
ATLAS

Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors

ATLAS Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors

Authors: Vasil Tsanov, Eng., Ph.D., Assoc. Professor in (D) & Hristo Tsanov, DM (III) - publishers

first edition, Sofia 2023

ISBN: 978-619-91534-5-1

Genesis 1:29

"And God said, Behold, I have given you every herb bearing seed, which is upon the face of all the earth, and every tree, in the which is the fruit of a tree yielding seed; to you it shall be for meat"

Let the preferred version of reading this book be electronic. Print something really urgent on your recycled paper and printer toner!

This book is constructed in a structure aimed at limiting animal testing in laboratory and preclinical settings.

Only refurbished computers, tablets and smart devices were used in the creation of this book. Good practices have also been applied to reduce energy consumption. The goal is to prevent additional carbon load in the world around us.

Full calculations are posted here*:

Tsanov, V., Tsanov, H. (2023). Interpretable prediction for anticancer sensitivity of glycoside amides (Version 1) [Data set], Zenodo, DOI: 10.5281/zenodo.7550371

*- the information is constantly updated - choose the current version at the moment

ABSTRACT

This ATLAS presents in appended form the complete monographic study (Tsanov & Tsanov, 2023) on the subject. The idea is to bring the results out of the "heavier" didactic format required for the scientific presentation and at the same time to systematize all the information needed for the subsequent clinical research.

The present excerpt from monographic work seeks to introduce the possibility that oncological diseases become chronic (like diabetes). The theoretical basis on which we refer is the fact that cancer cells feed only on carbohydrates. In turn, there is evidence that some nitrile glycosides have anti-cancer properties.

The study is divided into four parts presented in the form of goals.

Proceeding from the particular to the general, the fine molecular structure and all possible biochemical reactions of *Amygdalin* are examined. By itself, it is highly toxic to the physiologically active animal cell. Amygdalin has NO pronounced antitumor properties. In the first goal, he examines precisely the acceptable form for admission. It is concluded that the active anticancer molecular form is a stoichiometric mixture of the amide and carboxyl derivative of the nitrile glycoside.

The second goal is to study the exact action of the anti-tumor product already introduced. After an extremely precise biochemical and mathematical analysis, a series of biochemical cycles of the exact passage of the product through the digestive system, penetration into the blood, approach to cancer cells and selective passage through their cell membrane have been deduced.

The third goal is to define the chemical and pharmaceutical molecular forms. 54 methodological and/or pharmaceutical models with hundreds of variables for each are reviewed and analyzed here.

The fourth goal (it is this purpose that is separately brought out in this edition) presents the interpretable prediction of anticancer susceptibility of glycosidic amides. The affinities of the pharmaceutical form to each known cancer cell line are reviewed. The results surpass many times all anti-cancer drugs and with significantly reduced toxicity.

In an additional part, a generalized clinical control is presented. When conducting the treatment, it is also vitally important to not divert the therapy process to irreversible pathology.

Result: The cancer can become chronic and become a practically curable disease.

ABBREVIATIONS USED IN THE TEXT

AACF Active Anticancer Cell molecules Forms

AAF Active apoptotic forms

CONTENT

ABSTRACT	5
ABBREVIATIONS USED IN THE TEXT	6
CONTENT	7
INTRODUCTION	9
STRUCTURAL METHODOLOGY	9
Conducting the experiment	9
Input data:	10
Selection of testing algorithms:	25
Applicability of results	25
Presentation of results	26
RESULTS AND INTERPRETATION	26
Toxication of the cancer cell	26
Determination of the drug dose	30
FINAL REZULTS	33
Aerodigestive tract (Tractus aerodigestivus)	34
Autonomic ganglion (Ganglion autonomicum)	38
Biliary tract (Ductus biliaris)	39
Bone (Anatomia ossis)	41
Breast (Mamma)	44
Central nervous system (Systema nervosum centrale)	50
Digestive system (Apparatus digestorius)	53
Endometrium (Endometrium)	56
Hematopoietic and lymphoid tissues (Haematopoeticarum lymphoidearumque)	59
Kidney (Ren)	67
Large intestine (Intestinum crassum)	71
Leukemia (Leuchaemia)	76
Liver (Hepar)	80
Lung (Pulmo)	82
Lymphoma (Lymphoma)	98
Myeloma (Myeloma)	102
Neuroblastoma (Neuroblastoma)	103
Nervous system (Systema nervosum)	106
Oesophagus (Oesophagus)	109
Ovary (Ovarium)	112

Pancreas (Pancreas)	115
Pleura (Pleurae)	119
Prostate (Prostata)	120
Salivary gland (Glandulae salivariae oris)	121
Skin (Cutis)	122
Small intestine (Intestinum tenue)	128
Soft tissue (Mollis textus)	129
Stomach (Stomachus)	132
Thyroid (Glandula thyreoidea)	135
Upper aerodigestive tract (Tractus superior aerodigestive)	137
Urinary tract (Tractus urinarii)	139
Urogenital system (Systema urogenitale)	141
RESULTS ANALYSIS	147
CLINICAL CONTROL	148
Correlation of bio constants	148
Chemoprevention and Homeopathy	152
THE CONCLUSIONS OF THE PREVIOUS STUDIES	153
On the first goal (Tsanov & Tsanov, 2020)	153
The second goal (Tsanov & Tsanov, 2021)	153
On the third goal (Tsanov & Tsanov, 2022)	153
APPLYING THE RESULTS	154
AUTHOR'S NOTES	162
ETHICS APPROVAL AND CONSENT TO PARTICIPATE	163
HUMAN AND ANIMAL RIGHTS	163
CONSENT FOR PUBLICATION	163
AVAILABILITY OF DATA AND MATERIALS	163
FUNDING	163
CONFLICT OF INTEREST	163
REFERENCES	164
CONTENTS OF FIGURES AND TABLES	165

INTRODUCTION

Assuming that some Active Anticancer Cell molecules Forms /AACF/ (secreted inside the cancer cell) could be derived from several active pharmacological forms for oral administration (in combination and/or separately) and their already considered druglikeness of the pharmaceutical form (*GPCR ligand*, *Ion channel modulator*, *Kinase inhibitor*, *Nuclear receptor ligand*, *Protease inhibitor*, *Enzyme inhibitor*, pharmacological and biological activity of oral active drugs (*Lipinski's Rule*, *Ghose Filter* and *CMC-50-Like Rule*, *Weber Filter*, *MDDR-Like Rule* and *BBB Likeness*), *QED (uwQED* and *wQED*), non-laboratory and no clinical information on the chemical (*Receptor activity*, *Mutagenicity*, *Carcinogenicity*, *Toxity*), *Lipophilicity*, *Water Solubility*, *Pharmacokinetics*, *Medical chemistry indicators*, etc., it is still not possible to get an idea of the influence of the studied molecules on the real cancer lines.

The main research challenge is to create a sufficiently adapted methodological scheme and at the same time to maintain the general conservatism of good oncological medical practices.

The aim of the present study is to consider the possibility of enhancing the accuracy of predicting the efficacy of the studied pharmacological oral forms using models using several different sources of information, but based on empirical studies on cancer cell lines.

- 🔷 -

STRUCTURAL METHODOLOGY

Conducting the experiment

The current methodological program relies on a comparative analysis of non-identical variables. In one case it values the IC50, and in the other pharmacokinetic and druglikeness indicators of potential oral dosage forms.

In order to minimize the dualism in the interpretation, conditionally postulate some of the allowable values that would be reflected in the processing of a sample of data from the general population. They are:

- a) Work is carried out with a statistical accuracy of 5% (thus aiming to equate the correlation of some of the indicators due to stereoisomerism). In cases where there is a functional dependence of values with different statistical accuracy, the one with the highest deviation is considered final;
- b) To check the repeatability of the analysis (for each individual indicator), a minimum of 5 calculations are performed according to absolutely identical methodologies. If necessary, the tests are performed until a mean deviation of not more than 1.10⁻² is obtained;

c) Some methodologies also require the definition of physical conditions; therefore, the following are accepted as inputs: temperature (T) = 310K, pH_{oral cavity}> $6.5 \div 7.5$; pH_{stomach}= $0.9 \div 3.1$. Time is not a factor - it is analyzed separately.

Input data:

Let us divide the amide/carboxylic derivatives of natural nitrile glycosides conditionally (*Tabl.1*) into 56 groups, coinciding with the active anti-cancer molecular forms (AACF).

The input data represent the molecular structural properties themselves. With the exception of 9 molecules, the test substances do not have CAS numbers (Dimitrov, et al., 2016) (Yordanova, et al., 2019). In order to achieve maximum repeatability of the results, all analyzes are performed from virtually created images.

The working file formats (§III.1, Tsanov & Tsanov, 2023) used are *.cdx and *.c3xml. Standard SMILE script generation followed. Each molecular record is of the "canonical SMILES" type. Some of the isomeric forms are excluded here. Therefore, for each molecule is generated, etc. "isomeric SMILES". The data from the latter will be corrective for causes in the interpretation of the results.

Table 1 Active pharmaceutical forms for oral use and their corresponding active anti-cancer molecules obtained after passage through the cell membrane, based on hydrolyzed amide/carboxylic acid derivatives of natural nitrile glycosides

logi nun	in nber	active pharmaceutical forms for oral use	active anti-cancer molecular form obtained after passage through the cell membrane
	A	HO OH (OH) NH ₂ OH	
1.	В	HO OH (OH) NH2 HO OH OH OH OH	OH OH
	С	HO///// HO///// HO///// OH	NH ₂ (OH)
	D.	HO H	

	E.	OM, OH OH OH	
	G.	HO OH OH HO NH ₂ (OH)	
	Н.	OH HO OH NH2 (OH)	
	I.	O OH OH OH OH	
2.	A	HO HO OH HO OH	$HO \longrightarrow NH_2$ OH

	В	HO HO HO OH HO HO NH ₂ OH NH ₂	
	С	OH NH ₂ (OH)	
3.		HO HO (OH) NH ₂ O O O	HO NH ₂ (OH)
	A.	HO HO (OH) NH ₂	
4.	В.	HO NH ₂ (OH)	HO NH ₂
	C.	OH HOMMAN HOMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN HOMMAN	

	Α.	HO/// _{III} , (OH) NH ₂	
	В.	OH OH NH2 O (OH) NH2	(OID)
5.	C.	HO OH OH OH OH OH OH OH NH ₂	OH) NH ₂ Mmn, HO
	D.	HO OH O	
6.		HO (OH) HO (III) HO (OH) HO (OH) HO (OH)	(OH) H ₂ N O
7.		HOMMAN (OH)	H ₂ N O (OH)

8.	HOIIIII OH (OH)	OH) NH ₂ OH
9.	HO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	O HOIIII OH H ₂ N (OH)
10.	HO OH OH OH OH OH	O OH H₂N HO OH
11.	HOWING OH OH OH	HO _{Mm} , O NH ₂ (OH)
12.	HOIIIII OH	OH H ₂ N (OH)
13.	OH) H ₂ N OH	HO////, HO NH ₂ OH OH
14.	OH HO/////////OH OH OH OH OH OH OH	OHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

15.		HO NH ₂ (OH)	OH NH ₂ (OH)
16.		OH O	(OH) H ₂ N OH
17.		HO OH O	(OH) H ₂ N HOOOH
18.		NH O (OH) HO III HO OH)	OH (OH) NH ₂
19.		OH) NH2 OH OH OH OH OH OH OH	OH OH NH ₂ (OH)
	Α.	HO (OH) NH2	но
20.	В.	OH OMM	HO NH ₂ (OH)

21.		HO OH (OH) H ₂ N O	HO NH ₂ (OH)
22.		HO H ₂ N (OH)	HO (OH) NH ₂
	A	NH ₂ (OH)	NH ₂ (OH)
23.	В.	HO HO (OH) NH ₂	но
24.		HO NH2 (OH) HO OH	NH ₂ (OH)
25.		HOMINGO OH NH2 (OH)	HO (OH) NH ₂

26.	OH) NH ₂ OH	O (OH) NH ₂
27.	HO OH	HO O NH ₂ (OH)
28.	HO HO NH ₂ HO O O O O O O O O O O O O O O O O O O	HO NH ₂
Α.	HO HOIIIII OH HOIIIII OH OH	НО
29. B.	HO HO OH	NH ₂ (OH)

	C.	OH HO/////OH OH OH OH OH OH OH	
	D.	OH O	
30.		HOMING OH OH	OH NH ₂ (OH)
	Α.	HO HO OH OH OH	HO
31.	В.	OH) NH ₂ OH OH HO OH HO OH OH OH OH OH OH OH OH	NH ₂ OH OH

	C.	HO NH2 HO NH2 HO NH2 HO NH2 HO NH2	
32.		HO HO HO	OH OH OH NH ₂ (OH)
33.		HO//// HO OH O	OH NH ₂ (OH) OH
34.		HO OH O	HO NH ₂ (OH)
35.		HO OH NH2 (OH) OH OH OH OH OH OH OH OH OH	OIIIII NH ₂ (OH)

36.	HO HO HO HO NH ₂	OH (OH) NH ₂
37.	HOW OH OH	HOIIIII OH (OH) NH ₂
38.	OH	(OH) NH ₂ OH HO H ₂ N (OH)
39.	OH O	OH OH OH OH OH OH
40.	HO (OH) NH2 OH HO HO OH HO HO OH	O (OH) NH ₂ OH HO HO HO

		$O \longrightarrow \begin{pmatrix} OH \\ NH_2 \\ O \longrightarrow \begin{pmatrix} OH \\ A \end{pmatrix} \end{pmatrix}$	(OH) NH ₂
41.		HO O O O O O O O O O O O O O O O O O O	но
42.		HO OH NH ₂ (OH)	HOIIIIII NH ₂ (OH)
43.		OH NH ₂ HO'III'' OH OH OH	HO NH ₂
44.		HO//// HO //// HO //// O NH ₂ (OH)	O NH ₂ (OH)
	A.	(OH) NH ₂ OH	
45.	В.	OH (OH) NH ₂ OH OH OH	(OH) NH ₂ HO
	C.	(OH) NH ₂	

	D.	OH) NH2 HO OH OH OH OH	
	E.	HO/////NH2 E OH	
	F.	HO (OH) NH ₂	
	G.	HO HO NH ₂ (OH)	
	Н.	OHOOHOOHOOHOOHOOHOOHOOHOOHOOHOOHOOHOOHO	
46.		HO OH	HO O NH ₂

47.		OH OH OH NH ₂ (OH)	OH ONH ₂ (OH)
48.		HO OH OH OH OH OH OH OH	о О NH ₂ (ОН)
49.		OH) NH2 OH	о Но О О NH ₂ (OH)
50.		HO O O O O O O O O O O O O O O O O O O	HO (OH) NH ₂ O OH
	Α.	OH OH OH OH	O NH ₂
51.	В.	HOMAN OH OH	НООН

52.	HO NH ₂ (OH)	HO NH ₂ (OH)
A. 53.	HO NH ₂ (OH)	$HO \longrightarrow NH_2$ O
В.	HOIIIII OH	
54.	HO////NH2 OH OH OH OH OH OH OH OH OH	OOH) NH ₂ OH
55.	HO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HO NH ₂ (OH)
56.	OH IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(OH) NH ₂

Selection of testing algorithms:

This part of the methodology is implemented through the web-based PaccMannTM (Cadow, Born, Manica, Oskooei, & Martínez, 2020) service. The training set uses data from *Genomics of Drug Sensitivity in Cancer* (Soares, et al., 2013) (GDSC) and *Cancer Cell Line Encyclopedia* (Ghandi, Huang, & Jané-Valbuena, 2019) (CCLE). The value reported here is IC50 in $log(\mu mol)$. The algorithm proposed by the researchers of PaccMann project gives for epistemic and aleatoric confidences (in absolute value) in the range of $0.850 \div 0.985$. This is a good framework for bioactive substances and it is not necessary to anti-logarithm the value, but to analyze it directly within the limits: at IC50 $[log(\mu mol)] < 1.02$ might be accepted that the studied molecule has "medicinal properties". The correction of 0.2 over the integer 1.0 comes from the statistical error of such calculations. Some of the values are negative numbers, i.e. it could be assumed that the studied molecules will also have restorative clinical properties (Sebaugh, 2011) (Gary, Zhengyin, Wensheng, & Masucci, 2012).

