MOUNTAINS UNCOVERED

Intercomparable Maps and Statistics for 100 Selected Global Mountain Ranges

Coast Mountains

The Mountains Uncovered series has been developed by GEO Mountains to provide a set of easily understandable and inter-comparable maps, tables, and figures spanning a range of thematic areas for 100 selected global mountain ranges. This is the report for the Coast Mountains mountain range. The index page shows an overview of all mountain ranges in the series.

Location of the Coast Mountains mountain range [1][2].

Table of Contents

\author{

1. General Information
 2. Land Cover and Land Use
 3. Topography
 4. Climate
 5. Hydrology
 6. Cryosphere
 7. Measurement Locations
 References
 Index
 About the Series
 About GEO Mountains
}

1. General Information

1.1. Administrative

The mountain range has spatial overlap with two different countries, as shown in Figure 1.1. The overview is based on the GADM dataset [3] of administrative divisions at Level 0 .

Figure 1.1. Administrative Overview

[^0]Data: GADM [3] Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4], World Bank [22].

1.2. Demographics

Data on the mountain range's human population are sourced from the European Commission's GHS-POP dataset [5]. According to this source, it is estimated that 356,322 people lived in the area in 2020 . This is expected to increase to 390,379 by 2030. The largest settlements within the mountain range are Juneau and Ketchikan.

In 2020, the human population in this mountain range was estimated to be 356,322 .

Figure 1.2. Population estimates in the mountain range from 1975-2030. The data after 2020 are projections.

The maps show the population density in the mountain range (Figure 1.3), and estimated travel time to the nearest population centre with more than 50,000 inhabitants (Figure 1.4). Estimated travel time can be useful for evaluating accessibility to services and markets.

Figure 1.3. Population Density

[^1]Figure 1.4. Travel Time

Estimated travel time to cities with a population of at least 50,000 people.

\square	Less than an hour	\square Less than 1 day
\square	Less than 4 hours	\square Less than 2 days
\square	Less than 8 hours	\square

[^2] Bank [22].

1.3. Development and Economic Indicators

The Human Development Index (HDI) is determined by a combination of indicators such as life expectancy, literacy rate, access to electricity, Gross Domestic Product (GDP), and others. In 2015, the average HDI in this mountain range was estimated to be 0.93. This is considered to be a very high level of development.

Table 1.2. GDP and HDI Indicators over Time

	1990	2000	2015
Gross Domestic Product	$\$ 10 \mathrm{bn}$	$\$ 11 \mathrm{bn}$	$\$ 15 \mathrm{bn}$
Human Development Index	0.86	0.88	0.93

Source: Kummu et al. [7]

The total GDP within this mountain range in 2015 was estimated to be $\$ 15$ billion, an increase of $\$ 4$ billion since 2000. Table 1.2. shows an overview of the HDI and GDP indicators over time.

1.4. Protected Areas

Figure 1.3 shows the spatial coverage of protected areas in the mountain range according to the World Database of Protected Areas (WDPA) [8]. A total of $\mathbf{2 3 \%}$ of the mountain range is covered by a protected area. The establishment of protected areas represents a key measure to protect and conserve valuable mountain biodiverisity and ecosystems. These areas vary broadly in their aims, regulations, and effectiveness, however.

Figure 1.3. Protected Areas

A total of 23% of the mountain range is classified as protected in the World Database of Protected Areas.

The largest protected areas are:

1. Kluane / Wrangell-St Elias / Glacier 97,283 km² Bay / Tatshenshini-Alsek
World Heritage Site (natural or mixed)

2. Tweedsmuir Park	$9,860 \mathrm{~km}^{2}$
A - Park	
3. Tatshenshini-Alsek Park A - Park	$9,434 \mathrm{~km}^{2}$
4. Misty Fiords National Monument	$9,283 \mathrm{~km}^{2}$
5. Misty Fiords National Monument Wilderness	$8,677 \mathrm{~km}^{2}$

2. Land cover

2.1. Land Cover

According to the ESA WorldCover dataset [9], the most dominant land cover types in 2021 were tree cover (56.2\%), snow and ice (13.2\%), and grassland (10.0\%).

