

ultrasonic measurements in liquids

Acoustic Scattering from Particles -Theory and Scientific Instruments

Dr Stéphane FISCHER www.ubertone.com

About UBERTONE

- Team of doctor and engineers
- Acoustic profilers for scientific research & Sensors for environmental monitoring
- Velocity field and Backscattered echo (turbidity)
- Accurate and High resolution
 measurement
- Fast installation
- From the lab to the field
- **Opaque** liquids
- Wide range of applications : from civil engineering to chocolate manufacturing

Optical turbidity

- Suspended Sediments : particles of size 1µm -1mm (silt, organic, sand)
- Turbidity meter are sensitive to the particle size

- Scattering : wavelength – particle size
- Optical Turbidity meter : 400 to 900 nm
- Acoustic waves :
 > 50 µm

Acoustic Wave

- Acoustic **frequency** f_o [Hz]
- Sound speed c [m/s]
- Impédance acoustic Z [Ray]
- Wave length λ [m] (wave number k) \rightarrow optimal scattering

Acoustic Beam

Acoustic Scattering

- More particles
- Larger particles

⇒ increase of the backscattered
echo and the attenuation

• Sampling delay \rightarrow backscattered echo profile

Acoustic Backscattering

• Backscattered acoustic amplitude given by the sonar equation

$$V_{rms} = \frac{k_s k_t}{r \psi} M^{\frac{1}{2}} e^{-2\alpha r}$$

r: distance (m)
 k_t: instrumental constant
 k_s: particle retrodiffusion properties
 ψ: near field correction
 M: sediment concentration
 α: attenuation

• Influence of the sediment in the backscattering

$$k_{s} = \frac{\langle f \rangle}{\left(\rho_{s} \langle a_{s} \rangle\right)^{1/2}}$$

f: form function ρ_s : particle density a_s : particle radius

• ... and in the attenuation

$$\alpha = \alpha_w + \alpha_s = \alpha_w + \frac{3}{4} \frac{\chi_m}{\rho_s \langle a_s \rangle} M$$

+ viscous attenuation

 χ_m : normalized total scattering cross section

Thorne PD & Hardcastle PJ (1997)

Acoustic Turbidity

$$T_r = \frac{v_r^2}{v_e^2 \cdot \Delta t_p \cdot G_t(z)} \left(\frac{z}{R_t}\right)^2$$

- v_r : received voltage, v_e : emitted voltage, Δt_p : pulse duration $G_t(z)$: electro-mechanic gain, z : distance to the transducer, R_t : transducteur radius.
- Independent from the instrument
- Reflects the attenuation of sound in the medium and the ability of particles to scatter the ultrasonic wave at a given frequency f₀

Backscattering Model

• form function and normalised total scattering cross-section

• different for sand, silt, flocs ...

From the Backscattered Echo to the Concentration and the Particle Size

• Size range μ m to mm \rightarrow theoretically frequency GHz (!) to MHz

- Importance of wide transducer bandwidth \rightarrow frequency scanning
- Importance of accurate amplification with variable gain
- Inversion methods (dual frequency ...)

Acoustic Turbidity at High Concentration

- Aeration Tank (~6 g/l)
- Theoretical relation between acoustic turbidity ratio and concentration (homogeneous medium): $T_r = \beta_v C \exp(-4\alpha_v C r)$

Sand Suspension in the Lab

• DEXMES facility

- Sand 100µm
- UB-SediFlow (ABS 0.3 to 6 MHz)

 \rightarrow linear relationship between **backscattering** and **concentration**

 \rightarrow different for each frequency

Sludge Analysis and Level Detection

- Clarifier Tank
- Echo amplitude profile

Different slopes in the two phases

Suspended sediment concentration from acoustic turbidity profile

- Continuous concentration measurement based on calibrated acoustic turbidity
- Wide frequency range (1.0 to 3.7 MHz)
- One day life in sewer (high activity in the morning ; still by night) :

Pallarès A, et al. (2016). Long-term acoustic and optical turbidity monitoring in a sewer, *IWA World Water Congress & Exhibition 2016, Brisbane, Australia*.

Field SSC profiling

Concentration (in g/L)

- Rhône river, France
- Up to 15 g/L
- UB-SediFlow (ABS)
- Dam flushing event (APAVER)

time (UTC)

https://www.ubertone.com/news-220921 IAHREurope2022.html

16

www.ubertone.com

Sediment Transport on Beach

Fritsch N, et al. (2023).Sediment Dynamics Under Real Waves, *Coastal Sediments, New Orlean, US*.

https://ubertone.com/news-221013 3C prototype on beach-advp.html

www.ubertone.com

Take Home

- Acoustic backscattering allows to monitor the Suspended Sediment concentration
- Use of a **wide frequency** range allows to resolve the particle size distribution
- The backscattered **echo profile** gives access to the field of concentration (gradient ...)

Thank you for your attention

UBERTONE

ultrasonic measurements in liquids

comment, question, request?

→ <u>info@ubertone.fr</u> or

contact.ubertone.com

Please attribute Creative Commons with a link to creativecommons.org

Except where otherwise noted, this work is licensed under the Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.