://github.com/slahmer97/
costoflearning

https://github.com/slahmer97/costoflearning
https://github.com/slahmer97/costoflearning

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 8

TABLE 3: DQN architecture.

Layer size
Activation function

Input Output

13 64 ReLU
64 32 ReLU
32 3 Linear

queue are dropped in favor of new experiences, avoiding
too many correlated samples filling the queue.

The probability of selecting a slot as a learning slot de-
cays linearly, starting from an initial value ρ0 and gradually
decaying to a value ρf : every H steps the learning rate is
decreased by a constant value σ:

ρ(t) = max

(
ρf , ρ0 −

⌊
t

H

⌋
σ

)
. (14)

Finally, we consider the greedy allocation in the learning
slots. As the first slice has no latency requirements, we
consider allocating resources to it greedily only when the
number of packets in the queue is higher than a threshold
χ1: in this way, we avoid packet rejections, but also leave
more resources for learning plane and latency-sensitive
packets.

We can then define the following estimated rewards:

R̂1(s, z) = min(0, z1 −min(q1 − χ1, N)); (15)

R̂2(s, z) = min(0, z2 −min(ξ2, N)); (16)

S(z, e) = −
(
min(e,N)−

(
N −

2∑
m=1

zm

))
. (17)

The minimum operation ensures that resources will not be
allocated to a slice once the queue pressure is below the
limit ξ1 or all packets with a close deadline are served,
respectively. We can define the following problem:

z∗(s, z, e) = argmax
z∈Z

S(z, e) +
2∑

m=1

R̂m(s, z). (18)

As the problem can easily be converted to an integer linear
problem, we can easily solve it through iterative methods.

4.3 Continual Learning
In our environment, the statistics of the traffic change peri-
odically every 500 seconds: the parameter vector ω includes
O(1), O(2), U1, or U2, and as a result, corresponding changes
are made to the transition matrix P. The policy for a given
set of environmental parameters ω is defined by the set of
corresponding trained weights vectors in the DRL neural
network, θω .

In the slicing task, the average traffic for each slice is
enough to characterize a new environment, and we can
identify each context with the vector ω = (E [U1] ,E [U2]).
Additionally, we define the threshold η as the point at which
we trigger this event. In other words, we only initiate a
change event if the distance between two environments
is greater than η. While the average may not accurately
represent the environment due to potential variance changes
with a constant average, in our specific scenario, the average
proved sufficient in maintaining a system performance near

the ideal one (as described in the following section). The
implementation of a robust method for detecting changes
in the environment is critical, as the failure to identify a
true change or the detection of a false change can lead
to a degradation in system performance. However, in this
study, we focus on the efficiency-vs-effectiveness tradeoff of
the learning and defer the study of advanced and reliable
context-recognition problem to future research.

Following the strategy we outlined in Sec. 3-3.3, the
weights of the neural network are chosen from the closest
environment observed in the past. We can also make an
additional consideration: if the offered traffic is decreasing
for both slices, the previous policy will still obtain good
results, as the new environment is substantially easier than
the previous one. We then define a strict minority relation
between vectors, so that x ≺ y if the two vectors x and y
are the same length and each element of x is smaller than
the corresponding element of y:

x ≺ y ⇔ |x| = |y| ∧ xi < yi, ∀i ∈ {1, . . . , |x|}. (19)

We also employ the Euclidean distance to define η(ω,ω′)
between two environments, so the centralized agent is up-
dated as follows:

θωk+1
=

θωk

, if ωk+1 ≺ ωk;

θωj∗ , if ∥ωk+1 − ωj∗∥2 < ηthr;

θ ∼ N (0, 0.1), otherwise,
(20)

where ||x||2 is the ℓ2 norm of vector x. After the new weight
vector is selected, the algorithm temporarily increases both
the training slot probability ρ(t) and the exploration rate of
the DRL agent, so that the new policy can be adapted to the
new task.