Land cover percentages from 2021 for the largest land cover classes in the mountain range.

Tree cover	56.2%
Snow and ice	13.2%
Grassland	10.0%
Bare and sparse	9.6%
Moss and lichen	6.7%
Water	4.2%

The European Commission's Global Human Settlement Layer (GHSL) [10] classifies $\mathbf{0 . 0 \%}$ of the mountain range's area as urban centre, 0.0% as urban cluster, and 99.9% as rural.

3. Topography

The land surface elevation ranges from a minimum of -8 m to a maximum of $4,019 \mathrm{~m}$ at Waddington Range. The mean elevation is $966 \mathrm{~m} .50 \%$ of the area lies is between 424 m and $1,438 \mathrm{~m}$, and $\mathbf{9 0 \%}$ of the area lies between 64 m and $\mathbf{1 , 8 0 6} \mathrm{m}$. Figure 3.1 shows a shaded relief elevation map based on the MERIT DEM [11] and a selection of peaks from the Geonames dataset [4]. The distribution of land surface elevation strongly affects local climatic and living conditions in mountains.

Figure 3.1. Elevation and Peaks

[^3]Figure 3.2. Distribution of elevation within in the mountain range [11].

Figure 3.3. Distribution of slope steepness within in the mountain range [21].

Figure 3.4. Highest peaks in the mountain range according to the Geonames [4] dataset.

1. Waddington Range	$\triangle 4,019 \mathrm{~m}$
2. Mount Waddington	$\triangle 4,016 \mathrm{~m}$
3. Mount Tiedemann	$\triangle 3,838 \mathrm{~m}$
4. Asperity Mountain	$\triangle 3,716 \mathrm{~m}$
5. Monarch Mountain	$\triangle 3,555 \mathrm{~m}$
6. Mount Munday	$\triangle 3,356 \mathrm{~m}$
7. Mount Queen Bess	$\triangle 3,298 \mathrm{~m}$
8. Good Hope Mountain	$\triangle 3,242 \mathrm{~m}$
9. Razorback Mountain	$\triangle 3,183 \mathrm{~m}$
10. Monmouth Mountain	$\triangle 3,182 \mathrm{~m}$

4. Climate

4.1. Temperature and Precipitation

Precipitation and temperature combine to control local weather and climate, with implications for water availability, vegetation growing conditions, snow and ice accumulation, and extreme events such as floods and droughts.

The mean annual temperature across the mountain range is shown in Figure 4.1. The mean annual temperature for the entire mountain range is $1.8^{\circ} \mathrm{C}$, but it varies geographically from a minimum of $-13.8^{\circ} \mathrm{C}$ to a maximum of $11.1^{\circ} \mathrm{C}$. The temperature data are extracted from the CHELSA climatology dataset [13].

The mean annual precipitation shown in Figure 4.2. The mean annual precipitation for the entire mountain range is $2,584 \mathrm{~mm}$, but it varies geographically from a minimum of 249 mm to a maximum of 7,406 . Precipitation data are bias-corrected for use in mountain environments, and are extracted from CHELSA data in the Precipitation Bias CORrection (PBCOR) dataset [12].

Figure 4.1. Mean Annual Temperature

Figure 4.2. Mean Annual Precipitation

[^4] World Bank [22].

The mean monthly temperature across the entire mountain range shown in Figure 4.3, and varies from a maximum of $11.4^{\circ} \mathrm{C}$ in July to a minimum of $-6.3^{\circ} \mathrm{C}$ in January. Equivalent statistics for precipitation are shown in Figure 4.4, which vary from a maximum of 364 mm in October to a minimum of 109 mm in June.

Figure 4.3. Mean Monthly Temperature

[^5]Figure 4.4. Mean Monthly Precipitation

Data: CHELSA/PBCOR [12]

4.2. Climate Classifications

Figures 4.5 and Figure 4.6 show Köppen-Geiger climate classifications for the present day (1980-2016) and for projected future conditions (2071-2100), respectively. Future conditions are derived from an ensemble of 32 climate model projections under the RCP 8.5 "business-as-usual" scenario [14].

Figure 4.5. Current Climate Classifications

Köppen-Geiger climate classification for the present day (1980-2016).

