To provide operational users and the science community with the SST measured by the satellite constellation

Principles of electromagnetic radiation and radiative transfer inciples of
ectromagnetic
diation and
diative transfer
Peter Minnett and
Chris Merchant

Chris Merchant

Planck's Function

Peter Minnett

Some definitions

- Power: The time rate of flow of radiant energy $[W = Js^{-1}]$
- •Flux: Time rate of flow of energy; the radiant power in a beam [W]
- •Flux Density: Flux crossing a unit area normal to the beam [Wm-2]
- Irradiance: Flux incident per unit area of a surface. Also called radiant flux density [Wm⁻²]
- •Spectral irradiance: Irradiance per unit spectral interval at a given wavelength, wavenumber or frequency unit range $[Wm^{-2} \mu m^{-1}]$; $Wm^{-2} (cm^{-1})^{-1}$; $Wm^{-2} (s^{-1})^{-1}$] rate of flow of radiant energy $[W = Js^{-1}]$

f flow of energy; the radiant power in a beam $[W]$

x crossing a unit area normal to the beam $[Wm^{-2}]$

ncident per unit area of a surface. Also called radiant

ce: Irradiance per
- Radiance: Radiant power per unit source area per unit solid angle [Wm⁻² st⁻¹]
- •Spectral radiance: Radiance per unit spectral interval at a given wavelength, Flux Density: Flux crossing a unit area normal to the beam [Wm⁻²]
Irradiance: Flux incident per unit area of a surface. Also called radiant flux
density [Wm⁻²]
Spectral irradiance: Irradiance per unit spectral interva spectral interval. $[Wm^{-2} st^{-1} \mu m^{-1}]$; $Wm^{-2} st^{-1} (cm^{-1})^{-1}$; $Wm^{-2} st^{-1} (s^{-1})^{-1}$]

For more definitions, see http://www.photonics.com/edu/Dictionary.aspx

Solid Angle

Definitions with diagrams

Electromagnetic waves

The physical theory is 'classical' i.e. pre-Quantum Theory. While it can successfully explain many phenomena, it cannot, for example, explain the The physical theory is 'classical' i.e. pre-Quantum
The physical theory is 'classical' i.e. pre-Quantum
Theory. While it can successfully explain many
phenomena, it cannot, for example, explain the
spectrum of radiant emit Planck's equation, based on quantum theory.

Planck Function

The Planck Function

In searching for a theoretical derivation of blackbody radiation, Planck made the revolutionary assumption that an oscillating atom in the wall of a cavity can exchange energy with the radiation field inside a cavity only in discrete bundles called *quanta* given by $\Delta E = h\nu$, where *h* is known as *Planck's constant*.

With this assumption, he showed that the radiance being emitted by a blackbody is given by

$$
B_{\lambda}(T) = \frac{2hc^2\lambda^{-5}}{\exp\left(\frac{hc}{\lambda kT}\right) - 1},
$$

where k is Boltzmann's constant, and T is the absolute temperature.

This is the Planck function; it earned him the Nobel Prize in 1918. The Planck function is more conveniently written as

$$
B_{\lambda}(T) = \frac{c_1 \lambda^{-5}}{\exp\left(\frac{c_2}{\lambda T}\right) - 1},
$$

where c_1 and c_2 are the first and second radiation constants.

Planck Function – different variables

The independent

variable in plots of
 $\frac{2}{3}$

the Planck

Function is often

wavelength,

wavenumber,
 $2 \frac{1}{3}$
 $2 \frac{1}{3}$ variable in plots of the Planck Function is often wavelength, wavenumber, frequency, or period.

Rayleigh-Jeans Approximation

Rayleigh-Jeans Law corresponds to the Planck Law in the case of small frequencies, in which case hv/(kT) $<< 1$ allows the approximation

 $e^{h\nu/(kT)} \approx 1 + h\nu/(kT) + ...$

Putting this into the Planck law gives

The "Ultraviolet

See http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html

Temperature dependence of the Planck Function

Wien's Displacement Law: $\lambda_{\text{max}} = b/T$

 λ_{max} , is the wavelength of peak spectral emission. Wien's Displacement

Law: $\lambda_{\text{max}} = b/T$
 λ_{max} , is the wavelength of

peak spectral emission.

T is the temperature of

the blackbody in kelvin (K)

b is Wien's displacement

constant

T is the temperature of N_{max} , is the wavelength of
peak spectral emission.
T is the temperature of
the blackbody in kelvin (K)
b is Wien's displacement
constant
= 2.897 × 10⁻³ m K

b is Wien's displacement constant

$$
= 2.897 \times 10^{-3} \text{ m K}
$$

Nonblackbodies

Since real material is not perfectly black, a way must be devised to quantify how closely it approximates a blackbody. The emittance of a body is defined as

$$
\varepsilon_{\lambda} = \frac{\text{emitted radiation at } \lambda}{B_{\lambda}(T)}.
$$

Emittance can be a function of temperature and viewing geometry as well as wavelength. For a blackbody, ε_{λ} is identically one.