5 SIMULATION SETTINGS AND RESULTS

In this section, we present numerical findings that demon-
strate the efficacy of the dynamic learning plane resource
allocation policy in a non-stationary environment. To assess
the proposed framework, we run the resource allocation for
64000 seconds, corresponding to 128 coherence periods last-
ing 500 seconds each. As each allocation step corresponds to
1 ms, this means that the environment is statistically stable
for 5× 105 steps, then abruptly transitions to a different be-
havior. The changes in the environment are produced using
Algorithm 1. In the algorithm, we denote the probability of
a user belonging to slice m being active as onm, and the
uniform distribution between a and b as U(a, b). The full
parameters of the simulation model are given in Tables 1
and 2.

We consider four different benchmarks for the proposed
scheme:

• Out-of-band: this scheme represents the ideal case
in which training data is transmitted over a side
channel with infinite capacity. This aligns with the
common assumption in the literature of free training,
and represents an upper bound for performance;

• Frequency Division Multiple Access (FDMA): here we
assume 1 resource block in each slot is reserved to
the learning plane, while the other 14 resource blocks
can be freely allocated to the users’ slices;

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·104

0

5

10

15

20

Time (s)

A
ct

iv
e

flo
w

s

(a) Instantaneous number of active flows.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·104

0

5

10

15

20

Time (s)

A
ct

iv
e

flo
w

s Actual value
Estimated value

(b) Smoothed number of active flows.

Fig. 3: Number of active flows over time for each coherence period in the first slice.

0 125 250 375 500
0

200

400

600

800

Time (s)

Le
ar

ni
ng

da
ta

(s
am

pl
e/

s)

Fig. 4: Average number of forwarded learning samples per second.

• Time Division Multiple Access (TDMA): we consider a
time division between the learning and data planes,
in which all available resources are allocated to the
learning plane once every Tℓ slots. We consider two
cases, with Tℓ = 10 and Tℓ = 100.

In the following, we will also consider a normalized reward,
equal to 1 if all packets are delivered with utility 1 (i.e.,
before T

(2)
soft if they belong to slice 2) and 0 if all packets are

dropped or rejected.
Fig. 3a shows the total number of active flows (i.e., of

users transmitting data in the slot) in the first slice during
the entire simulation time, while Fig. 3b reports a smoothed
time average, along with the tracked number of active flows.
We can clearly see that the smoothed average is tracked rela-
tively well, so that any significant drift is detected promptly
and dealt with by the CL scheme.

We can also consider the effect of the shared resources on
both the learning and data planes: Fig. 4 shows how many
experience samples are forwarded to the Cloud during
the training process. Following the linear decay of ρ(t),
the number of new experience samples transmitted for

Algorithm 1 Environment Parameter Update

Output: O(1), O(2), U1, U2

1: while E[Gm]
C /∈ [0.75, 1.1] do

2: for i ∈ [1, 2] do
3: O(i)[1][1] = U(0.05, 0.95)
4: O(i)[1][0] = 1.0−O(i)[1][1]
5: O(i)[0][0] = U(0.05, 0.95)
6: O(i)[0][1] = 1.0−O(i)[0][0]
7: end for
8: on0 = O(0)[0][1]

(O(0)[0][1]+O(0)[1][0])

9: on1 = O(1)[0][1]
(O(1)[0][1]+O(1)[1][0])

10: U1 = random
(
2,
⌊

14
on0

⌋
, 1
)

11: U2 =
⌊
max(⌊15−U1on0⌋,1)

on1

⌋
12: Compute the resulting E[Gm]
13: end while
14: return O(1), O(2), U1, U2

training is initially very high, but decreases over about 70
seconds to reach the minimum, which is between 40 and 50
samples per second. This rate is high enough to guarantee
that changes in the environment statistics are captured, but
does not impact the final performance, as we will show in
the following. Furthermore, we can analyze the impact of
learning slots on the instantaneous reward by looking at the
empirical Cumulative Distribution Function (CDF) of the
reward penalty from using the greedy allocation, shown in
Fig. 5: the reward loss is 0 in 40% of cases, and below 0.1 in
80% of cases. This means that the greedy allocation can still
guarantee good performance in most cases, and as such, is
a robust strategy for the learning slots.