Data: GloH2O [14]. Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4], World Bank [22].

Figure 4.6. Future Climate Classifications

Köppen-Geiger climate classification for ensemble mean projected future conditions (2071-2100) under the RCP 8.5 scenario.

Data: GloH2O [14]. Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4], World Bank [22].

Table 4.1. Changes in climate classifications between current (1980-2016) and future (2071-2100) conditions

| Classification | | Current | Future |
| :--- | :--- | :--- | :--- | Change

5. Hydrology

According to the GRDC Major River Basins dataset, seven major basins intersect the mountain range [15]. The Fraser has the most overlap with $\mathbf{1 2 \%}$ and drains into the North Pacific.

Within the mountain range, there are a total of 21 dams listed in the Global Reservoirs and Dams (GRanD) database [16]. The main usages of these dams are hydroelectricity (18) and water supply (3). The total capacity of these dams is estimated to be 4,960 million m^{3}. Figure 5.1 shows major rivers, basins, and dams (red points) that intersect with this mountain range.

Figure 5.1. Major Rivers, Basins, and Dams.

Fraser \rightarrow North Pacific	12.0%
Skeena \rightarrow North Pacific	7.0%
Yukon \rightarrow Bering Sea	6.0%
Stikine \rightarrow North Pacific	6.0%
Nass \rightarrow North Pacific	3.0%
Taku \rightarrow North Pacific	2.0%
Alsek \rightarrow Gulf of Alaska	1.0%

Dams in this mountain range with the most capacity [16].

Stave Falls	$580 \mathrm{Mm}^{3}$
Terzaghi	$1,021 \mathrm{Mm}^{3}$
Link Lake	$389 \mathrm{Mm}^{3}$

6. Cryosphere

6.1. Glaciers and Permafrost

The Randolph Glacier Inventory dataset contains $\mathbf{1 5 , 4 2 8}$ glaciers that intersect with this mountain range [17]. They cover a total area of $23,878 \mathbf{~ k m}^{2}(8.8 \%)$. In addition to the glaciers, it is estimated that under favourable conditions, permafrost occurance is possible across $42,319 \mathrm{~km}^{2}(15.6 \%)$, and is likely across at least $\left.\mathbf{1 , 3 3 1} \mathbf{k m}^{\mathbf{2}} \mathbf{(0 . 5 \%}\right)$. Figure 6.1 shows glaciers and permafrost extents. Glaciers and permafrost represent (largely non-renewable) water sources for mountain people and ecosystems, and can be implicated in hazardous events.

Figure 6.1. Glacier and Permafrost Extents

The Randolph Glacier Inventory lists 15,428 glaciers within this mountain range, covering a total area of 23,878 $\mathbf{k m}^{2}$.

6.2. Snow Cover

The proportion of the mountain range's area that is covered by snow each month on average (according to monthly snow cover data between 2000-2020 by ESA's Climate Change Initiative [18]) is shown in Figure 6.2.

The average snow covered area varies between a minimum in August of 8,164 km $^{\mathbf{2}}$ (3.0\%) (Figure 6.3) and a maximum in March of 127,150 km 2 (46.7\%) (Figure 6.4). Snow cover extent acts as an indicator of seasonal downstream water availability, is a crucial factor in winter

Figure 6.2. Monthly mean snow covered area percentage (2000-2020) [18].
 tourism, and is a key determinant of vegetation growing conditions.

Figure 6.3. Mean Snow Covered Area (August)

Data: ENVEO/ESA-CCI [17]. Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4], World Bank [22].

Figure 6.4. Mean Snow Covered Area (March)

Data: ENVEO/ESA-CCI [17]. Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4], World Bank [22].

7. Measurement Locations

The GEO Mountains Inventory of In Situ Observational Infrastructure (v2.0) lists a total of 386 measurement sites in this mountain range [20]. Their locations are shown as red dots in Figure 7.1. In situ measurements are crucial for a range of scientific and practical application in mountains, yet the locations of measurement sites are often difficult to gain an appreciation of. Measurement sites include weather and climate stations, river gauging stations, networks of stations, experimental basins, and others.