Applicability of results

The structure of the analysis for an interpretable prognosis of susceptibility to active anti-cancer molecular forms of transcriptome cell lines inherent in tumors considers only the described structural relationships between the molecule and the corresponding cellular effect. PaccMann outputs individual topological (and/or structural) fragments as active. The latter, in turn, can be in the amide and carboxylic oral form and in the amide and carboxylic active form. On the other hand, only a part of the molecule that is not functionally significant for the process can be described. Last but not least, it should be taken into account that the concentration of the amide pharmaceutical form is 4.87 times higher than the carboxylic form, and even after the passage of the cell membrane of the cancer cell (only the amide form) carboxylic is obtained, which maybe it with anti-cancer activity.

After several mathematical and stoichiometric operations of the case, the values subjected to comparative analysis acquire the following functional dependence:

$$A_{IC50} = 4.87xAF_{IC50} + CF_{IC50} + AAF_{IC50} + 0.25xACF_{IC50}$$

where: A_{IC50} is the IC50 activity to be analyzed; AF_{IC50} - value of the IC50 analysis for the amide pharmacological form; CF_{IC50} - value of the carboxylic pharmacological form; AAF_{IC50} - value from the IC50 analysis for the active amide form and ACF_{IC50} - value from the IC50 analysis for the active carboxylic form.

Applying the permissible values (§III.3.4, Tsanov & Tsanov, 2023) it follows that the maximum value for IC50 must be less than 7.35 (with statistical accuracy included).

Presentation of results

All final values are presented in tabular form, using a "heat map" - without placing the numerical values themselves. The color identification is as follows: $dark\ green\ (\#00B050)$ - negative values /best effect/, $light\ green\ (\#92D050)$ - values from 0 to 2, $dark\ blue\ (\#0070C0)$ - $2.01 \div 4.00$, $light\ blue\ (\#00B0F0)$ - $4.01 \div 6.00$ and $orange\ (\#FFC000)$ - $6.01 \div 7.35$. Unstained cells do not necessarily mean that there is no activity. The values of some of them could be in a similar order to those accepted in the analysis. However, further research and individual assessments of each individual variable in the comparison process are needed.

The two different input information flows (§III.3.4., Tsanov & Tsanov, 2023) and their differences in the analysis of data collection and packaging, determines the fact that some pairs of cell lines will get different results. That is why both possibilities are presented. They are interpreted together.

- 🔷 -

RESULTS AND INTERPRETATION

Toxication of the cancer cell

Active apoptotic form (AAF) with manifested anticancer activity is formed according to their molecular structure. For diglycoside compounds (Amygdalin / Gentiobiose / Lucumin / Primeverose / Vicianin / Vicianose, etc.) primary enzymatic hydrolysis (gluconases - which are abundant in tissue fluids) of the glycosidic bonds between the individual sugars takes place. The relationship between the secondary carbohydrate and the reaction-determining group is stronger and requires a longer reaction

¹ No logarithmic conversion is performed, only the baseline numerical values of the IC50 analysis.

time and/or a specific enzyme such as *amygdalin beta-gluconase*. The latter is synthesized mainly inside the cell itself. This leads us to conclude that the passage through the cell membrane of the cancer cell (§IV.2.1-2, Tsanov & Tsanov, 2023) occurs with only one carbohydrate molecule. Once inside the cell, the only glycosidic bond is broken. This is how the **AAF**s themselves are created. Some of them are listed in *Tabl.* 2.

Table 2 Active apoptotic amide/carboxylic acid molecular forms, based on hydrolyzed amide/carboxylic acid derivatives of natural nitrile glycosides

chemical formula	name	natural precursor
HO	(R)-2-hydroxy-2-phenylacetamide	Prunasin Amygdalin Lucumin
NH ₂ (OH)	(R)-2-hydroxy-2-phenylacetic acid	Vicianin Sambunigrin
OH	(R)-2-hydroxy-2-(4-hydroxyphenyl)acetamide	Dhurrin Taxiphyllein
HO NH ₂ (OH)	(R)-2-hydroxy-2-(4-hydroxyphenyl)acetic acid	Proteacin p-Glucosyloxymendelo- nitrile
НО	(R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide	Zierin
H ₂ N (OH)	(R)-2-hydroxy-2-(3-hydroxyphenyl)acetic acid	Zienn
но	2-hydroxy-2-methylpropanamide	
NH ₂ (OH)	2-hydroxy-2-methylpropanoic acid	Linamarin
(OH) NH ₂	(S)-2-hydroxy-2-methylbutanamide	Lotaustralin
WW.	(S)-2-hydroxy-2-methylbutanoic acid	Dottustram
(OH) NH ₂	2-hydroxy-3-methylbut-2-enamide	Acacipetalin
ОН	2-hydroxy-3-methylbut-2-enoic acid	Acacipetami
HO OH (OH) NH ₂	(2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylidene)hex-2-enedioic acid	
HO Nri2	(2E,4Z)-3-(carboxymethyl)-2-hydroxyhexa- 2,4-dienedioic acid	Triglochinin

(OH)	(S)-1-hydroxycyclopent-2-ene-1-carboxamide	Deidaclin	
NH ₂	(S)-1-hydroxycyclopent-2-ene-1-carboxylic acid	Tetraphyllin A	
но	(1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxamide	Tetraphyllin B	
(OH) NH ₂	(1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carboxylic acid	Volkenin Taraktophyllin	
HO (OH) NH ₂	(1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide		
но	(1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxylic acid	Gynocardin	
OH O (OH) NH ₂	(Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetamide	Maniadamin	
но	(Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetic acid	Menisdaurin	
(OH) H ₂ N	(R)-2-hydroxy-3-methylbutanamide	Volkenin	
ООН	(R)-2-hydroxy-3-methylbutanoic acid	VOIKEIIIII	
HO (OH) NH ₂	(E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide	Griffonin	
HOMM	(E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetic acid	Gililollili	
Ollim. (OH)	(Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide	Bauhinin	
HO OH O	(Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetic acid	Baumini	
OH O	(E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en- 1-ylidene)acetamide	Purshianin	
HOW (OH)	(E)-2-((4R,6S)-4,6-dihydroxycyclohex-2-en-1-ylidene)acetic acid		
OH HO	(E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex- 2-en-1-ylidene)acetamide		
HOWITH NH2 (OH)	(E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetic acid	Lithospermoside	
O HO	(1R,2R,4R,6S,E)-3-(2-amino-2-oxoethylidene)-2,4,6-trihydroxycyclohexyl benzoate		
o willion	(E)-2-((2R,3R,4S,6R)-3-(benzoyloxy)-2,4,6-trihydroxycyclohexylidene)acetic acid	Campyloside A	

H OH	(1S,2R,4R,6S,E)-3-(2-amino-2-oxoethylidene)-6-(benzoyloxy)-2,4-dihydroxycyclohexyl 1H-pyrrole-2-carboxylicate	Campyloside B	
OH) NH ₂ OHO	(E)-2-((2R,3S,4S,6R)-3-((1H-pyrrole-2-carbonyl)oxy)-4-(benzoyloxy)-2,6-dihydroxycyclohexylidene)acetic acid		
OH (OH) NH ₂	(2S,3S)-2,3-dihydroxy-4-methoxy-1-methyl-6-oxo-1,2,3,6-tetrahydropyridine-3-carboxamide	Acalyphin	
	(2S,3S)-2,3-dihydroxy-4-methoxy-1-methyl-6-oxo-1,2,3,6-tetrahydropyridine-3-carboxylic acid	1 2 2 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
НО	4-hydroxy-3-(hydroxymethyl)but-2-enamide		
HO (OH) NH ₂	4-hydroxy-3-(hydroxymethyl)but-2-enoic acid	Sutherlandin	
О—ОН	(Z)-4-hydroxy-2-methylbut-2-enamide	Rhodiocyanoside A	
NH ₂ (OH)	(Z)-4-hydroxy-2-methylbut-2-enoic acid		
	(Z)-2-(hydroxymethyl)but-2-enamide	Rhodiocyanoside D	
NH ₂ (OH)	(Z)-2-(hydroxymethyl)but-2-enoic acid		

Each of these molecules alone would not cross the cell membrane of the cancer cell. Only those related to carbohydrate and fulfilling the conditions of (§IV.2.1-2, Tsanov & Tsanov, 2023) will block and/or permanently damage her normal physiology. The use of **AAF** (*Tabl. 2*) directly for treatment will lead to severe toxic and allergic responses of the body.

By themselves, these compounds or their homologues are still used in conservative chemotherapy (Chabner & Longo, 2018) (Airley, 2009) (Priestman, 2012). Glycosides such as *Rehmapicroside*, *Loganic acid*, *HMBOA D-glucoside*, *Glucose beta-1,3-isofagamine*, *Vanillyl beta-D-glucopyranoside* and others. Although they contain **AAF** of the proposed type, they would not cross the cell membrane of the cancer cell. They do not fulfill the condition of (§*IV.2.2.*, Tsanov & Tsanov, 2023), in the part of the amide derivative which is to be hydrolyzed by a transitional complex with a carboxylic acid.

The relative inertness of the glycosidic bond (*in vivo*) also allows the use of different amide-carboxylic glycosides simultaneously. This is also observed in nature with regard to the distribution of nitrile glycosides - they are often more than one representative in one plant. Thus, different AAFs can be injected simultaneously, at different concentrations and at different times, in order to closely

differentiate the different types of cancers, through the synergistic action of the controlled toxicity itself inside the "attacked" cell.

Natural nitrile glycosides would not cross the cancer cell membrane. They decompose to HCN-acid, phenyl methanol and carbohydrate. They do NOT have anticancer activity due to their inability to reach the target unchanged. These compounds, in their natural form, are extremely toxic to the human body. Their application is not a treatment, even in a higher concentration they cause irreversible pathology over the physiologically active animal cell. Dozens of their modified forms have been theoretically derived, but their amides and their carboxylic acids are the most promising for their introduction into conservative oncology. The fact is that the cancer cell itself tries to counteract it in a fairly certain way.

Determination of the drug dose

The drug dose is determined by considering all possible substances obtained by the final hydrolysis of the glycosidic bond inside the cancer cell (*Tabl. 2 & 3*).

Table 3 Nature and concentration of active anticancer cell molecules obtained after crossing the cell membrane by their natural precursors

AACF chemical formula obtained after crossing the cell membrane	natural precursor enzymatically modified to amide and carboxylic acid	AACF concentration derived from 1 mg/ml pharmacological form [mg/ml]
но о	Prunasin 4.87:1	0.40
>	Amygdalin 4.87:1	0.27
NH ₂	Lucumin 4.87:1	0.27
(OH)	Vicianin 4.87:1	0.27
	Sambunigrin 4.87:1	0.40
OH T	Dhurrin 4.87:1	0.42
	Taxiphyllin 4.87:1	0.42
	Proteacin 4.87:1	0.31
HO NH ₂ (OH)	p-Glucosyloxymandelonitrile 4.87:1	0.42
HO OH OH (OH)	Zierin 4.87:1	0.42

$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Linamarin 4.87:1	0.32
OH O	Lotaustralin 4.87:1	0.35
(OH) NH ₂ OH	Acacipetalin 4.87:1	0.34
HO OH (OH) NH ₂	Triglochinin 4.87:1	0.47
(OH) NH ₂	Deidaclin 4.87:1 Tetraphyllin A 4.87:1	0.36 0.36
но_	Tetraphyllin B 4.87:1	0.39
(OH) NH ₂	Volkenin 4.87:1	0.39
NH ₂	Taraktophyllin 4.87:1	0.39
HO (OH) NH ₂	Gynocardin 4.87:1	0.41
HO OH O (OH) NH ₂	Menisdaurin 4.87:1	0.42
O OH	Epiheterodendrin 4.87:1	0.35

HOWINI. OH	Griffonin 4.87:1	0.44
Ollinim (OH) NH2	Bauhinin 4.87:1	0.46
OH WH ₂ (OH)	Purshianin 4.87:1	0.42
HOWING OH NH2 (OH)	Lithospermoside 4.87:1	0.44
O HO	Campyloside A 4.87:1	0.64
OH (OH) NH ₂ OH NH	Campyloside B 4.87:1	0.69
OH (OH) NH ₂	Acalyphin 4.87:1	0.56
HO O (OH) NH ₂	Sutherlandin 4.87:1	0.44

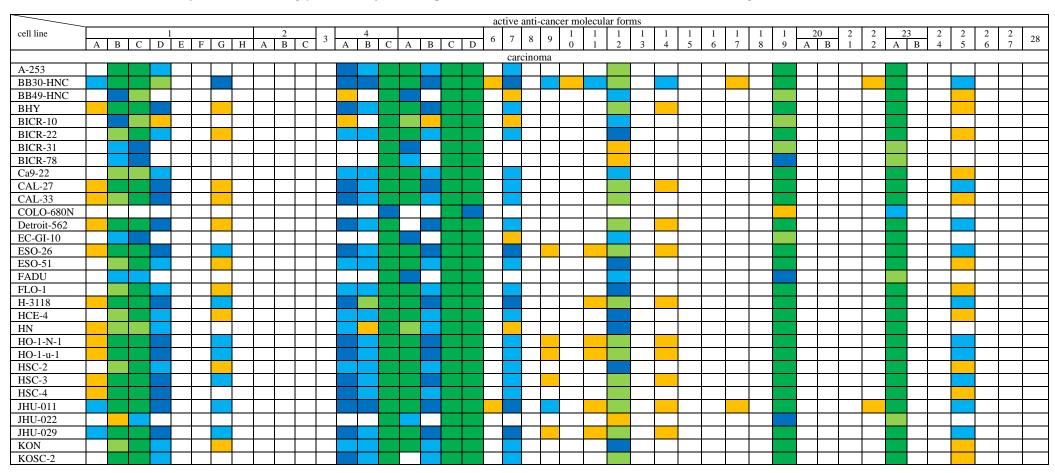
O — OH NH ₂ (OH)	Rhodiocyanoside A 4.87:1	0.41
NH ₂ (OH)	Rhodiocyanoside D 4.87:1	0.41

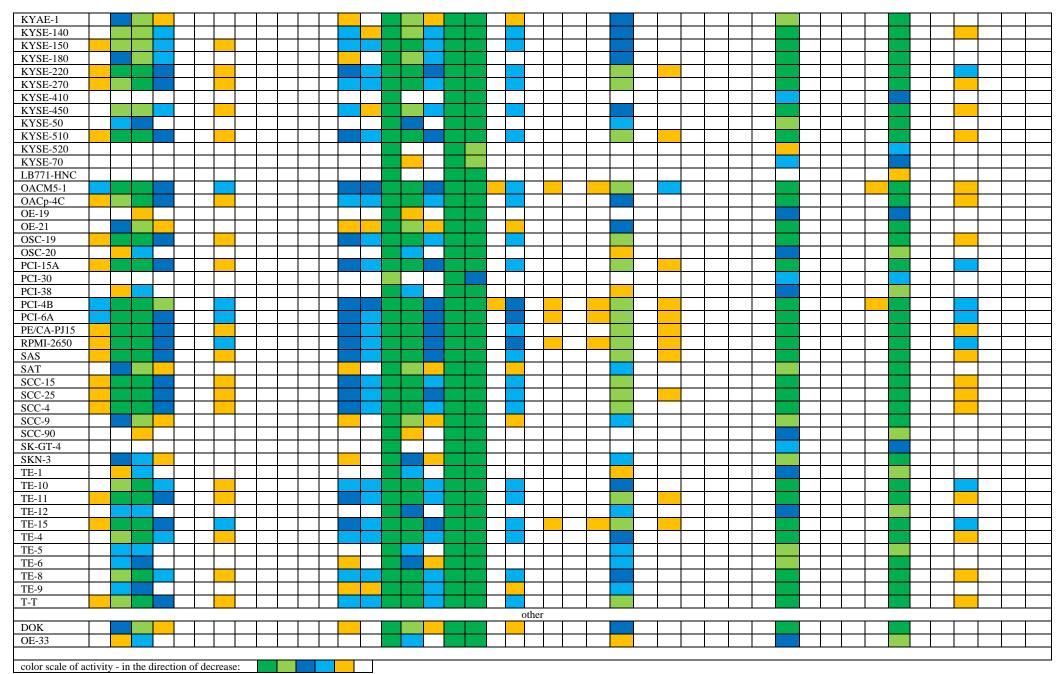
The use of two or more pharmaceutical forms would not prevent their penetration subject to the mass ratios between the active antitumor amide and the active carboxylic transfer form.