We have explored the impact of three different initializa-
tion strategies on system performance: the proposed strat-

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 10

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Reward loss

Em
pi

ri
ca

lC
D

F

Fig. 5: Empirical CDF of the reward loss during learning slots.

Nearest Previous Random
0

0.2

0.4

0.6

0.8

1

Initialization policy

R
ew

ar
d

Fig. 6: Distribution of the performance with different initialization strategies after
drift is detected.

egy, which uses the nearest recorded environment, provides
a significant boost over keeping the previous environment
or randomly selecting a memorized one, as Fig. 6 shows: the
nearest environment selection improves CL by starting the
DQN with weights that are already close to the correct ones,
reducing the mistakes in the initial phases of the retraining
(as shown by the limited number of outliers in the boxplot).

We also sampled four different coherence periods for the
system (i.e., periods of time during which the context does
not change), whose parameters are reported in Tab. 2. The
reported index corresponds to the time of their appearance
in the simulation. In all the selected environments, the load
is greater than 0.945, i.e., the offered traffic is very close
to the channel capacity, and in env. 12 and 110, the load
is around 0.99. Fig. 7 shows the average reward for these
environments, along with the packet drop rate for slice 1
(i.e., packets exceeding T

(2)
max, which are dropped from the

queue as their utility is 0) and the packet rejection rate
for slice 2 (i.e., packets which find a full buffer and are
discarded directly). The indices of the periods represent an
incremental number of different environment seen by the
CL agent: the first, with index 0, is the first to be seen, while
there are 12 other periods between 0 and 12, and so on. Each
period has the same duration, i.e., 500 seconds.

As a first observation, we note that the ideal out-of-
band policy, which neglects the cost of learning, clearly
outperforms those that reserve some resources to the learn-
ing plane, which confirms that the cost of learning is not
negligible and needs to be accounted for when designing
the resource allocation strategies, as we have done in our
”Dynamic” scheme. The bar plots in Fig. 7a-d, in fact,
show that our scheme can outperform the static FDMA
and TDMA resource allocation strategies, almost reaching
the same performance as the ideal out-of-band system. The
only cases with an appreciable performance gap between
our scheme and the out-of-band system are env. 12 and env.

110: as we remarked above, these are the most challenging
ones, with a total load close to or over 99% of the nominal
link capacity. In these limit cases, any learning policy that re-
quires resources for the training will unavoidably determine
the violation of the QoS requirements for some users, which
further highlights the importance of the cost of learning in
the system design.

The relative simplicity of the system model we consid-
ered makes it possible to analyze in depth the choices made
by the different schemes. From the bar plots in Fig. 7e to
Fig. 7l we can observe that the FDMA and TDMA schemes
tend to drop or reject a significant number of packets in all
environments, while the ideal and dynamic ones manage
to limit the number of unserved packets for both slices.
Interestingly, even the ideal scheme drops a significant
number of packets from slice 1 in env. 0, but performance is
still high. We can explain this by considering Fig. 8, which
shows the empirical CDF of the latency for packets in slice
2. Fig. 8a clearly shows that almost all packets have utility
1, i.e., are delivered before T

(2)
soft : in this case, all schemes

tend to privilege slice 2, filling the queue in slice 1 more
often. We should also consider that the learning agents start
from scratch in environment 0, i.e., they have no pre-trained
weights to start from, and we should expect a relatively
large number of mistakes.