Figure 7.1. Locations of Measurement Sites

According to the GEO

 Mountains Inventory of In Situ Observational Infrastructure, there are 386 measurement sites in this mountain range
References

1. Natural Earth Data. Via https://www.naturalearthdata.com.
2. GMBA Mountain Inventory v2. Snethlage, M.A., Geschke, J., Spehn, E.M., Ranipeta, A., Yoccoz, N.G., Körner, Ch., Jetz, W., Fischer, M. \& Urbach, D. A hierarchical inventory of the world's mountains for global comparative mountain science. Nature Scientific Data.
https://doi.org/10.1038/s41597-022-01256-y (2022). Dataset: Snethlage, M.A., Geschke, J., Spehn, E.M., Ranipeta, A., Yoccoz, N.G., Körner, Ch., Jetz, W., Fischer, M. \& Urbach, D. GMBA Mountain Inventory v2. GMBAEarthEnv. https://doi.org/10.48601/earthenv-t9k2-1407 (2022).
3. GADM Global Administrative Divisions. Via https://www.gadm.org/.
4. Geonames geographical database. Via https://www.geonames.org/.
5. GHS-POP layer of the Global Human Settlement Dataset. Dataset: Schiavina M., Freire S., MacManus K. (2022): GHS-POP R2022A - GHS population grid multitemporal (1975-2030).European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/d6d86a90-4351-4508-99c1-cb074b022c4a, doi:10.2905/D6D86A90-4351-4508-99C1CB074B022C4A
6. Global Accessibility Map. Via https://forobs.jrc.ec.europa.eu/products/gam/.
7. Kummu, M., Taka, M. \& Guillaume, J. Gridded global datasets for Gross Domestic Product and Human Development Index over 19902015. Sci Data 5, 180004 (2018). https://doi.org/10.1038/sdata.2018.4 8. UNEP-WCMC and IUCN (2022), Protected Planet: The World Database on Protected Areas (WDPA) Cambridge, UK: UNEP-WCMC and IUCN. Available at: www.protectedplanet.net.
8. ESA WorldCover project 2023. Contains modified Copernicus Sentinel data, processed by ESA WorldCover consortium 2021. Via: https://esaworldcover.org/.
9. Global Human Settlement Dataset (SMOD Layers). Schiavina M., Melchiorri M., Pesaresi M. (2022): GHS-SMOD R2022A - GHS settlement layers, application of the Degree of Urbanisation methodology (stage I) to GHS-POP R2022A and GHS-BUILT-S R2022A, multitemporal (19752030)European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/4606d58a-dc08-463c-86a9-d49ef461c47f, doi:10.2905/4606D58A-DC08-463C-86A9-D49EF461C47F
10. MERIT DEM. Yamazaki D., D. Ikeshima, R. Tawatari, T. Yamaguchi, F. O'Loughlin, J.C. Neal, C.C. Sampson, S. Kanae \& P.D. Bates A high accuracy map of global terrain elevations Geophysical Research Letters, vol.44, pp.5844-5853, 2017 doi: 10.1002/2017GL072874. Available via http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/.
11. GloH2O PBCOR dataset: Beck, H. E., T. R. McVicar, M. ZambranoBigiarini, C. Alvarez-Garret, O. M. Baez-Villanueva, J. Sheffield, D. Karger, and E. F. Wood, 2020Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchmentsJournal of Climate 33, 1299-1315, doi:10.1175/JCLI-D-190332.1
12. CHELSA V2.1 climatologies. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4170122.
https://doi.org/10.1038/sdata.2017.122 Available via: https://chelsaclimate.org/
13. Beck, H.E., N.E. Zimmermann, T.R. McVicar, N. Vergopolan, A. Berg, E.F. Wood. Present and future Köppen-Geiger climate classification maps at 1-km resolutionScientific Data 5:180214, doi:10.1038/sdata.2018.214 (2018)
14. GRDC (2020): Major River Basins of the World / Global Runoff Data Centre, GRDC. 2nd, rev. ext. ed. Koblenz, Germany: Federal Institute of Hydrology (BfG). Available via https://www.bafg.de/GRDC/
15. Lehner, B., C. Reidy Liermann, C. Revenga, C. Vörösmarty, B. Fekete, P. Crouzet, P. Döll, M. Endejan, K. Frenken, J. Magome, C. Nilsson, J.C. Robertson, R. Rodel, N. Sindorf, and D. Wisser. 2011. Highresolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9 (9): 494-502.
16. Randolph Glacier Inventory 6.0. Via: https://www.glims.org/RGI/
17. Permafrost Zonation Index. Gruber, S. 2012: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221-233 Via https://climatedataguide.ucar.edu/climate-data/global-permafrost-zonation-index-map
18. ESA-CCI Snow Cover Fraction data. Via: https://snow-cci.enveo.at/ 20. GEO Mountains (2022). Inventory of in situ mountain observational infrastructure, v2.0. DOI: 10.6084/m9.figshare.14899845.v2 Via: https://www.geomountains.org/resources/resources-surveys/inventory-of-in-situ-observational-infrastructure
19. Amatulli, G., McInerney, D., Sethi, T. et al. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci Data 7, 162 (2020).
https://doi.org/10.1038/s41597-020-0479-6
20. World Bank administrative boundaries and disputed borders (2023) via https://datacatalog.worldbank.org/search/dataset/0038272