The chemical compounds listed in *Tabl. 2 & 3* and are currently used as: anti-migrane, anti-atherosclerotic, anticoagulant, treatment of HIV, anti-cancer, anti-asthmatic, anti-hypertensive, anti-epileptic, analgesic, ocular anti-inflammatory, anti-hypertensive, hypnotic, anesthetic, anti-allergic, aromatase inhibitor, anti-ulcerative, anti-neoplastic, antibacterial, anticoccidial, contraceptive, tyrosine-kinase inhibitor treatment of mast cell tumors, etc.. The difference is that with the proposed technology they are formed inside the cell itself and thus minimize their overall toxicity in the body.

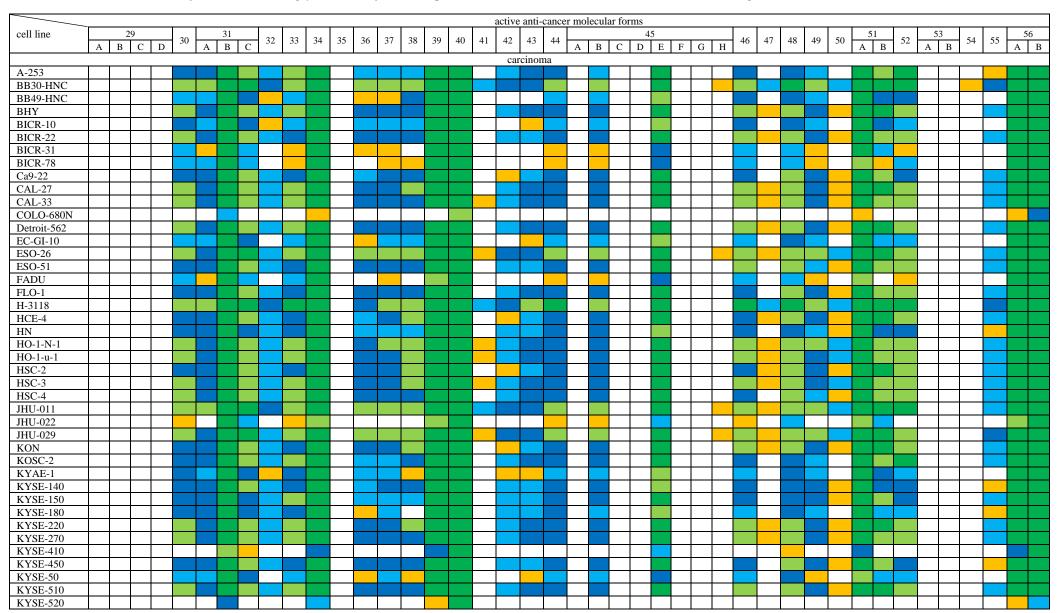
- 🔷 -

FINAL REZULTS


The analysis and subsequent presentation of the results was conducted according to *§III.3.4*, Tsanov & Tsanov, 2023:


Aerodigestive tract (Tractus aerodigestivus)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Aerodigestive tract (*Tabl.4.1. a. & b.*), it is concluded that:


- main potential medicines: AACF 4.C., 5.C., 5.D., 19., 23.A., 40. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 1.C., 5.A., 31.B., 34., 51.A. and 56.A.

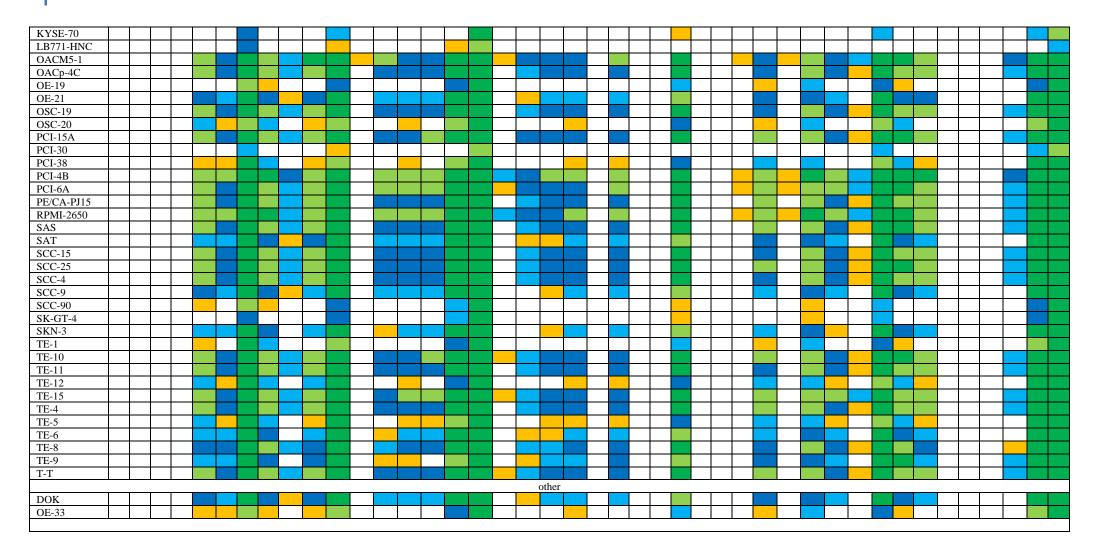
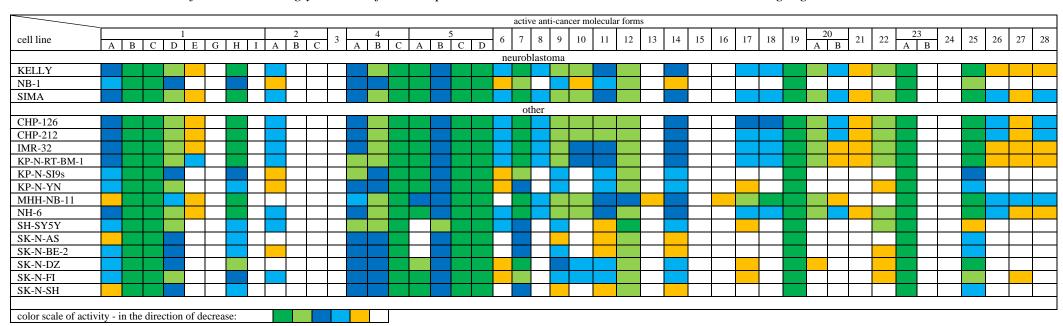
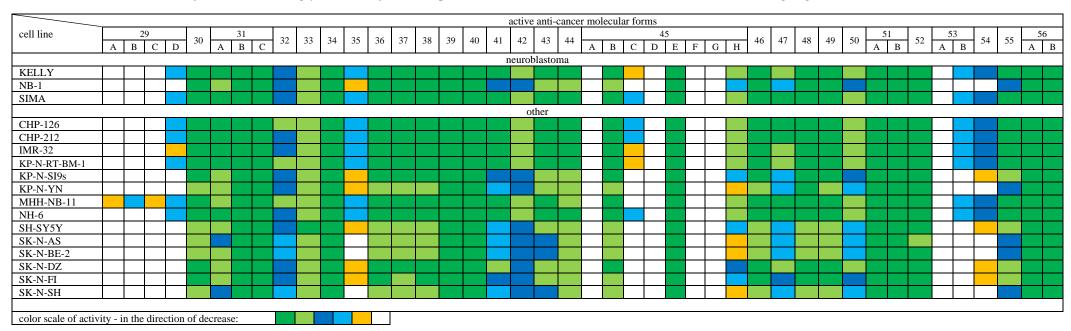

Table 4.1. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Aerodigestive tract: Part 1

Table 4.1. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Aerodigestive tract: Part 2



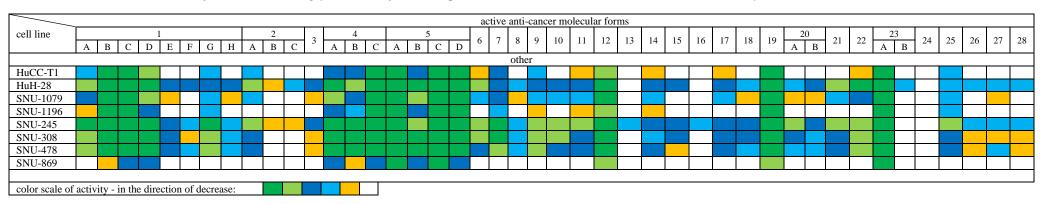
Autonomic ganglion (Ganglion autonomicum)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Autonomic ganglion (*Tabl.4.2. a. & b.*), it is concluded that:

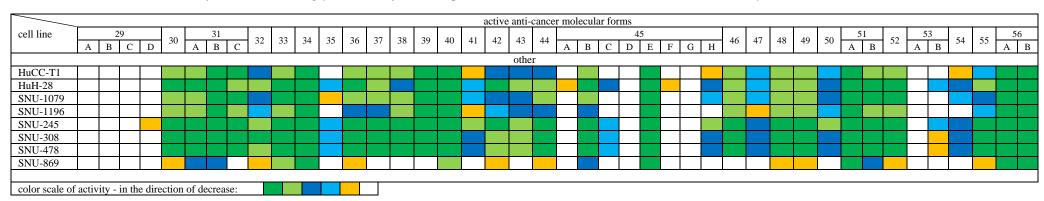
- main potential medicines: AACF 1.A., 1.B., 1.C., 4., 7., 9., 12., 14. and 19.;
- duplication of treatment and / or substitution on medical grounds: AACF 2.A., 5., 6., 8., 10., 11. and 22.

Table 4.2. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Autonomic ganglion: Part 1

Table 4.2. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Autonomic ganglion: Part 2



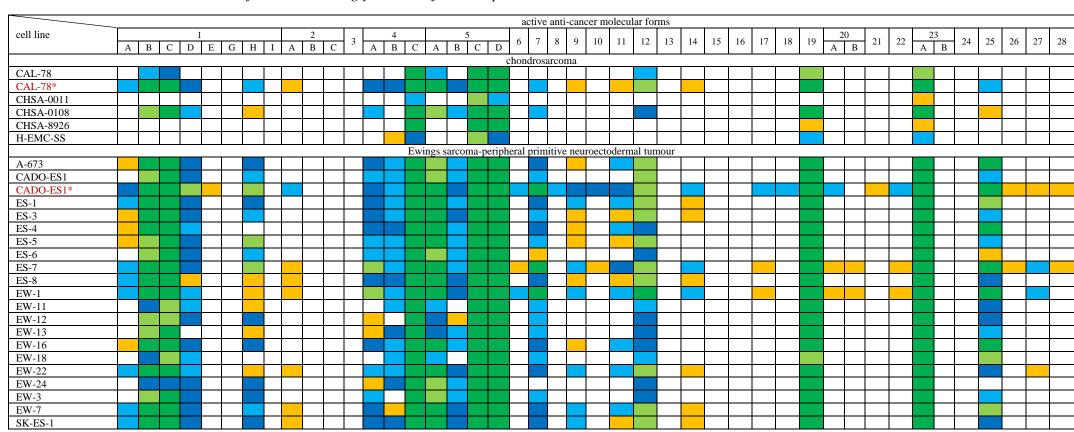
Biliary tract (Ductus biliaris)

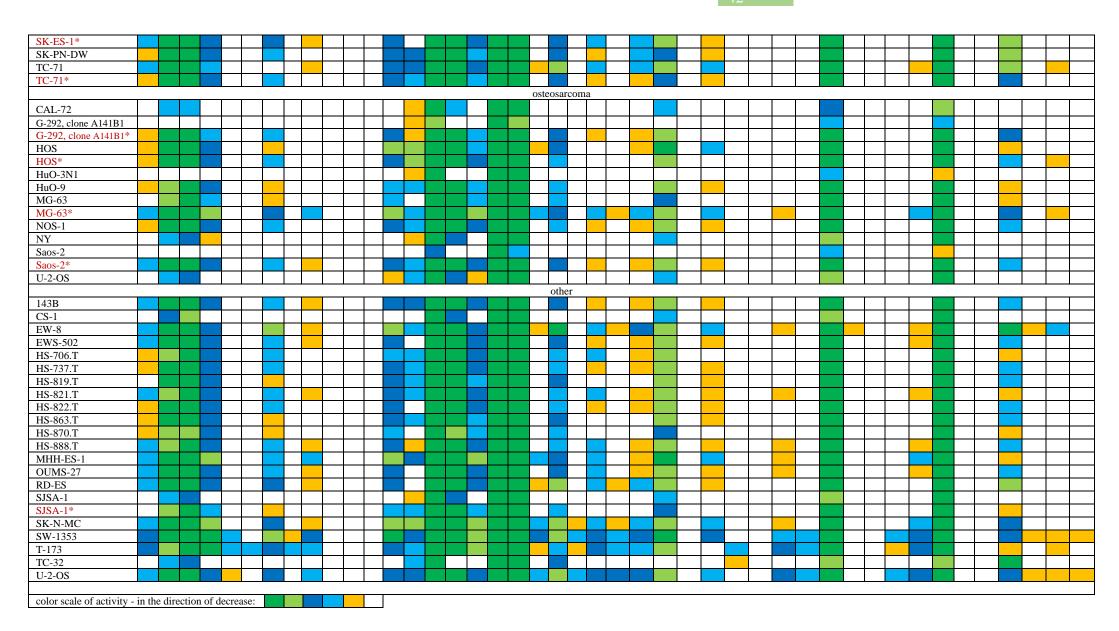

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Biliary tract (*Tabl.4.3. a. & b.*), it is concluded that:

- main potential medicines: AACF 5.A., 5.C., 12., 19., 23.A., 34., 40., 51.A., 56.A. and 56.B;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.C.*, *1.D.*, *4.A.*, *4.B.*, *4.C.*, *5.B.*, *5.D.*, *30.*, *31.A.*, *31.B.*, *32.*, *36.*, *42.*, *44.*, *45.B.*, *48.*, *49.*, *52.* and *55.*

Table 4.3. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Biliary tract: Part 1

Table 4.3. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Biliary tract: Part 2




Bone (Anatomia ossis)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Bone (*Tabl.4.4. a. & b.*), it is concluded that:

- main potential medicines: AACF 4.C., 5.C., 5.D., 40. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 23.A. and 31.B.