We can also see that the ideal and dynamic schemes
have matching latency profiles in env. 102, as Fig. 8c shows,
while the FDMA and TDMA schemes tend to transmit
more packets with a latency close to T

(2)
max. In environments

12 and 110, shown in Fig. 8b and Fig. 8d, respectively,
the dynamic scheme drops more packets than the ideal
one, and has a higher overall latency, but still outperforms
the static allocation schemes. Interestingly, the two TDMA
schemes tend to have better latency performance than the
dynamic scheme in env. 12, but cannot improve the utility:
the fraction of packets with a latency higher than T

(2)
soft is the

same for all three schemes, and the two TDMA ones drop a
large number of packets, causing a significant performance
difference. In this case, serving most packets from slice 2 as
soon as they arrive is not advantageous, as it leads to worse
performance overall for TDMA.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have designed a dynamic resource allo-
cation policy, which can mediate between the learning and
data planes, controlling the trade-off between effectiveness
and efficiency of DRL models. Unlike most works in the
learning-based networking literature, we specifically con-
sider the cost of learning, i.e., the resources required by
the training process of a DRL agent, and show that our
dynamic policy can outperform static schemes and, after a
short transition phase, match the performance of an ideal
system with an out-of-band learning plane. Furthermore,
the adaptability of the scheme is demonstrated by applying
it in a CL setting with environment changes, to which the
dynamic scheme adapts extremely quickly.

Possible extensions of the work certainly include the
adaptation of the scheme to more complex scenarios, with
a larger number of resources and slices and more stringent
QoS requirements, as those for Ultra-Reliable Low-Latency

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 11

Out-of-band Dynamic TDMA (Tℓ=10) TDMA (Tℓ=100) FDMA (1/15)

0.6

0.8

1

R
ew

ar
d

(a) Average reward (env. 0)

0.6

0.8

1

R
ew

ar
d

(b) Average reward (env. 12)

0.6

0.8

1

R
ew

ar
d

(c) Average reward (env. 102)

0.6

0.8

1

R
ew

ar
d

(d) Average reward (env. 110)

0

0.5

1

1.5

2

R
ej

ec
ti

on
(p

kt
/m

s)

(e) Rejection (slice 1, env. 0)

0

0.5

1

1.5

2
R

ej
ec

ti
on

(p
kt

/m
s)

(f) Rejection (slice 1, env. 12)

0

0.5

1

1.5

2

R
ej

ec
ti

on
(p

kt
/m

s)

(g) Rejection (slice 1, env. 102)

0

0.5

1

1.5

2

R
ej

ec
ti

on
(p

kt
/m

s)

(h) Rejection (slice 1, env. 110)

0

1

2

3

4

D
ro

p
ra

te
(p

kt
/m

s)

(i) Dropping (slice 2, env. 0)

0

1

2

3

4

D
ro

p
ra

te
(p

kt
/m

s)

(j) Dropping (slice 2, env. 12)

0

1

2

3

4

D
ro

p
ra

te
(p

kt
/m

s)

(k) Dropping (slice 2, env. 102)

0

1

2

3

4

D
ro

p
ra

te
(p

kt
/m

s)

(l) Dropping (slice 2, env. 110)

Fig. 7: Performance of the schemes in four different sampled environments, measured by the average normalized reward, the packet rejection rate for slice 1, and the
packet drop rate for slice 2.

Out-of-band Dynamic TDMA (Tℓ=10) TDMA (Tℓ=100) FDMA (1/15)

0 20 40 60

0

0.2

0.4

0.6

0.8

1

Latency (ms)

Em
pi

ri
ca

lC
D

F

(a) Env. 0

0 20 40 60

0

0.2

0.4

0.6

0.8

1

Latency (ms)

Em
pi

ri
ca

lC
D

F

(b) Env. 12

0 20 40 60

0

0.2

0.4

0.6

0.8

1

Latency (ms)

Em
pi

ri
ca

lC
D

F

(c) Env. 102

0 20 40 60

0

0.2

0.4

0.6

0.8

1

Latency (ms)

Em
pi

ri
ca

lC
D

F

(d) Env. 110

Fig. 8: Empirical CDF of the latency for slice 2 in the four selected environments.