Index

The index shows an overview of the 100 mountain ranges in version v1.0 of the Mountains Uncovered

 series.

Africa

1. Albertine Rift Mountains
2. Central Range (Madagascar)
3. Drakensberg
4. Eastern Arc Mountains
5. Eastern Rift mountains
6. Ethiopian Highlands
7. High Atlas Range
8. High Plateaux of Katanga
9. Horn of Africa Highlands
10. Middle Atlas
11. Northeastern Great Escarpment
12. Plateau of Mozambique
13. Rif
14. Southern Rift Mountains
15. Tell Atlas

Eurasia

16. Alborz Mountains
17. Altyn-Tagh
18. Armenian Highlands
19. Baetic System
20. Balkan Mountains
21. Balochistan Ranges
22. Bayan Har Mountains
23. Cantabrian Mountains
24. Carpathian Mountains
25. Caucasus Mountains

Eurasia (continued)

26. Central Iranian Range
27. Central Range (Papua New Guinea)
28. Dinaric Alps
29. Eastern Sayan
30. European Alps
31. Gobi-Altai Mountains
32. Hellenides
33. Hengduan Shan
34. Himalaya
35. Hindu Kush
36. Honshu
37. Karakoram
38. Kunlun Mountains
39. Kuznetsk Alatau
40. Min Mountains
41. Mongolian Altai
42. Mongolian Highlands
43. Northern Altai
44. Northern Scandes
45. Pamir Mountains
46. Pontic Mountains
47. Pyrenees
48. Qiangtang
49. Qilian Mountains
50. Qionglai Shan

Eurasia (continued)

51. Rila-Rhodope Massif
52. Sarawat Mountains
53. Sistema Iberico
54. South European Highlands
55. Southern Scandes
56. Taiwan
57. Tanggula Mountains
58. Taurus Mountains
59. Tian Shan
60. Transhimalaya
61. Ural Mountains
62. Western Sayan
63. Yunnan-Guizhou Plateau
64. Zagros Mountains

North America

65. Alaska Range
66. Appalachian Mountains
67. British Columbia Interior
68. Canadian Rockies
69. Cascade Range (North America)
70. Central Montana Rocky Mountains
71. Coast Mountains
72. Colorado Plateau
73. Columbia Mountains
74. Cordillera Centroamericana
75. Great Basin Ranges

North America (continued)

76. Greater Yellowstone Rockies
77. Idaho-Bitterroot Rocky Mountains
78. Saint Elias Mountains
79. Sierra Madre del Sur
80. Sierra Madre Occidental
81. Sierra Madre Oriental
82. Sierra Nevada (USA)
83. South-Central Alaska
84. Southern Rocky Mountains
85. Trans-Mexican Volcanic Belt
86. Western Rocky Mountains

Oceania

87. Southern Alps (New Zealand)

South America

88. Altiplano
89. Cordillera Central (Northern Andes)
90. Cordillera Central (Central Andes)
91. Cordillera de la Costa (Chile)
92. Cordillera de Mérida
93. Cordillera Occidental (Central Andes)
94. Cordillera Occidental (Northern Andes)
95. Cordillera Oriental (Northern Andes)
96. Cordillera Oriental (Central Andes)
97. Dry Andes
98. Meseta Patagónica
99. Patagonian Andes
100. Sierras Pampeanas