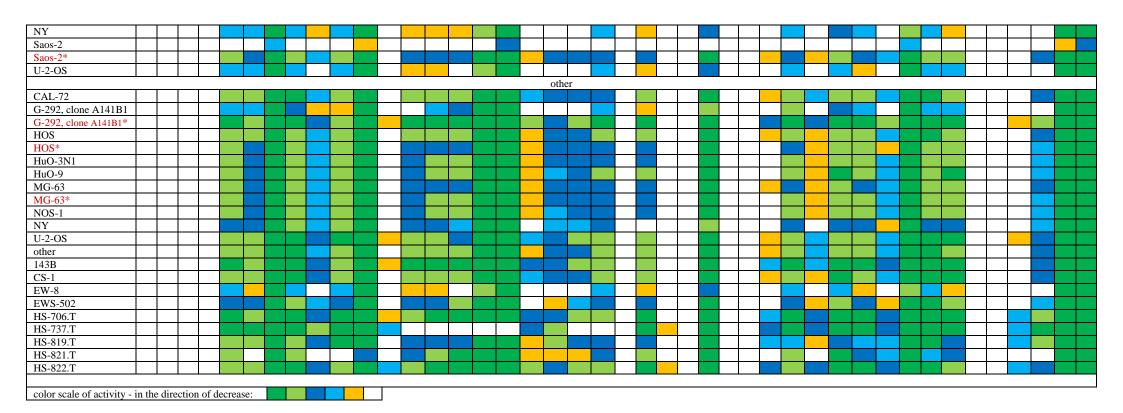
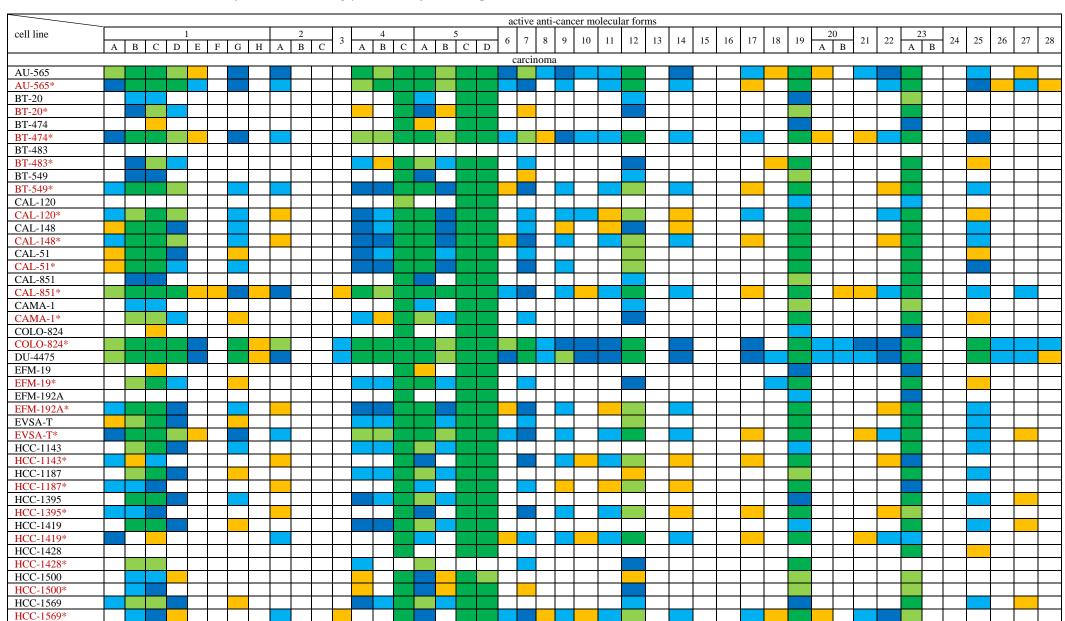
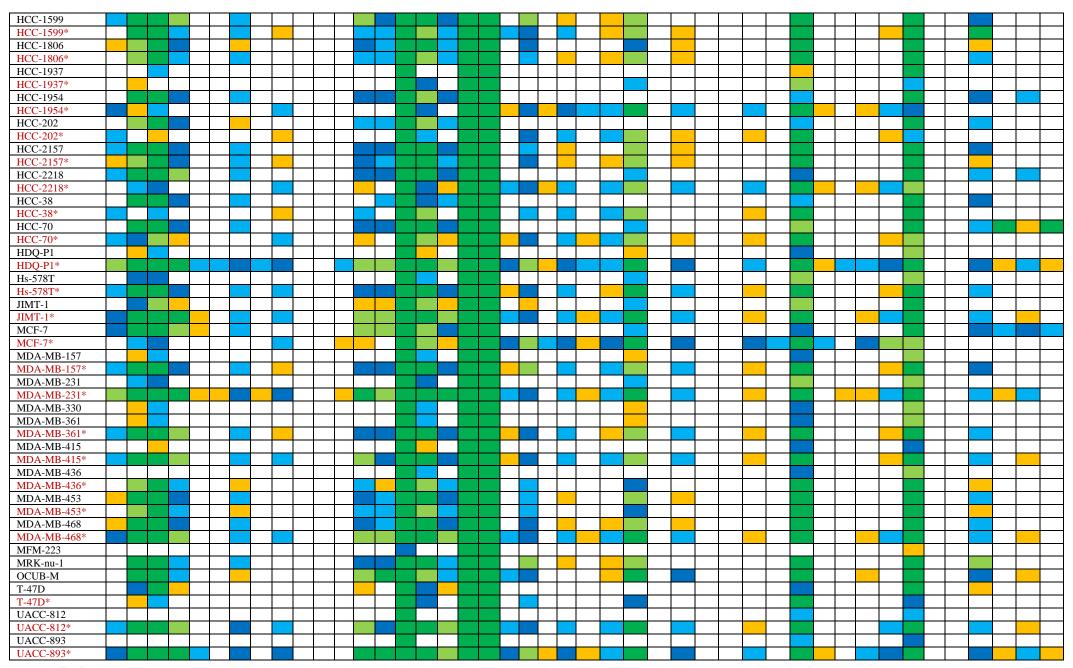
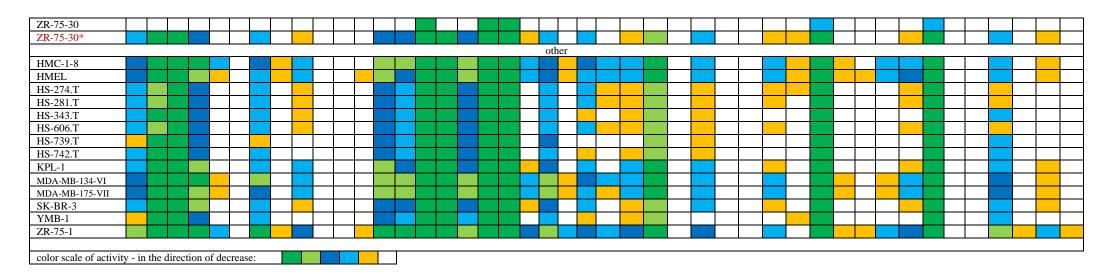

Table 4.4. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Bone: Part 1

Table 4.4. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Bone: Part 2

																				tivo.	onti d	ance	r mal	مميراه	r for	****																
cell line	_		29		1	1	31	1		1	1	1	T	1	1	1							mor	ccuia	1 101	45				1	T			1	-	51	52	53				56
cen ime	A		C	D	30	A	В	С	32	33	34	35	36	37	38	39	4	0 4	41	42	43	44	Α.	D	C	D 43	Е	7 0	Н	46	47	48	49	50	A	В	32	A .		54	55	A B
	А	ь	L	D	1	А	ь	C		1		1							chond	Irocai	rcom	0	А	ь	C	D	E I	. 0	п	1			İ	<u> </u>	А	ь		А	ь			АВ
CAL-78			l	l															lione	11034	ICOIII	а																				
CAL-78*																	+											-														
CHSA-0011																																										
CHSA-0011 CHSA-0108																																										
CHSA-8926																																										
H-EMC-SS																																										
II-LMC-55						1				1				Fw	ings s	arcoi	ma_n	erinh	eral r	rimi	tive r	euro	ectod	erma	l tum	Our				1				1					ı			
A-673														LW	iiigs s	arcor	пар	cripii	crar	711111	tive i	icuro	ctod	CHIHA	i tuii	loui																
CADO-ES1																	+																									
CADO-ES1*																												+														
ES-1																												+														
ES-3																												+														
ES-4			<u> </u>	<u> </u>																								+														
ES-5																+	+	_										+														
ES-6																	+			-								+														
ES-7															+		+											+														
ES-8																+																							_			
EW-1														+		+	+			-								+														
EW-11															+	+	+			_								+														
EW-12																	+											1														
EW-13																	+											1														
EW-16																										_																
EW-18																	+											1														
EW-22																	+											1														
EW-24																												1														
EW-3																												1														
EW-7																																										
SK-ES-1																																										
SK-ES-1*																																										
SK-PN-DW																																										
TC-71																																										
TC-71*																																										
	1																		oste	osarc	oma				!														1			
CAL-72																																										
G-292 clone A141B1			1										1																					1								
G-292 clone A141B1*			1																																							
HOS			1																																							
HOS*																												\top														
HuO-3N1																																										
HuO-9																												1	1													
MG-63			1																																							
MG-63*																																										
NOS-1	+																											+										- 	 			

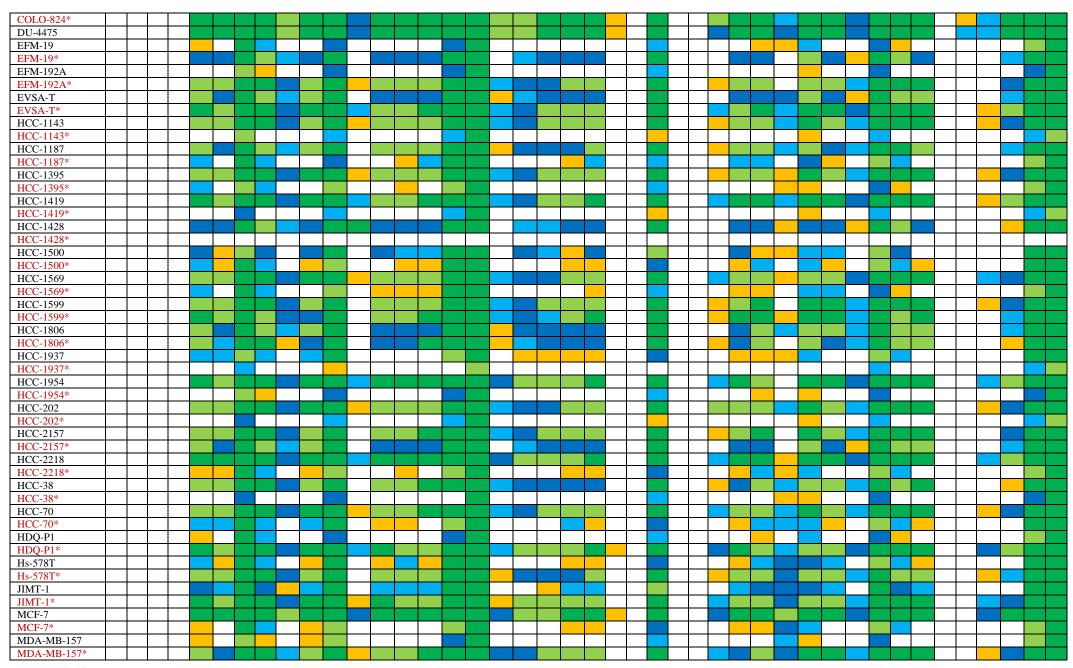



Breast (Mamma)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Breast (*Tabl.4.5. a. & b.*), it is concluded that:

- main potential medicines: AACF 4.C., 5.C., 5.D., 19., 23.A., 31.B., 40., 48., 51.A., 56.A., and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 5.A., 34., 39., 45.D., 45. and 51.B.

Table 4.5. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Breast: Part 1



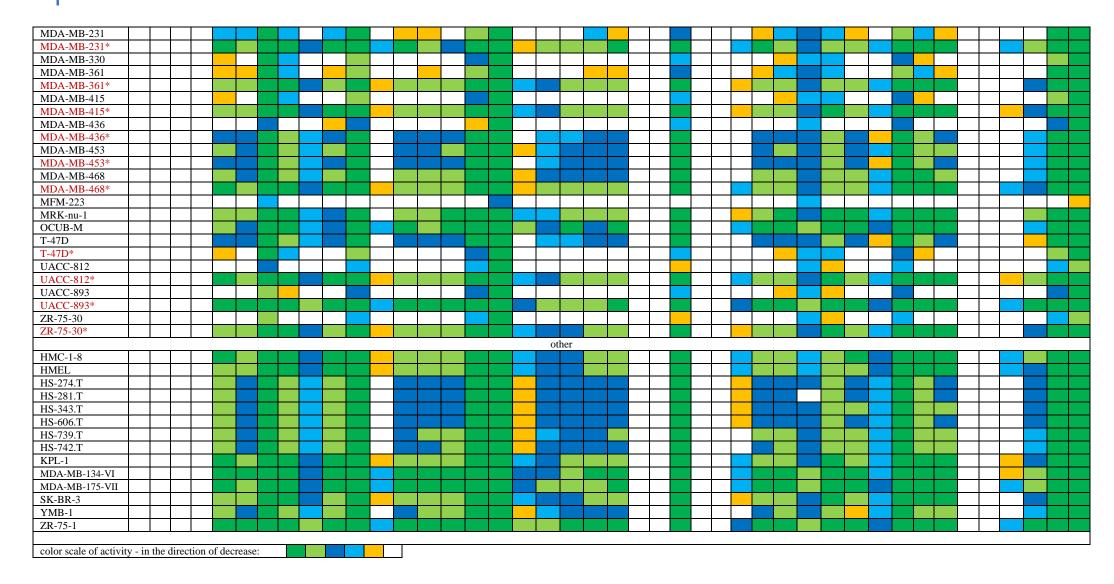
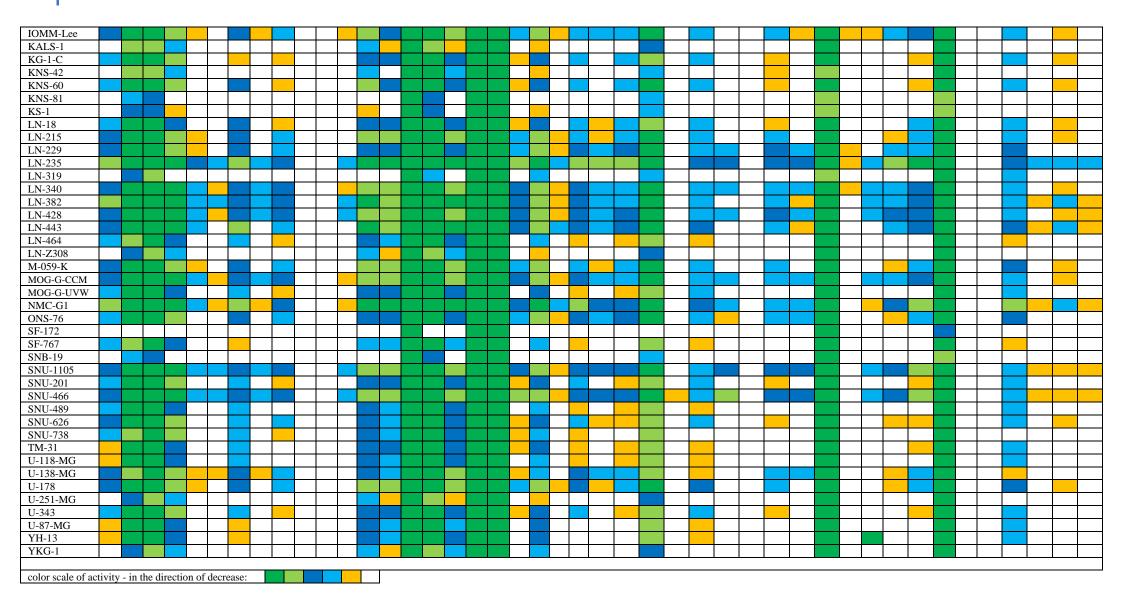