Communications (URLLC). However, even more interesting
would be addressing some theoretical questions, such as the
interplay between the cost of learning and active learning,
which requires to select the most valuable samples to be
transmitted in order to accelerate the training, particularly
when resources in the learning plane are scarce. As men-
tioned, furthermore, the detection of context changes that
trigger a retraining of the network is another open chal-
lenge. Finally, of particular interest is the design of meta-
learning schemes that can learn when the resource alloca-
tion scheme needs to be retrained, balancing the potential

performance improvement that could be brought about by
a retrained policy and the cost to learn it, relative to the
expected system coherence time.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang,
“The roadmap to 6G: AI empowered wireless networks,” IEEE
Communications Magazine, vol. 57, no. 8, pp. 84–90, 2019.

[2] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos,
“Software-defined and virtualized future mobile and wireless
networks: A survey,” Mobile Networks and Applications, vol. 20,
no. 1, pp. 4–18, 2015.

FAST CONTEXT ADAPTATION IN COST-AWARE CONTINUAL LEARNING 12

[3] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck,
“Network slicing and softwarization: A survey on principles, en-
abling technologies, and solutions,” IEEE Communications Surveys
& Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.

[4] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[5] H. Sami, H. Otrok, J. Bentahar, and A. Mourad, “AI-based resource
provisioning of IoE services in 6G: A deep reinforcement learning
approach,” IEEE Transactions on Network and Service Management,
vol. 18, no. 3, pp. 3527–3540, 2021.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[7] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia,
A. Leonardis, G. Slabaugh, and T. Tuytelaars, “A continual learn-
ing survey: Defying forgetting in classification tasks,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7,
pp. 3366–3385, 2021.

[8] N. Shalavi, G. Perin, A. Zanella, and M. Rossi, “Energy
efficient deployment and orchestration of computing resources
at the network edge: a survey on algorithms, trends and open
challenges,” 2022. [Online]. Available: https://arxiv.org/abs/
2209.14141

[9] I. Chih-Lin, “AI as an essential element of a Green 6G,” IEEE
Transactions on Green Communications and Networking, vol. 5, no. 1,
pp. 1–3, 2021.

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
Mobile Edge Computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[11] F. Mason, F. Chiariotti, and A. Zanella, “No free lunch: Balancing
learning and exploitation at the network edge,” in International
Conference on Communications (ICC). IEEE, 2022, pp. 631–636.

[12] F. Mason, G. Nencioni, and A. Zanella, “Using distributed rein-
forcement learning for resource orchestration in a network slicing
scenario,” IEEE/ACM Transactions on Networking, 2022.

[13] S. Lahmer, F. Chiariotti, and A. Zanella, “The cost of learning: Effi-
ciency vs. efficacy of learning-based RRM for 6G,” in International
Conference on Communications (ICC). IEEE, 2023.

[14] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow:
A continual structure learning framework for overcoming catas-
trophic forgetting,” in International Conference on Machine Learning.
PMLR, 2019, pp. 3925–3934.

[15] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ra-
malho, J. Agapiou et al., “Hybrid computing using a neural net-
work with dynamic external memory,” Nature, vol. 538, no. 7626,
pp. 471–476, 2016.

[16] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Ex-
perience replay for continual learning,” in Proc. 33rd International
Conference on Advances in Neural Information Processing systems
(NeurIPS). ACM, 2019, pp. 350–360.

[17] D. Isele and A. Cosgun, “Selective experience replay for lifelong
learning,” in Proc. AAAI Conference on Artificial Intelligence, vol. 32,
2018.

[18] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp.
2935–2947, 2017.