By integrating Planck's Function over all wavelengths (or frequencies or wavenumbers), the total energy radiated per unit surface area of a black body in unit time (known variously as the black-body emittance, energy flux density, radiant flux, or the emissive power), Q, is directly proportional to the fourth power of the black body's thermodynamic temperature T (also called absolute temperature):

$$
Q=\epsilon\sigma T^4
$$

$$
\sigma = (2\pi^5 k^4) / (15c^2 h^3) = 5.6704 10^{-8} Js^{-1} m^{-2} K^{-4}
$$

A measurement of the radiant energy flux at all wavelengths, and a knowledge of the emissivity, can lead to a remote measurement of temperature.

Emission angle dependence

Sea surface emissivities COM COMPOSED SEA SURFACE

Sea surface

emissivities

computed from an

analytical

approach (AN) and

a Monte Carlo ray analytical approach (AN) and a Monte Carlo raytracing method (MC) versus the emission angle. Wind $u_{12} = 5$ ms⁻¹;
λ = 4 μm. computed from an
analytical
approach (AN) and
a Monte Carlo ray-
tracing method
(MC) versus the
emission angle.
Wind $u_{12} = 5 \text{ ms}^{-1}$;
 $\lambda = 4 \mu \text{m}$.
Bourlier, C. (2006), Unpolarized emissivity
with shadow and multiple analytical

approach (AN) and

a Monte Carlo ray-

tracing method

(MC) versus the

emission angle.

Wind $u_{12} = 5 \text{ ms}^{-1}$;
 $\lambda = 4 \mu \text{m}$.

Bourlier, C. (2006), Unpolarized emissivity

with shadow and multiple reflect

with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band, Appl. Opt., 45(24), 6241-6254.

Wind speed effects on emissivity

The intensity of sun-glitter can be calculated
by the theory of Cox and Munk (1954), who Wind speed effects on emissivity
The intensity of sun-glitter can be calculated
by the theory of Cox and Munk (1954), who
showed, empirically, that for a uniform ocean
surface roughness, there is a near-Gaussian
distribut showed, empirically, that for a uniform ocean *incident* surface roughness, there is a near-Gaussian
distribution of surface works clong with a Sun ray distribution of surface wave slope with a probability function: THE SPECU CITECTS UIT CITH

ntensity of sun-glitter can be calculated

e theory of Cox and Munk (1954), who

ed, empirically, that for a uniform ocean

ce roughness, there is a near-Gaussian

bution of surface wave slop

 $P(\beta, \sigma) \approx (2\pi\sigma^2)^{-1}$ (exp – (tan²(β))/ σ^2)

Where σ is the standard deviation of P, and is related, again empirically, to U10, the nearsurface wind speed (in ms-1), by:

 σ^2 = 0.00512 U₁₀ + 0.003

 β is the zenith angle of the normal at the point on a surface wave at which reflection occurs.

Cox & Munk surface slopes

From Plant, W, A new interpretation of seasurface slope probability density functions. JGR, 2003.

Figure 1. Comparison of an upwind/downwind seasurface slope PDF fit by Cox and Munk [1954] to their optical data (solid curve) with a Gaussian PDF having the same variance (dashed curve). Downwind slopes are positive. The wind speed at 12.5 m height was 10.2 m/s.

Sun glint

Bright sea is sun glint.

Wind speed dependence

Figure 6. Observed mean (solid lines) and standard deviation (dashed lines) of sea surface emissivity in 1ms^{-1} wind speed bins for 9um and 11um at 40° and 55° incidence angles (top). Below, the solid lines are the measured 11um emissivity for the 40° and 55° views, the dashed line with triangular markers represents values predicted by [Watts et al., 1996] for 55° at 11 µm (the coefficients given in that paper are valid for 52°-55° viewing angle). The dotted lines are those predicted by [Masuda et al., 1988] for 40° (diamonds), 50° (squares) and 60° (asterisks). From: J.A. Hanafin, Ph.D. Thesis, University of Miami, 2002.