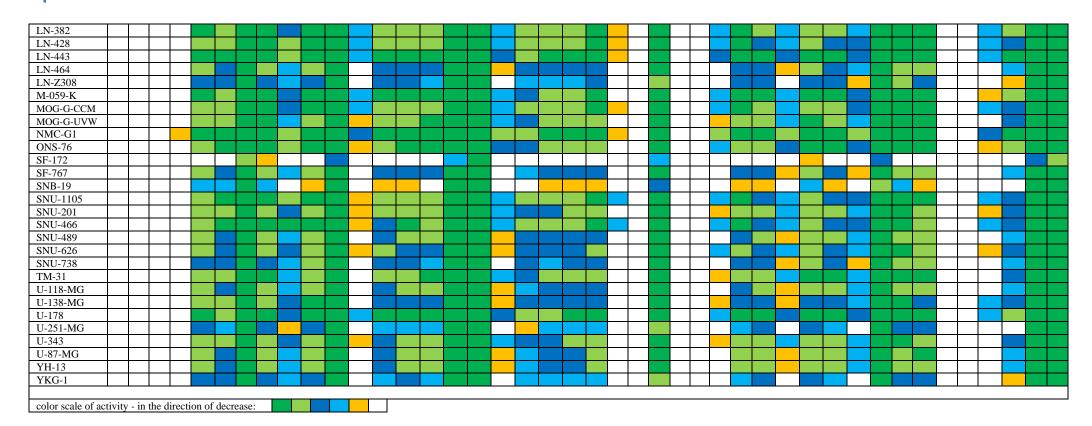
Table 4.5. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Breast: Part 2

					J					0 2			J			•																								
																	í	active	anti-	cance	er mo	lecula	r forn	ıs																
cell line		29	30	0	31		32	33	34	35	36	37	3	8 3	39	40	41	42	43	44				45				46	47	48	49	50	5		52	53		54 53		56
	A B	C 1	D S	A	В	C	32	33	31	33	30	37	,	۲	,,	10					Α	В	C	D E	F	G	Н	10	-17	10	17	30	A	В	32	A	В		A	АВ
																		carci	noma																					
AU-565																																								
AU-565*																																								
BT-20																																								
BT-20*																																								
BT-474																																								
BT-474*																																								
BT-483																																								
BT-483*																																								
BT-549																																								
BT-549*																																								
CAL-120																																								
CAL-120*																																								
CAL-148																																								
CAL-148*																																								
CAL-51																																								
CAL-51*																																								
CAL-851																																								
CAL-851*																																								
CAMA-1																																								
CAMA-1*																																								
COLO-824																																								


Central nervous system (Systema nervosum centrale)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Central nervous system (*Tabl.4.6. a. & b.*), it is concluded that:

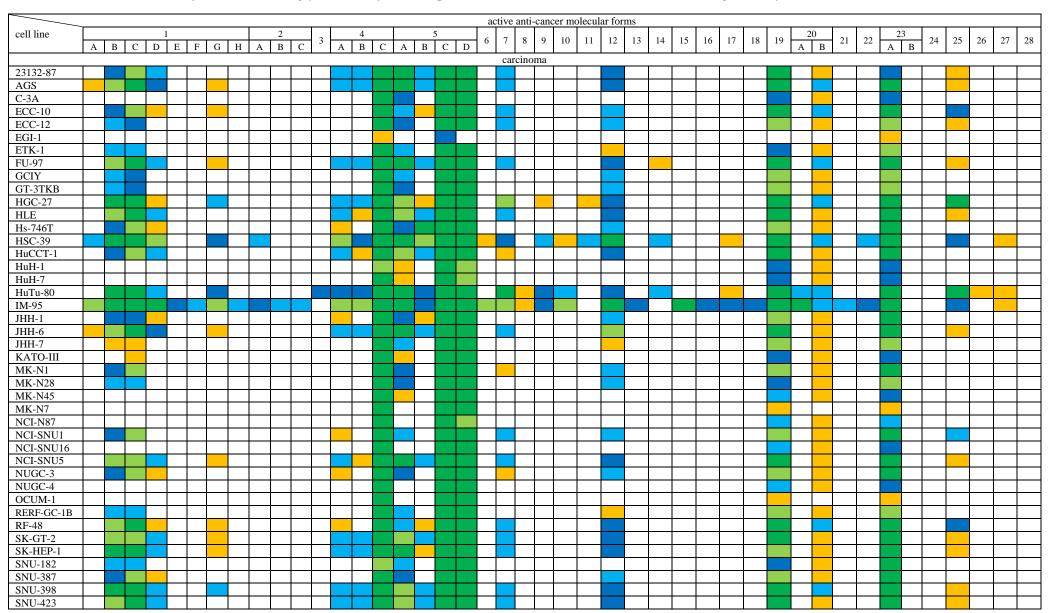
- main potential medicines: AACF 1.C., 4.C., 5.A., 5.C., 5.D., 19., 23.A., 30., 31.B., 34., 39., 40., 45.D., 51.A., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.D.*, *12.*, *25.*, *31.A.*, *33.*, *37.*, *43.*, *44.*, *45.A.*, *45.H.*, *46.*, *48.* and *49*.

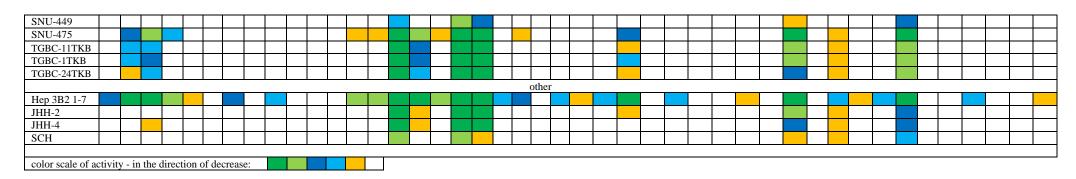

Table 4.6. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Central nervous system: Part 1

																				a	ective	e anti	i-can	cer m	oleci	ılar fo	orms	s																	
cell line		В		1						2		3		4				5		6			9						14	15	16	17	18	19	20		21	22		3	24	25	26	27	28
	Α	В	C	D	Е	F	D	Н	A	В	C	5	Α	В	C	Α	В	C	D	U				10	11	12		13	14	13	10	17	10	19	A	В	21	22	Α	В	24	23	20	21	
																					٤	glion	na																						
A-172																																											igsquare		
GaMG																																												<u> </u>	
H-4																																												<u> </u>	
SF-126																																												'	ldot
SF-295																																													
SW-1088																																												<u> </u>	
SW-1783																																													
T-98G																																													1
																						othe	r																						
1321-N1																																												'	
42-MG-BA																																													
8-MG-BA																																												'	
A-1207																																													
AM-38																																													
BECKER																																													
CAS-1																																													
CCF-STTG1																																													
CH-157MN																																													
D-283Med																																											ļ		
D-341Med																																													
Daoy																																											ļ		
DBTRG-05MG																																													
DK-MG																																													
F-5																																												,	
GB-1																																													
GI-1																																													
GMS-10																																													
GOS-3																																													
HS-683																																													

Table 4.6. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Central nervous system: Part 2

																		active	anti-	cance	er mo	lecula	ar for	ms															
cell line		29				31																		45									51		5	3			56
-	A	ВС	D	30	A	В	С	32	33	34	35	36	37	38	39	40	41	42	43	44	Α	В	С	D		7 (i F	46 I	47	48	49	50	В	52	A		54	55	A B
												<u> </u>			·		·	9	glioma	a	1												 						
A-172																																							
GAMG																																							
H-4																																							
SF-126																																							
SF-295																																							
SW-1088																																							
SW-1783																																							
T-98G																																							
1221 311			1																other																	1	- 1		
1321-N1 42-MG-BA		_	-																						+														
8-MG-BA			+																						-			+											
8-MG-BA A-1207			1																						_														
AM-38			1																		_				_						+								
BECKER																																							
CAS-1																																	_						
CCF-STTG1																																							
CH-157MN																																							
D-283Med																																							
D-341Med																																							
Daoy																																							
DBTRG-05MG																																							
DK-MG																																							
F-5																																							
GB-1																																							
GI-1																				<u> </u>							_				_								
GMS-10			-		<u> </u>												_				-				_	_	_				_								_
GOS-3 HS-683																																							
IOMM-Lee																									_														
KALS-1		_	+																						+														
KG-1-C			+																						\dashv														
KNS-42																									-														
KNS-60																									\dashv														
KNS-81			t																						1														
KS-1																																							
LN-18			1																																				
LN-215																																							
LN-229																																							
LN-235																																							
LN-319																																							
LN-340																																							




Digestive system (Apparatus digestorius)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Digestive system (*Tabl.4.7. a. & b.*), it is concluded that:

- main potential medicines: AACF 4.C., 5.C., 40. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 5.D. and 23.A.

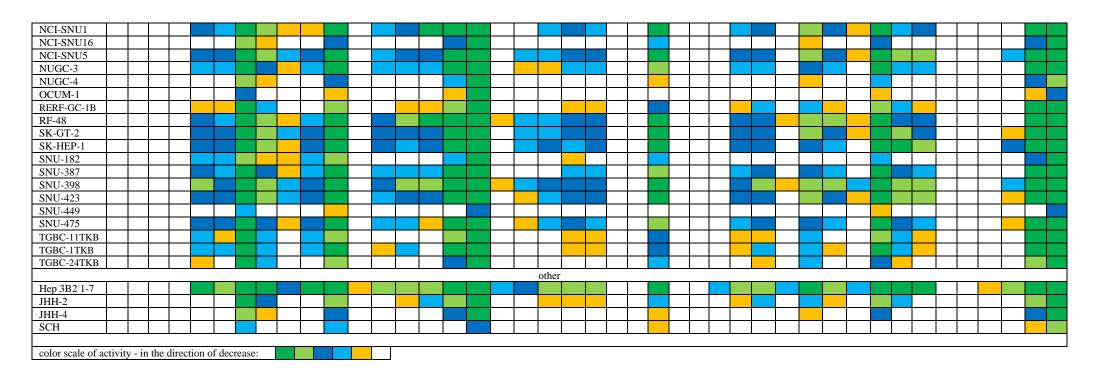
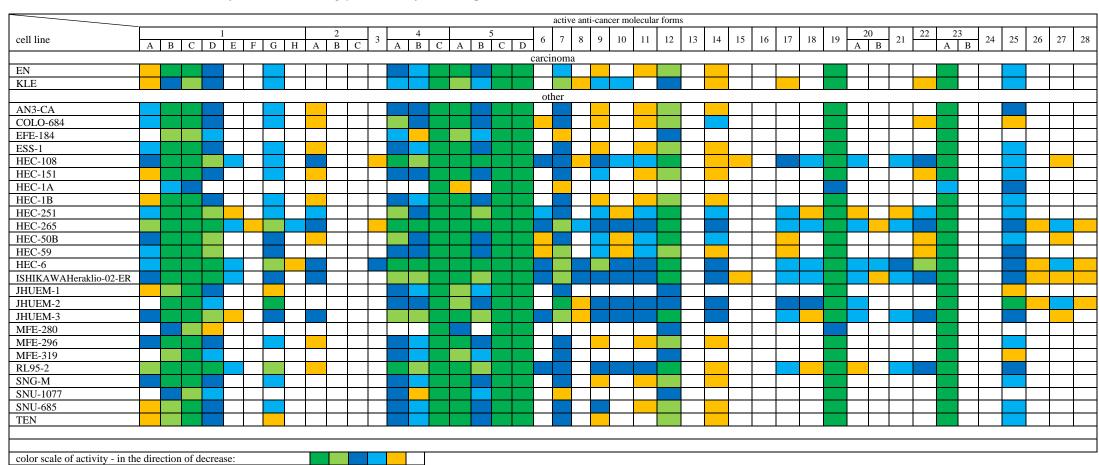
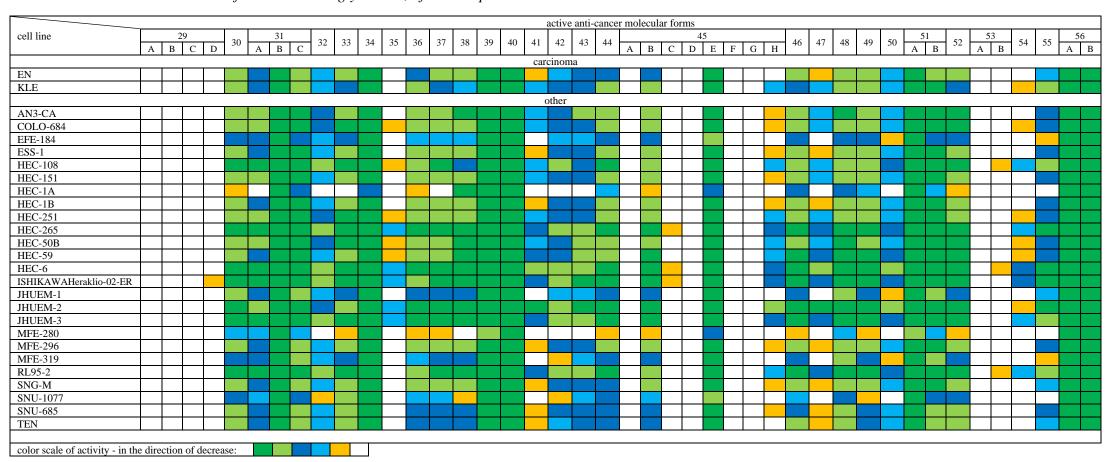

Table 4.7. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Digestive system: Part 1

Table 4.7. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Digestive system: Part 2

	<u> </u>																	active	anti-	cance	er mo	lecul	ar for																			
cell line		2	9	30	, L	31		32	33	34	35	36	37	38	39	40	41	42	13	44				4	5				46	47	48	49	50	5	51	52	5: A	3	54	55	56	
	A	В	CI) 30	' A	АВ	C	32	33	54	33	30	31	30	39	40	41				Α	В	C	D	Е	F	G	Н	40	47	40	49	30	Α	В	32	Α	В	34	33	Α .	В
																		ca	rcino	ma																						
23132-87																																										
AGS																																										
C-3A																																										
ECC-10																																										
ECC-12																																										
EGI-1																																										
ETK-1																																										
FU-97																																									4	
GCIY																																										
GT-3TKB																																									4	
HGC-27																																									4	
HLE																																									4	
Hs-746T																																									4	
HSC-39																																									4	
HuCCT-1																																							$\perp \downarrow$			
HuH-1																																										
HuH-7																																										
HuTu-80																																										
IM-95																																										
JHH-1																																										
ЈНН-6																									igwdow																	
JHH-7													<u> </u>	<u> </u>				<u> </u>	<u> </u>						\vdash								<u> </u>									
KATO-III																						<u> </u>											<u> </u>									
MK-N1		-																																								
MK-N28																																										
MK-N45								<u> </u>																																		
MK-N7								<u> </u>														<u> </u>																				
NCI-N87																																							L			



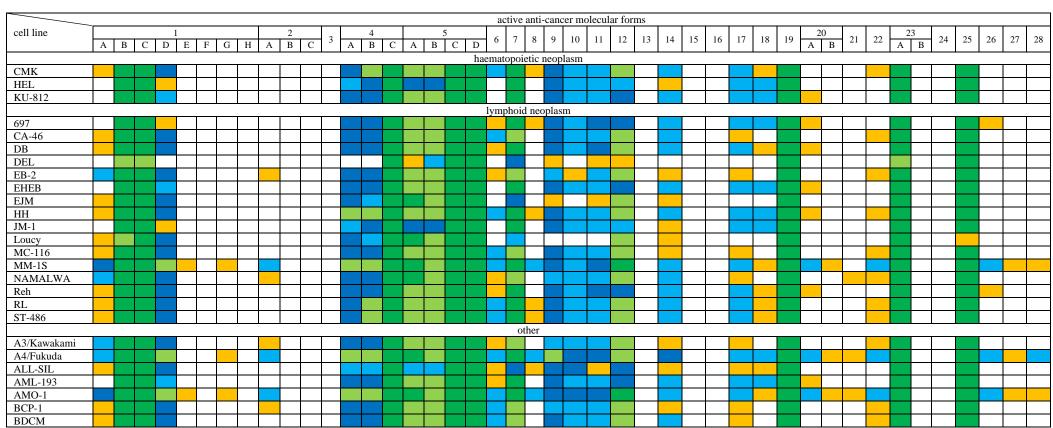
Endometrium (Endometrium)