[19] H. Ahn, S. Cha, D. Lee, and T. Moon, “Uncertainty-based continual
learning with adaptive regularization,” in Proc. 33rd International
Conference on Advances in Neural Information Processing systems
(NeurIPS). ACM, 2019, pp. 4392–4402.

[20] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through
synaptic intelligence,” in Proc. 34th International Conference on
Machine Learning (ICML), vol. 70. PMLR, 2017, p. 3987–3995.

[21] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to
a single network by iterative pruning,” in Proc. Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2018, pp.
7765–7773.

[22] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming
catastrophic forgetting with hard attention to the task,” in Proc.
35th International Conference on Machine Learning (ICML). PMLR,
2018, pp. 4548–4557.

[23] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W.
Teh, R. Pascanu, and R. Hadsell, “Progress & compress: A scalable

framework for continual learning,” in Proc. 35th International Con-
ference on Machine Learning (ICML). PMLR, 2018, pp. 4528–4537.

[24] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-
learning in neural networks: A survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5149–
5169, 2021.

[25] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-
learning,” in Proc. 36th International Conference on Machine Learning
(ICML). PMLR, 2019, pp. 1920–1930.

[26] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G.
Colmenarejo, M. Denil, N. Freitas, and J. Sohl-Dickstein, “Learned
optimizers that scale and generalize,” in Proc. 34th International
Conference on Machine Learning (ICML). PMLR, 2017, pp. 3751–
3760.

[27] R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski,
O. Jonathan Ho, and P. Abbeel, “Evolved policy gradients,” in
Proc. 32nd International Conference on Advances in Neural Information
Processing Systems (NeurIPS). ACM, 2018, pp. 5405–5414.

[28] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized
evolution for image classifier architecture search,” in Proc. AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[29] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proc. 36th International
conference on machine learning (ICML). PMLR, 2017, pp. 1126–1135.

[30] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “De-
signing neural networks through neuroevolution,” Nature Machine
Intelligence, vol. 1, no. 1, pp. 24–35, 2019.

[31] J. Xu and Z. Zhu, “Reinforced continual learning,” in Proc. 32nd
International Conference on Advances in Neural Information Processing
Systems (NeurIPS), vol. 31. ACM, 2018, pp. 907–916.

[32] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Proc. 31st International Conference on Advances in
neural information processing systems (NeurIPS). ACM, 2017, pp.
4080–4090.

[33] A. Antoniou, H. Edwards, and A. Storkey, “How to train your
MAML,” in Proc. 7th International Conference on Learning Represen-
tations (ICLR), 2019.

[34] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” in Proc. 30th International
Conference on Advances in Neural Information Processing Systems
(NeurIPS). ACM, 2016, pp. 3988–3996.

[35] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environ-
ments through meta-reinforcement learning,” in Proc. International
Conference on Learning Representations (ICLR), 2019.

[36] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” Ad-
vances in neural information processing systems, vol. 31, 2018.

[37] L. Yang and A. Shami, “A lightweight concept drift detection
and adaptation framework for IoT data streams,” IEEE Internet
of Things Magazine, vol. 4, no. 2, pp. 96–101, 2021.

[38] A. Bifet, “Adaptive learning and mining for data streams and
frequent patterns,” ACM SIGKDD Explorations Newsletter, vol. 11,
no. 1, pp. 55–56, 2009.

[39] E. R. Faria, I. J. Gonçalves, A. C. de Carvalho, and J. Gama,
“Novelty detection in data streams,” Artificial Intelligence Review,
vol. 45, pp. 235–269, 2016.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

https://arxiv.org/abs/2209.14141
https://arxiv.org/abs/2209.14141

	Introduction
	Related Work
	System Model
	Learning Plane Resource Allocation
	Greedy Allocation Strategy
	Continual Learning

	Network Slicing Use Case
	Communication System Model
	Learning Plane
	Continual Learning

	Simulation Settings and Results
	Conclusions and Future Directions
	References