Measurements of skin SST by ship board radiometers

board radiometers

\n
$$
T_{\text{skin}} = B^{-1} \langle \{R_{\text{water}}(\lambda, \theta) - [1 - \varepsilon(\lambda, \theta)] R_{\text{sky}}(\lambda, \theta) - R_h(\lambda, \theta) \} \rangle \langle \varepsilon(\lambda, \theta) \rangle
$$
\n
$$
R_{\text{water}}(\lambda, \theta) = \varepsilon(\lambda, \theta) B(\lambda, T_{\text{skin}}) + (1 - \varepsilon(\lambda, \theta)) R_{\text{sky}}(\lambda, \theta) + R_h(\lambda, \theta)
$$
\n•

\n**Scan-mirror mechanism for**

\ndivecting the field of view at complementary angles.

\n•

\nVery good calibration for ocean radiances

\n•

\nModern: **Adorately good calibration**

- directing the field of view at complementary angles. • $(1 - \varepsilon(A, \theta))R_{sky}(A, \theta)$

• Scan-mirror mechanism for

directing the field of view at

complementary angles.

• Very good calibration for

ocean radiances

• Moderately good calibration

at low radiances
- ocean radiances
- at low radiances

M-AERI on ship

Ship radiometers

M-AERI

- M-AERI is a very well-calibrated and stable sea-going Fourier Transform Infrared Interferometer.
- At sea calibration by two internal blackbody cavities with thermometers with NIST-traceable calibration.
- Calibration sequence before and after each cycle of measurements.
- Calibration before and after deployments using NIST-designed water-bath blackbody calibration target at RSMAS or UW-APL. Use SI-tr
at RSMAS. Uses SI-traceable thermometers at mK accuracy. at RSMAS. Uses SI-traceable stable sea-going Fourier Transform

Infrared Interferometer.

At sea calibration by two internal

At sea calibration by two internal

blackbody cavities with thermometers

with SI-traceable

with SI-traceable

with SI-trac
- Periodic radiometric characterization of RSMAS water-bath blackbody calibration target by NIST TXR.

ISAR

- ISAR is a very well-calibrated and stable sea-going filter radiometer.
- At sea calibration by two internal blackbody cavities with thermometers with SI-traceable calibration.
- Calibration sequence before and after each cycle of measurements.
- Calibration before and after deployments using NIST-designed water-bath blackbody calibration target at RSMAS or UW-APL. Use SI-traceable ISAR is a very well-calibrated and stable
sea-going filter radiometer.
At sea calibration by two internal
blackbody cavities with thermometers
with SI-traceable calibration.
Calibration sequence before and after
each cycle
- Periodic radiometric characterization of RSMAS water-bath blackbody calibration target by NIST TXR.

Measured spectra of atmospheric and seasurface emission

M-AERI cruises

Explorer of the Seas: near continuous operation December 2000 – December 2007.

Caribbean Cruise Lines

3 rd ship being negotiated

Ship radiometers: ISARs

M/V Horizon Spirit

two internal blackbody calibration targets.

e- & post-deployment lab calibration

against NIST-traceable calibrators. against NIST-traceable calibrators. Data relayed in real-time by Iridium.

Radiative transfer in the atmosphere

Chris Merchant

- Absorption and scattering by gases
- Absorption and scattering by clouds and aerosol
- Absorption / reflection / scattering at solid / liquid surfaces
- All matter emits thermal radiation too!
- Absorbed radiation heats the absorbing matter
- Start by considering scattering, and then look at emission and absorption

- Scattering changes the direction of radiation, without absorbing its energy
- The measures of scattering are therefore
	- the amount of scattering
	- the angular distribution of the scattered radiance

Attenuation of a beam by scattering

- Assume
	- Negligible emission and no absorption
	- No scattering into the beam direction

 $L = L_{z=0} \exp(-z/l_s)$; $t(0,z) = \exp(-z/l_s)$ $)$

The shorter the characteristic scattering length, the greater the amount of scattering.

Effect of scattering on solar radiance

• Scattering attenuates the direct beam, and introduces diffuse illumination

Scattering out of line of sight of Sun (into all Sight of Sun (into all \overrightarrow{a} \overrightarrow{b} Scattering into line directions) of sight of sky

• What is the spectral distribution of the diffuse irradiance?

• What does this tell us about the spectral variation of the amount of scattering?