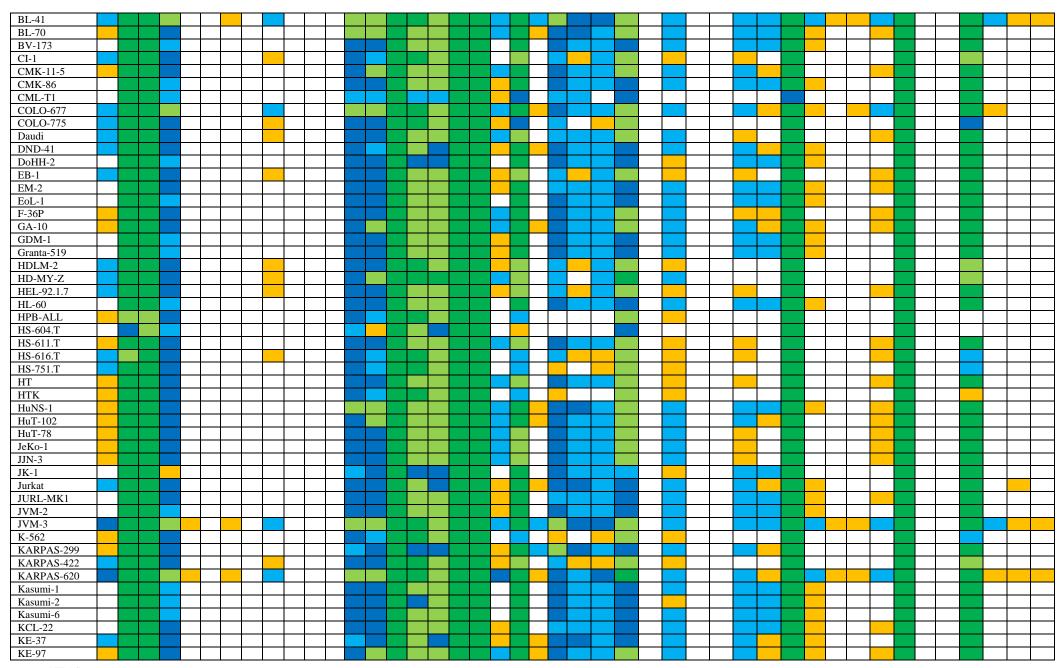

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Endometrium (*Tabl.4.8. a. & b.*), it is concluded that:

- main potential medicines: AACF 1.C., 4.C., 5.A., 5.C., 5.D., 19., 23.A., 30., 31.B., 31.C., 34., 36., 39., 40., 44., 45.B., 45.E., 46., 48., 49., 51.A., 51.B., 52., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 1.D., 4.A., 4.B., 5.B., 7., 12., 25., 31.A., 32., 33., 37., 38., 47. and 55.

Table 4.8. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Endometrium: Part 1

Table 4.8. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Endometrium: Part 2




Hematopoietic and lymphoid tissues (Haematopoeticarum lymphoidearumque)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Hematopoietic and lymphoid tissues (*Tabl.4.9. a. & b.*), it is concluded that:

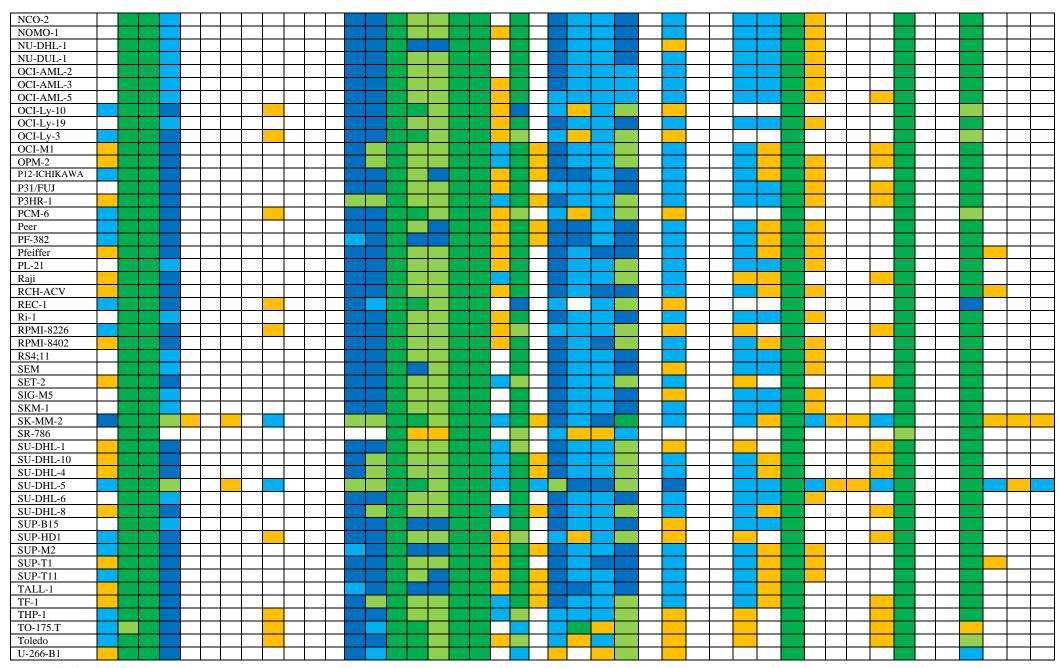

- main potential medicines: *AACF 1.C.*, *4.C.*, *5.A.*, *5.B.*, *5.C.*, *5.D.*, *7.*, *12.*, *19.*, *23.A.*, *25.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *33.*, *34.*, *35.*, *37.*, *38.*, *39.*, *40.*, *41.*, *42.*, *43.*, *44.*, *45.B.*, *45.E.*, *46.*, *47.*, *48.*, *49.*, *50.*, *52.A.*, *51.B.*, *52.*, *56.A.* and *56.B.*;
- duplication of treatment and / or substitution on medical grounds: AACF 1.D., 4.A., 4.B., 9., 11., 14., 32., 45.H. and 55.

Table 4.9. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Hematopoietic and lymphoid tissues: Part 1

KG-1																
KHM-1B																
Ki-JK																
KMH-2																
KMM-1																
KMS-11																7
KMS-12-BM												1	_			-
KMS-18																-
KMS-20																1
KMS-21-BM																\dashv
KMS-26																\dashv
KMS-27												1	_			\neg
KMS-28-BM																\dashv
KMS-34																\dashv
KO-52																\dashv
KOPN-8		1 1													1	\dashv
KYO-1		1 1													1	\dashv
L-1236												+				\neg
L-363																
L-428																٦
L-540																1
LAMA-84																1
LP-1						1										-
M-07e						1										-
ME-1																-
MEC-1																
MEC-2						1										٩
MEG-01																1
MHH-CALL-2																\dashv
MHH-CALL-3																\dashv
MHH-CALL-4																-
Mino																-
MJ																\dashv
MOLM-13																\dashv
MOLM-16																\dashv
MOLM-6																-
MOLP-2																-
MOLP-8																-
MOLT-13																-
MOLT-16																-
MOLT-4																-
MONO-MAC-1																\neg
MONO-MAC-6																
MOTN-1																\exists
MUTZ-5																1
MV-4-11																1
NALM-1																\exists
NALM-19		1 1													1	\dashv
NALM-6																\dashv
NB-4		+ +														\dashv
NCIH-929		+													+ +	\dashv
110111-747			LI													

U-937																			
UT-7																			
WSU-DLCL2																			
color scale of acti	ivity - in the di	rection o	f decreas	e:															

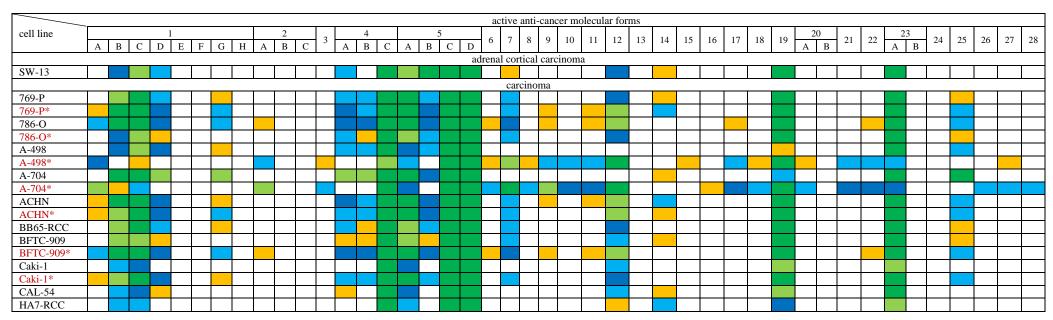
Table 4.9. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Hematopoietic and lymphoid tissues: Part 2

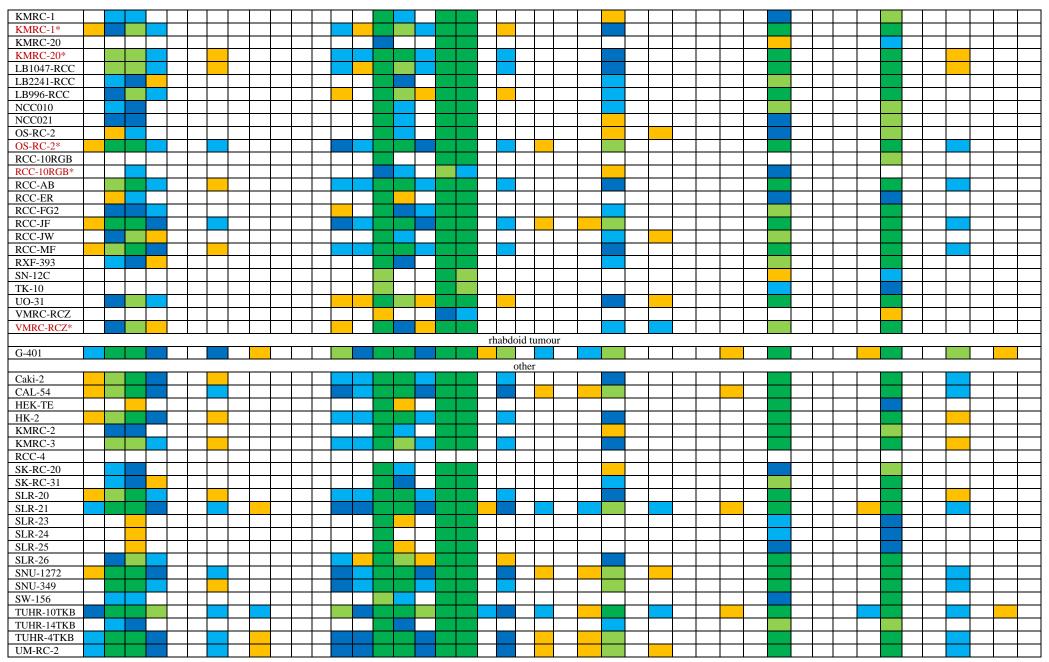
																																													_
									_				1				-				activ	e an	ti-ca	ancer 1	nole	cular	form					-		-		-	-		, .	,	- 1	- 1			
cell line	L.,	29			30		31		3	2	33	34	35	36	3	7	38	39	40	41	42	43	3	44		- 1	-	45			-	46	47	48	49	50	_	51	52	5	3	54	55	5	6
	Α	В	C	D		A	В	C																		В	C 1	D 1	E I	7 G	H				.,		A	В		Α	В			Α	_]
																				haen	natop	oieti	c ne	oplasr	n																				_
CMK																																													
HEL																																													
KU-812																																													
																				ly	mpho	oid n	eop	lasm																					
697																																													L
CA-46																																													
DB																																													
DEL																																													
EB-2																																													L
EHEB																																													
EJM																																													L
НН																																													L
JM-1																																													L
Loucy																																													L
MC-116																																													L
MM-1S																																													L
NAMALWA																																													L
Reh																																													L
RL																																													
ST-486																																													
																						othe	er																	_					
A3/Kawakami																																													
A4/Fukuda																																													
ALL-SIL																																													
AML-193																																													
AMO-1																																													
BCP-1																																													
BDCM																																													
BL-41																																													
BL-70																																													

BV-173	ı	1 1												_								1		
CI-1				_				1						-				_					_	_
								1	-	_				_										4
CMK-11-5				_				1						-				_				-	_	_
CMK-86														-				_					_	_
CML-T1				_										-				_	_			<u> </u>		_
COLO-677																							_	4
COLO-775																								4
Daudi														_										4
DND-41																			_					4
DoHH-2																								
EB-1																								4
EM-2																								
EoL-1																								
F-36P																								
GA-10																								
GDM-1																								
Granta-519																								
HDLM-2																								
HD-MY-Z																								
HEL-92.1.7																								
HL-60																								
HPB-ALL						1																		
HS-604.T																								
HS-611.T																								
HS-616.T																								
HS-751.T																								
HT																								
HTK																								
HuNS-1																								
HuT-102																								
HuT-78																								
JeKo-1																								
JJN-3						1																		
JK-1																								
Jurkat																								
JURL-MK1																								
JVM-2																								
JVM-3																								
K-562						1																		
KARPAS-299																								
KARPAS-422																								
KARPAS-620																								
Kasumi-1																								
Kasumi-2																								
Kasumi-6																								
KCL-22																								
KE-37																								
KE-97																								
KG-1																								
KHM-1B																								

																To the second							_				
Ki-JK	\sqcup																					4					
KMH-2																											
KMM-1	\sqcup																					4					
KMS-11																						س			ш		
KMS-12-BM																											
KMS-18																							4_				
KMS-20																									\sqcup		
KMS-21-BM																											
KMS-26																									\sqcup		
KMS-27																											
KMS-28-BM																									\sqcup		
KMS-34																											
KO-52																											
KOPN-8																											
KYO-1																									igspace		
L-1236																									\Box		
L-363																											
L-428																									igsquare		
L-540			\downarrow																					<u> </u>	ш		
LAMA-84	\sqcup																					4					
LP-1																									\sqcup		
M-07e																											
ME-1																											
MEC-1																											
MEC-2																									\sqcup		
MEG-01																									\sqcup		
MHH-CALL-2																						4					
MHH-CALL-3	\sqcup																					4					
MHH-CALL-4	\sqcup																					4					
Mino	\sqcup																					4					
MJ																						4			\sqcup		
MOLM-13																						4					
MOLM-16																						4					
MOLM-6	-																					4					
MOLP-2			-																			4	_		\square		_
MOLP-8	-													_					_		_	+					$oldsymbol{oldsymbol{}}$
MOLT-13	-										_			_					_		_	+				\rightarrow	$oldsymbol{oldsymbol{}}$
MOLT-16	 												-								_	\vdash					
MOLT-4													 								_	+	_		\vdash		
MONO-MAC-1 MONO-MAC-6	-													_					_		_	+					$oldsymbol{oldsymbol{}}$
MOTN-1			+												\vdash						-	+		-			
MOTN-1 MUTZ-5	-		+												\vdash				H		4		_				
MU1Z-5 MV-4-11	\vdash		+		-+						4		-		\vdash		\dashv	+	$-\mathbf{E}$		\dashv			₩			
MV-4-11 NALM-1	-		+												\vdash								_				
NALM-1	-		+												\vdash				H		4		_				
NALM-19			+																		-	+		-			
NALM-6			+										\vdash		\vdash				Æ		\dashv			-			
NB-4	\vdash	_	+										-		\vdash				H		\dashv		_	 			
NCIH-929	\vdash	_	+										-		\vdash				H		\dashv		_	 			
NCO-2	 		+		-								-		\vdash		-1		H		\dashv		_	<u> </u>			
NOMO-1																											