About the Series

Aims

The Mountains Uncovered series (v1.0) aims to provide an easily understandable overview of the key characteristics of 100 selected mountain ranges around the world. Comparisons between mountain ranges can also readily be made. The series was developed by collating and visualising a variety of current global scale data products. We hope that the series will be a useful resource for researchers, policy-makers, environmental managers, educators, and others seeking to better understand the Earth's major mountain regions, and that over time it will inspire the generation of additional datasets, analyses, and products.

Citation and Sharing

The Mountains Uncovered series (v1.0) has been developed on the basis of exclusively open global spatial datasets. In turn, all visualisations, statistics, and code generated are shared under the Creative Commons BY 4.0 license. You may use, distribute, and reproduce the product in any medium, provided appropriate acknowledgement is given. Please cite the series as:

GEO Mountains (2023). The Mountains Uncovered Series: Intercomparable Maps and Statistics for 100 Selected Global Mountain Ranges (v1.0). doi: 10.5281/zenodo. 8010166

Before the reuse of the products, the licence terms associated with the underlying third-party datasets should be carefully checked, and those datasets should also be appropriately cited; please see the reference list provided for further details and links.

GEO Mountains assumes no responsibility and accepts no liability for the product's use, and remains neutral with respect to the locations of any borders and the place names shown in the third-party datasets employed.

Limitations

Users should note that data and information are limited in many mountain regions around the world. As a result, the figures, maps, and graphs presented in this series are associated with uncertainties, and these uncertainties must be taken into account when interpreting the information given.

To ensure that any comparisons made between individual mountain ranges are as fair as possible, globalscale datasets were used (without any additional modification). Consequently, the series does not necessarily represent a compendium of the "best" data available in any given mountain range or local area, but rather a common, generally intercomparable set. For applications at local and regional scales, alternative datasets to those shown may be more suitable.

Indeed, in parallel to the ongoing development of the global series, more local and regional "bottom-up" engagements and activities to improve the quality and availability of data should also be undertaken, since data on these scales also play a crucial role in supporting decision-making for the benefit of mountain people and ecosystems.

Get Involved

While many global mountain regions remain notoriously data-scarce, new datasets are being released regularly. If you are aware of any datasets you would like us to consider including in a potential future release, please provide the necessary details via this form. Likewise, if you become aware of any errors, omissions, or other potential modifications that could be made in a future version, please let us know via the same form. By taking these actions, you will help us expand the scope and improve the impact of the Mountains Uncovered series. Feedback concerning the underlying datasets will be collated and shared with the relevant organisations or data providers.

Contact

For any general queries or comments, please contact: geomountains@mountainresearchinitiative.org Many thanks for your interest, support, and contributions to global mountain data, policy, and education!

ADAPTATION
AT ALTITUDE

Taking Action in the Mountains

Supported by:
Swiss Agency for Development
and Cooperation SDC

About GEO Mountains

GEO Mountains is an Initiative of the Group on Earth Observations (GEO). It aims to bring together research institutions and mountain observation networks to enhance the discoverability, accessibility, and use of a wide range of relevant data and information pertaining to environmental and socio-economic systems - both in situ and remotely sensed - across global mountain regions. In doing so, we hope to help facilitate scientific advancements and support decision makers at local, national, and regional levels. The figure below illustrates the scope of the Initiative.

GEO Mountains is an open and inclusive network. We aspire to follow the principles of open data and open science wherever possible.

[^0]: Map showing the administrative divisions overlapping with the mountain range.

[^1]: Data: GHS-POP[5]. Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4], World Bank [22].

[^2]: Data: Nelson/JRC [6]. Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4], World

[^3]: Data: MERIT DEM [11], Geonames [4]. Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4], World Bank [22]

[^4]: Data: CHELSA/PBCOR [12]. Background: GMBA [2], GADM [3], Natural Earth [3], Geonames [4],

[^5]: Data: CHELSA [13]