What scatters in the atmosphere? That scatters in the atmosphere?

the atmosphere (for VIS):

• molecules – Rayleigh scattering \Box 1/ 4

• aerosols (haze) -- \Box 1/ ⁿ, where 0.2 < n < 2

• water droplets – independent of wavelength (n=0) **and scatters in the atmosphere?**
 the atmosphere (for VIS):

• molecules – Rayleigh scattering \Box 1/ \bot ⁴

• aerosols (haze) -- \Box 1/ \bot ⁿ, where 0.2 < n < 2

• water droplets – independent of wavelength (n=0)

- In the atmosphere (for VIS):
	-
	- aerosols (haze) -- \Box 1/L \degree , where 0.2 < n < 2
	-
- These different spectral signatures correspond to different regimes of scattering
	- Rayleigh
	- Mie
	- Geometric
- The angular distributions also differ for the regimes

Angular distribution

Scattering regimes

Kirchhoff's Law: emission and absorption

- Efficient absorbers are efficient emitters
- … and *vice versa*
- If a surface has $\Sigma = 1$, it also absorbs all incident spectral radiance at that wavelength
- If a surface absorbs only 80% of the spectral radiance incident on it, then Σ =0.8
- If a layer of gas, aerosol or cloud of temperature T absorbs a fraction α of IR irradiance incident on it, then it *also* emits/radiates a contribution
to exitance of α $\int T^4$ that wavelength

If a surface absorbs only 80% of the spectral ra

then Σ =0.8

If a layer of gas, aerosol or cloud of temperatur

of IR irradiance incident on it, then it *also* emit

to exitance of α $\int T^4$

SEST

Thinking question

• Radiators are often painted white, which means they absorb little of the light incident on them.

- If they were black, does Kirchhoff's law tells us they would also be better emitters of radiation?
- Would radiators therefore be more efficient at heating rooms if painted black?

Absorption in transmitting media

- Transmission = allowing to pass through $*$
- The atmosphere generally partially transmits
- Transmittance is the fraction transmitted
	- $t(z_1, z_2)$ means transmittance from z_1 to z_2
	- that which is not transmitted is absorbed …
	- \ldots so: $t + a = 1$ (neglecting scattering)
- *Note, in everyday English, people talk of "radio transmitters" meaning the masts that broadcast radio etc. Strictly, such a mast is actually an emitter: **Transmittance** is the fraction transmitted

• $t(z_1, z_2)$ means transmittance from z_1 to z_2

• that which is not transmitted is absorbed ...

• ... so: $t + G = 1$ (neglecting scattering)

*Note, in everyday English, "transmission" is used for "emission" as well.

Clear-sky transmittance

Attenuation of a beam by absorption

• Assume negligible emission

Absorption and emission

- Total upward spectral radiance (from last slide) is ance (from last slide) is
t + $(1-t)B_L(T)$
- $L_{L} t + (1-t)B_{L}(T)$
- When $t \rightarrow 0$...
- When $t > 0$ and $L_l > B_l(T)$...
- When $t > 0$ and $L_1 < B_1(T)$...

Thermal imagery at 11 and 6.7 \mid m

- Which image is which wavelength?
- Explain the main features of each image.
- Hint: refer to "clear-sky transmittance" curve from earlier slide

Fig. 6.2.6 (a) Emission spectra from a desert area showing the effect of low emissivity between 1100 and 1250 cm⁻¹ caused by residual rays in quartz sand. (b) The comparison spectrum from an area covered by vegetation shows nearly the same brightness temperature on both sides of the ozone band at 1042 cm^{-1} (Hanel *et al.*, 1972*c*).

1
\n
$$
L^{\bullet}(h) = 1
$$
\n
$$
L^{\bullet}(h) = 0
$$
\n
$$
a_{2}(p_{2},T_{2},w_{2})
$$
\n
$$
L^{\bullet}(h) = 0
$$
\n
$$
a_{1}(p_{1},T_{1},w_{1})
$$
\n
$$
L^{\bullet}(0) = 0
$$
\n
$$
a_{1}(p_{1},T_{1},w_{1})
$$
\n
$$
L^{\bullet}(0) = 0
$$
\n
$$
a_{1}(p_{1},T_{1},w_{1})
$$
\n
$$
L^{\bullet}(0) = 0
$$
\n
$$
a_{1}(p_{1},T_{1},w_{1})
$$
\n
$$
L^{\bullet}(0) = 0
$$
\n
$$
E^{\bullet}(0) = 0
$$
\n
$$
E^{\bullet}(
$$

How to link BT to surface temperature?

506 Optical Radiometry for Ocean Climate Measurements

FIGURE 8 Scene observed by the Metop AVHRR instrument: lines of longitude (dashed) and latitude (solid) show how the image is distorted toward the edge of swath. Left panel: false-color RGB using 1.6 μ m (red), 0.8 μ m (green), and 0.6 μ m (blue) channels. This choice of channels results in a "natural" looking image-oceans are blue, clouds are white, and vegetation is green. Right panel: thermal image observed at 11 μ m. Clouds are colder than the surface with high clouds appearing in blue and lower clouds in green and yellow. The temperature of the land can be greater than the ocean and shows greater variability.