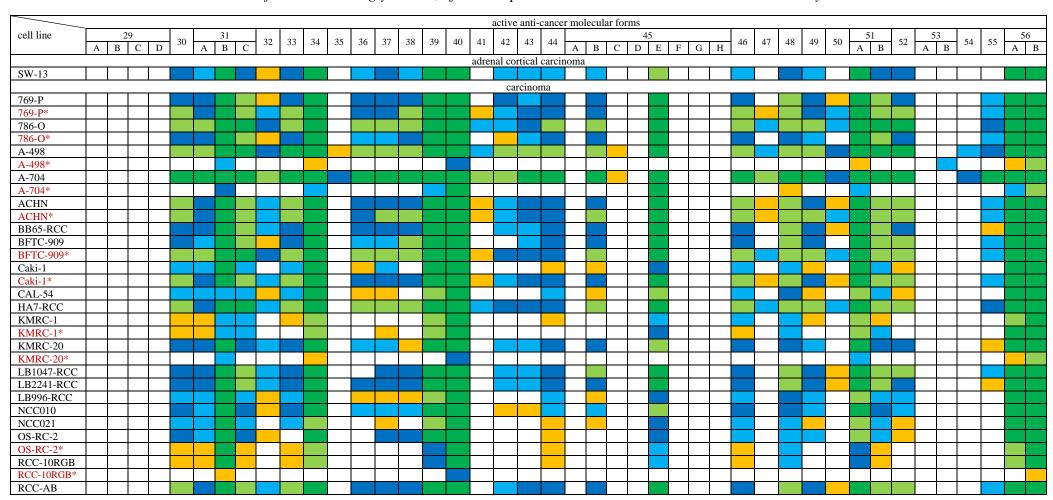
NU-DHL-1		-											1												
NU-DHL-1 NU-DUL-1														-			_	_		_	+				_
		-																_	_	_	+				4
OCI-AML-2		-																_	_	_	+				4
OCI-AML-3		-																_	_	_	+				4
OCI-AML-5																		_		_	1		_		4
OCI-Ly-10		_																							4
OCI-Ly-19																							_		
OCI-Ly-3																									
OCI-M1																								4	
OPM-2																									
P12-ICHIKAWA																									
P31/FUJ																									
P3HR-1																							_		
PCM-6																									
Peer																									
PF-382																									
Pfeiffer																									
PL-21																									
Raji																									
RCH-ACV																									
REC-1																									
Ri-1																									
RPMI-8226																									
RPMI-8402																									
RS4;11																							T I		
SEM																							T I		
SET-2																									
SIG-M5																									
SKM-1																							T I		
SK-MM-2																									
SR-786																									
SU-DHL-1																									
SU-DHL-10																									
SU-DHL-4																									
SU-DHL-5																									
SU-DHL-6																							T I		
SU-DHL-8																									
SUP-B15																									
SUP-HD1																									
SUP-M2																									
SUP-T1																									
SUP-T11																									
TALL-1																									
TF-1																									
THP-1		1											1												
TO-175.T																									
Toledo		+											1	H											
U-266-B1															_										
U-937		+											+									\vdash	-		
UT-7	_	+											+	1								\vdash			
O 1-7																									

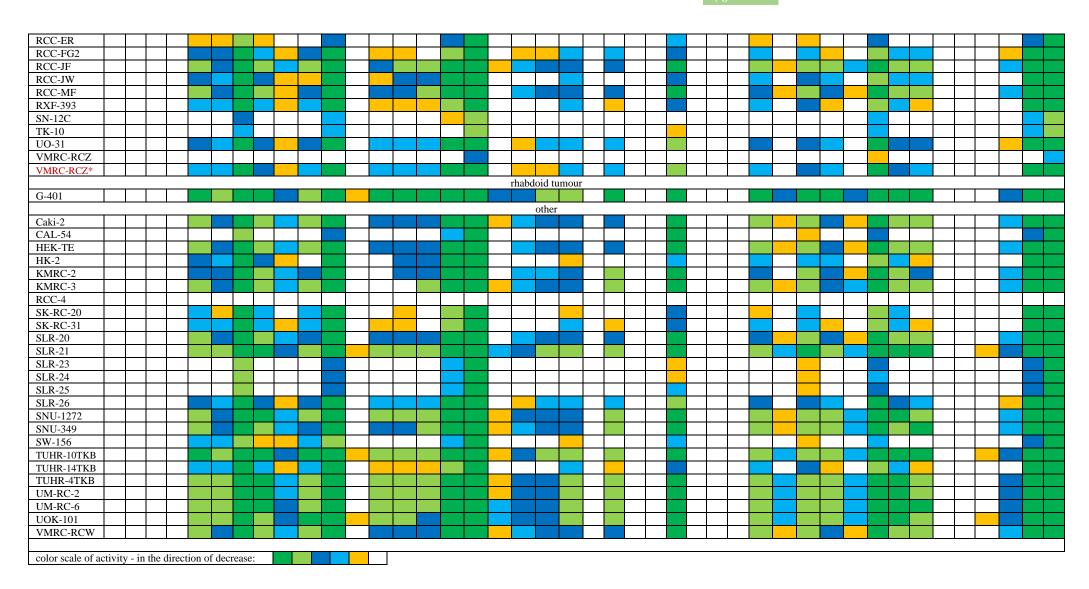

WSU-DLCL2										
color scale of activ	/itv -	in th	e dir	ectio	n of d	ecrea	ise:			


Kidney (Ren)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Kidney (*Tabl.4.10. a. & b.*), it is concluded that:

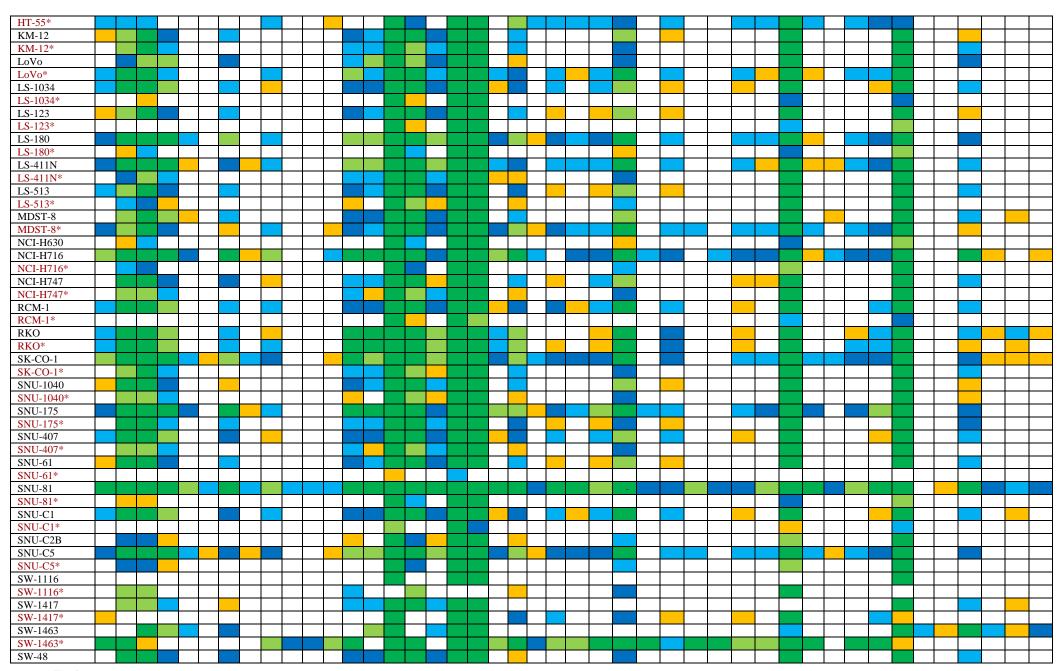
- main potential medicines: AACF 4.C., 5.C., 40., 51.A., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 19., 23., 31.B. and 45.E.

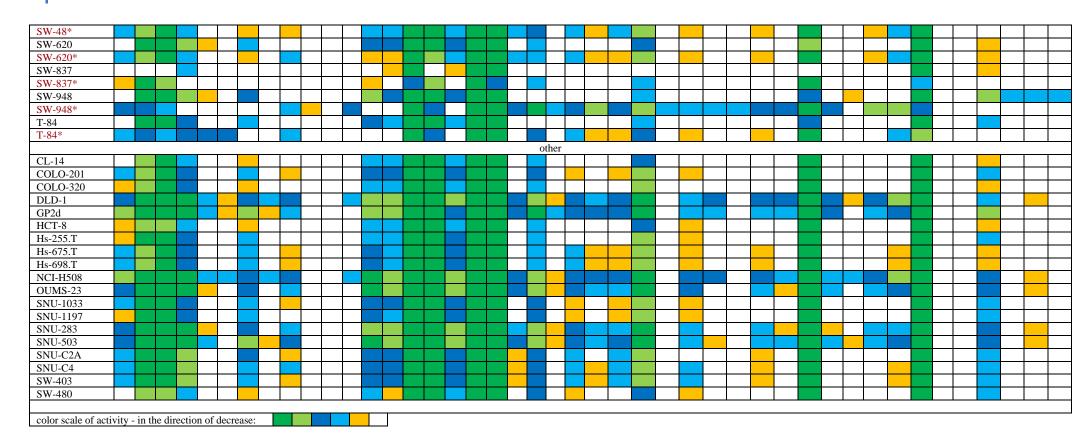

Table 4.10. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Kidney: Part 1



UM-RC-6															
UOK-101															
VMRC-RCW															
color scale of activity - in the direction of decrease:															

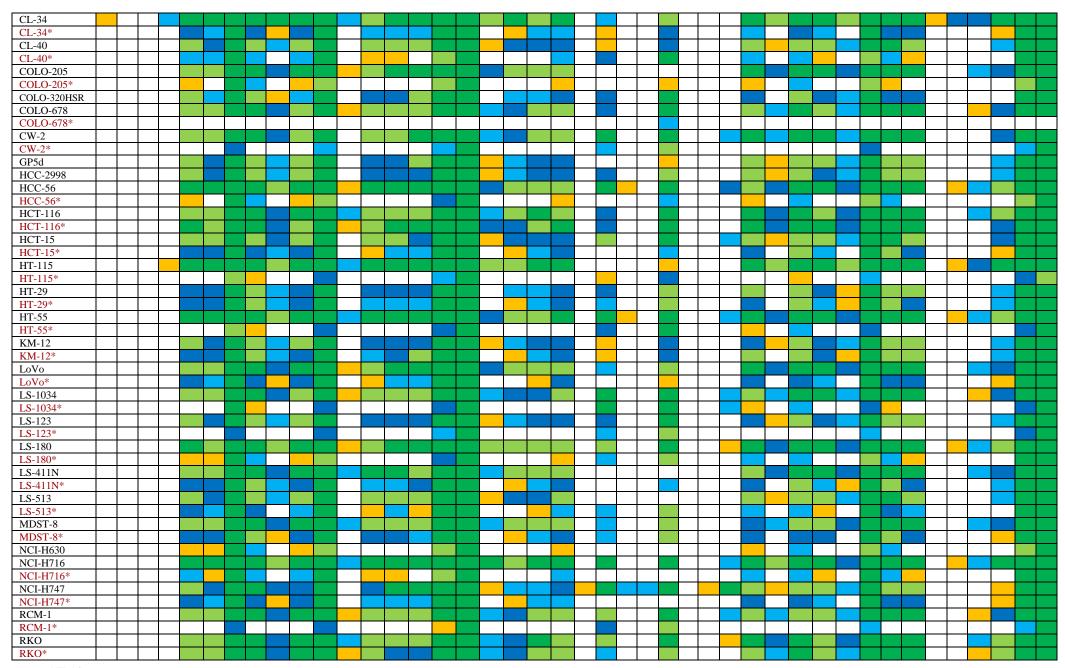
Table 4.10. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Kidney: Part 2


Large intestine (*Intestinum crassum*)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Large intestine (*Tabl.4.11. a & b.*), it is concluded that:

- main potential medicines: AACF 4.C., 5.A., 5.C., 5.D., 19., 23.A., 31.B., 34., 40., 51.A., 56.A. and 56.B.;
- duplication of treatment and/or substitution on medical grounds: AACF 1.C., 31.C., 39., 45.E. and 48.

Table 4.11. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Large intestine: Part 1



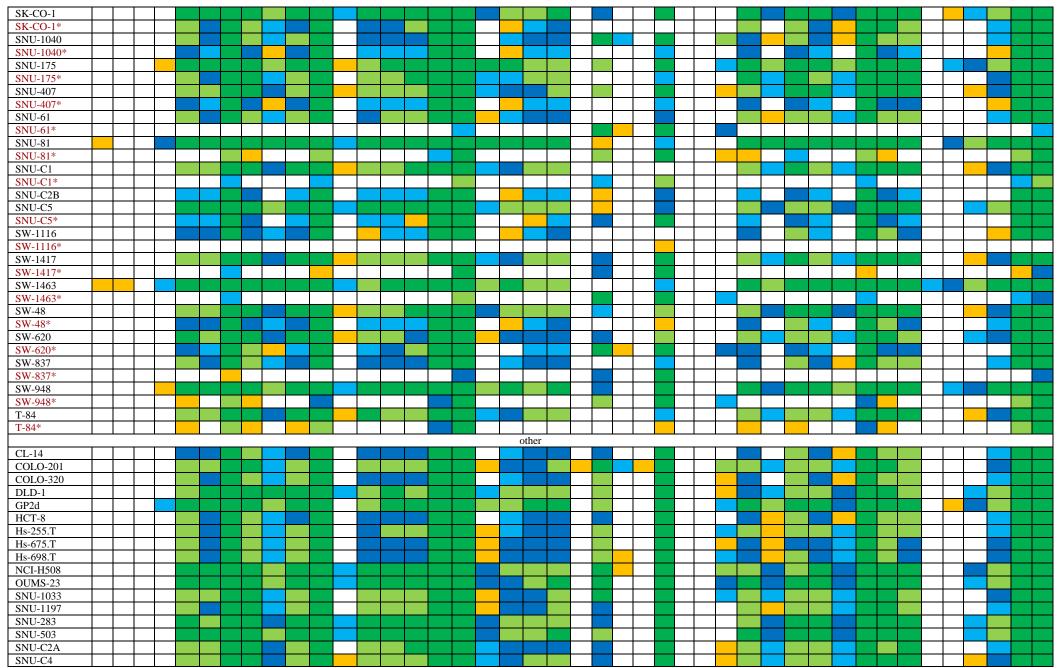
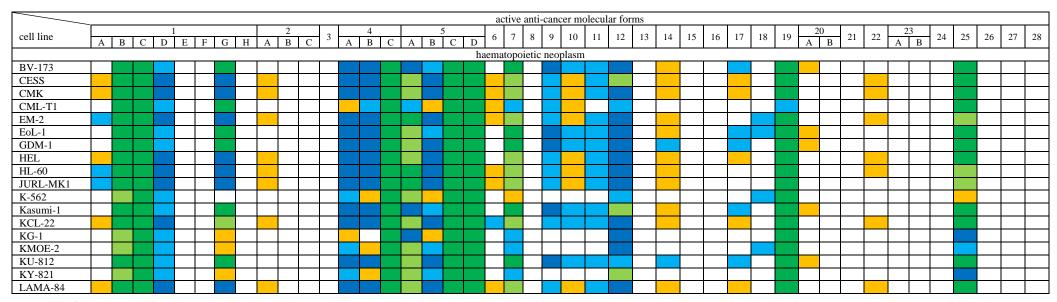
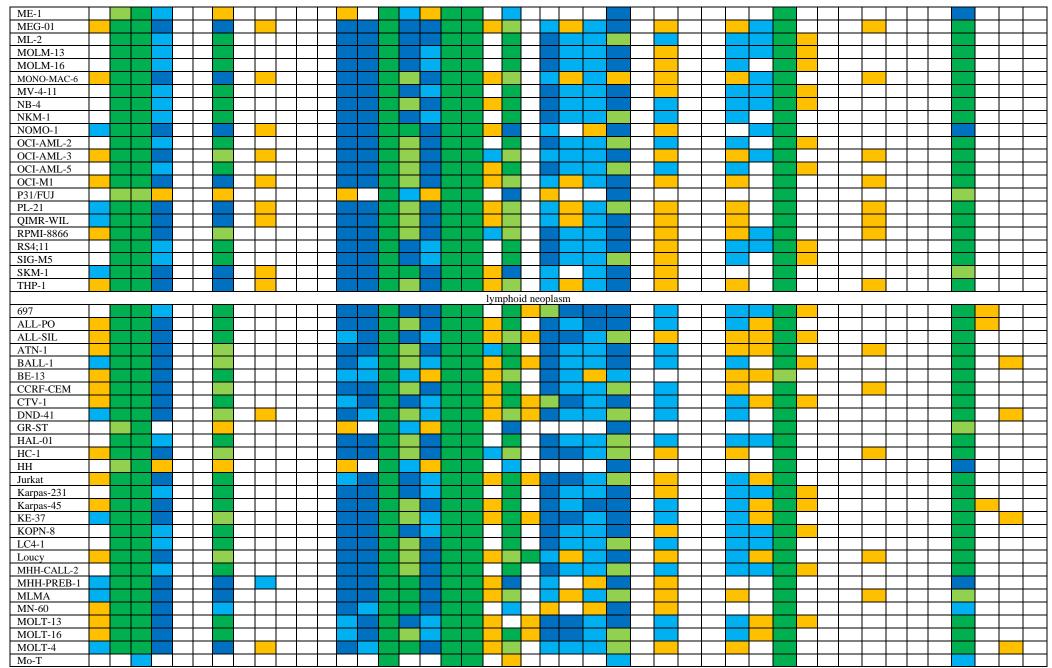
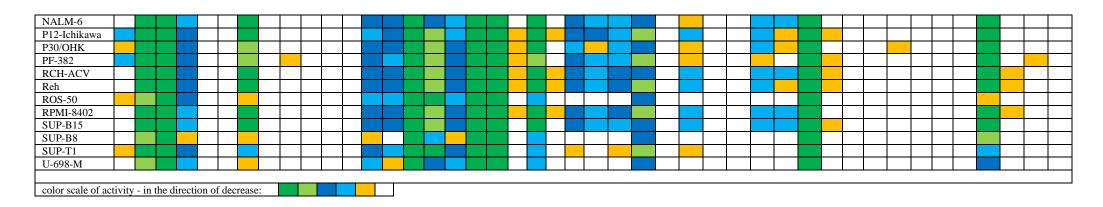


Table 4.11. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Large intestine: Part 2

																						activ	e anti-	cance	er mo	ecul	ar for	ms																		
cell line		_	29		30	, _	31			32	33	34	35	3	36	37	38	39) .	40	41	42		44		ъ		4:		Б	<i>a</i>	**	46	47	48	49	50		51	52	_ :	53 D	54	55		56 D
	А	В	C	D		A	В	3 C	-			<u> </u>										car	cinon	na	Α	В	C	D	Е	F	G	Н						A	В	1	А	В	<u> </u>	Ь_	А	В
C2BBe1																																														
C2BBe1*																																												1		
CaR-1																																												1		
CCK-81																																														
CCK-81*																																														
CL-11																																														
CL-11*																																														


SW-403																										
SW-480																										
color scale of a	activity	- in th	ne direc	ction	of de	crea	se:																			


Leukemia (Leuchaemia)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Leukemia (*Tabl.4.12. a. & b.*), it is concluded that:

- main potential medicines: AACF 1.C., 4.C., 5.C., 5.D., 19., 25., 30., 31.B., 31.C., 34., 39., 40., 45.E., 50., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.D.*, *4.A.*, *4.B.*, *5.A.*, *5.B.*, *7.*, *12.*, *32.*, *33.*, *42.*, *43.*, *44.*, *45.B.*, *49.*, *50.*, *51.A.* and *51.B.*

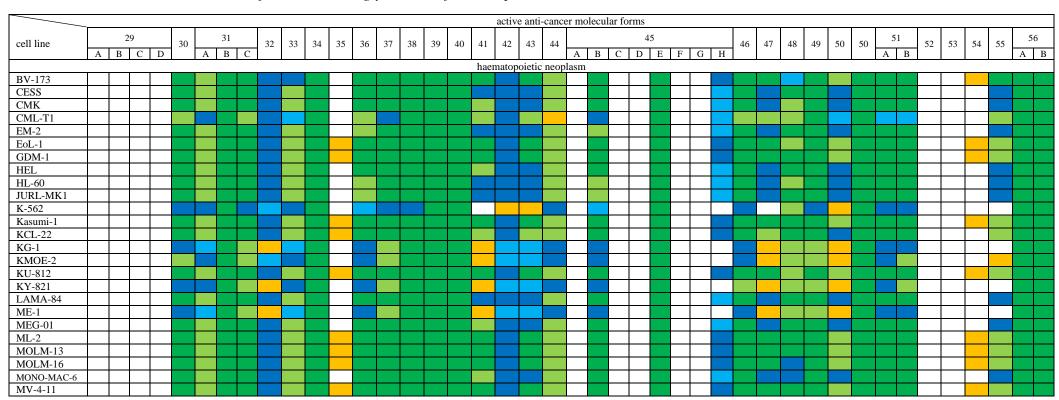
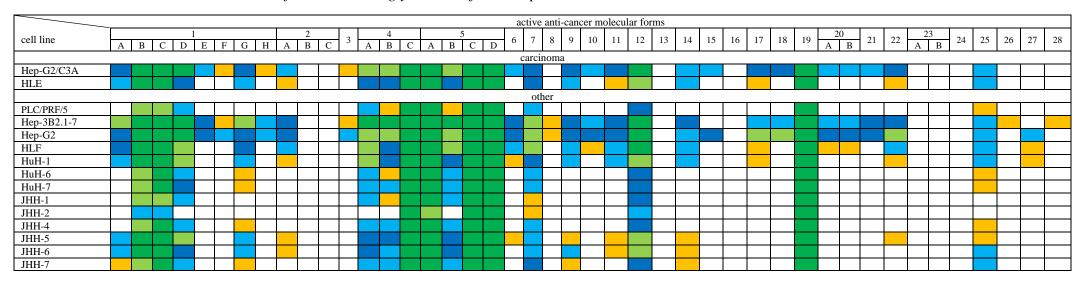
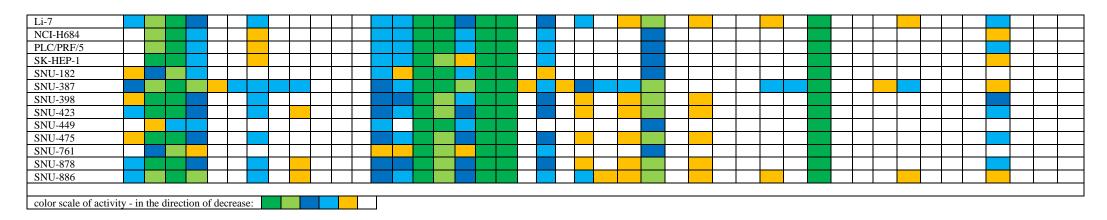

Table 4.12. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Leukemia: Part 1

Table 4.12. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Leukemia: Part 2

ND 4																								
NB-4														_						_		_	_	
NKM-1																								
NOMO-1																								
OCI-AML-2																								
OCI-AML-3																								
OCI-AML-5																								
OCI-M1																								
P31/FUJ																								
PL-21																								
QIMR-WIL																								
RPMI-8866																								
RS4;11																								
SIG-M5																								
SKM-1																								
THP-1																								
									ly	ymph	oid ne	oplas	m											
697																								
ALL-PO																								
ALL-SIL																								
ATN-1																								
BALL-1																								
BE-13																								
CCRF-CEM																								
CTV-1																								
DND-41																								
GR-ST																								
HAL-01																								
HC-1																								
НН																								
Jurkat																								
Karpas-231																								
Karpas-45																								
KE-37																								
KOPN-8																								
LC4-1																								
Loucy																								
MHH-CALL-2																								
MHH-PREB-1																								
MLMA																								
MN-60																								
MOLT-13																				\neg				
MOLT-16																				\neg				
MOLT-4																								
Mo-T																				$\neg \dagger$		-		
NALM-6														\dashv						\dashv				
P12-Ichikawa																				\dashv				
P30/OHK																				\dashv	- l			
PF-382														+						\dashv		-+		
RCH-ACV														_										
Reh																				-+				
ROS-50	_																							
KO2-20																								


RPMI-8402																	
SUP-B15																	
SUP-B8																	
SUP-T1																	
J-698-M																	


Liver (Hepar)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Liver (*Tabl.4.13. a. & b.*), it is concluded that:

- main potential medicines: AACF 1.C., 4.C., 5.A., 5.C., 5.D., 19., 31.B., 34., 40., 45.E., 51.A., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 4.A., 12., 31.A., 42., 43., 44., 45.B., 46., 48. and 51.B.

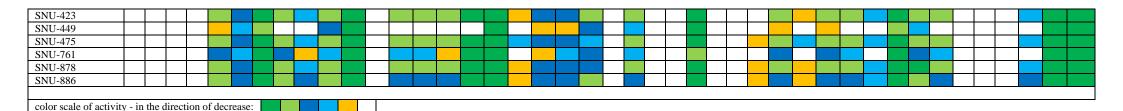
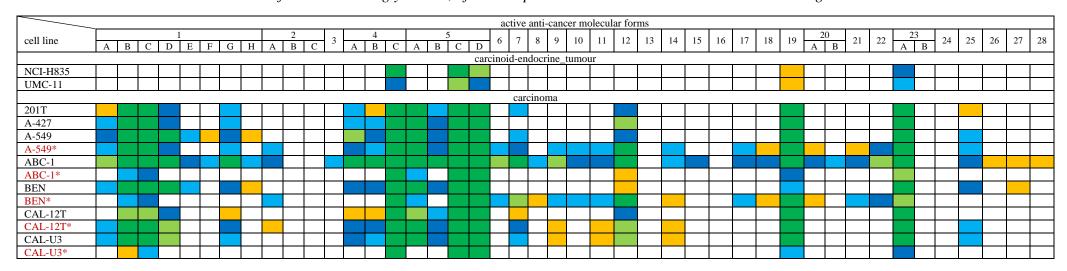
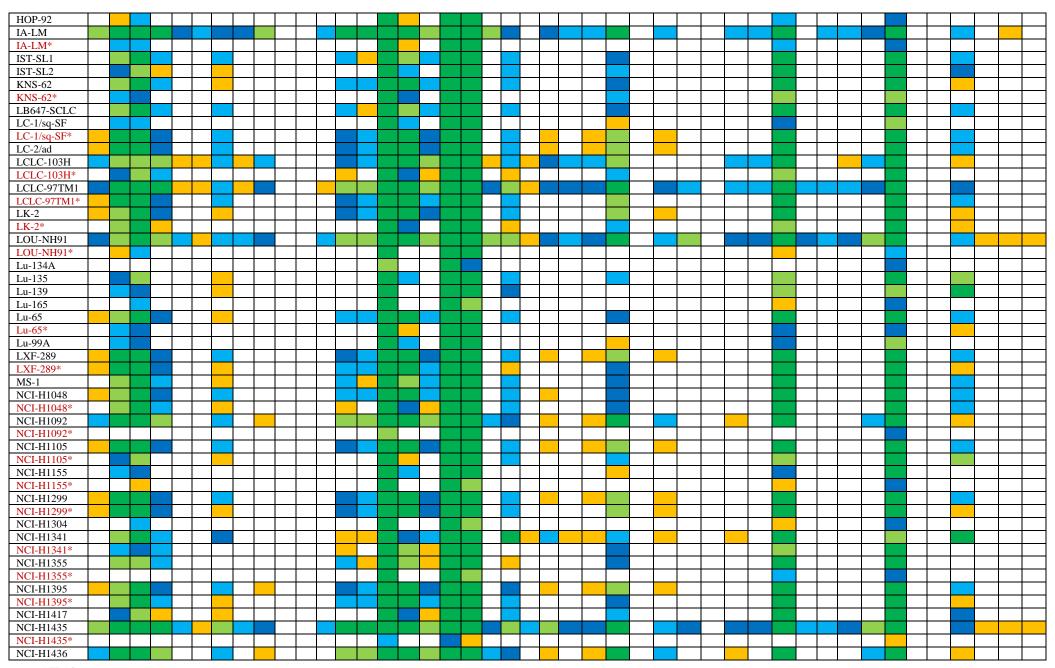

Table 4.13. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Liver: Part 1

Table 4.13. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Liver: Part 2

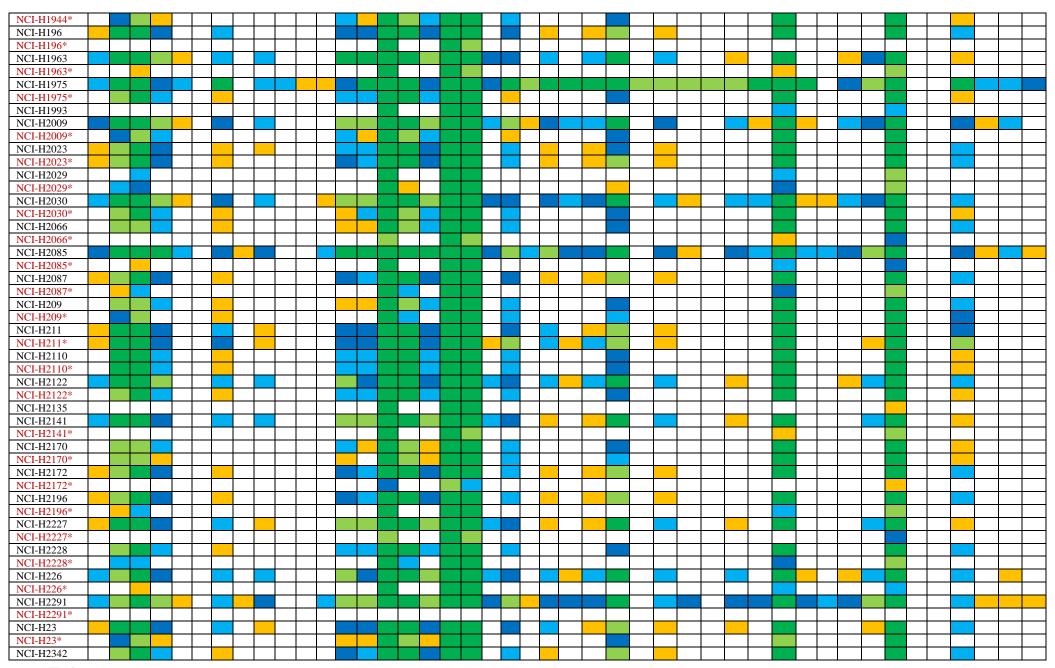
																				er mo																			
cell line	A B	29 C :	D 3	30 A	31 A B	С	32	33	34	35	36	37	38	39	40	41	42	43	44	A	В	С	45 D	E F	G	Н	46	47	48	49	50	51 A I	52	A	53 B	54	55	56 A	В
																	cai	cinon	na																				
Hep-G2/C3A																																							
HLE																																							
																		other																					
PLC/PRF/5																																							
Hep-3B2.1-7																																							
Hep-G2																																							
HLF																																							
HuH-1																																							
HuH-6																																							
HuH-7																																							
JHH-1																																							
JHH-2																																							
JHH-4																																							
JHH-5																																							
ЈНН-6																																							
JHH-7																																							
Li-7																																							
NCI-H684																																							
PLC/PRF/5																																							
SK-HEP-1																																							
SNU-182																																							
SNU-387																																							
SNU-398																																							

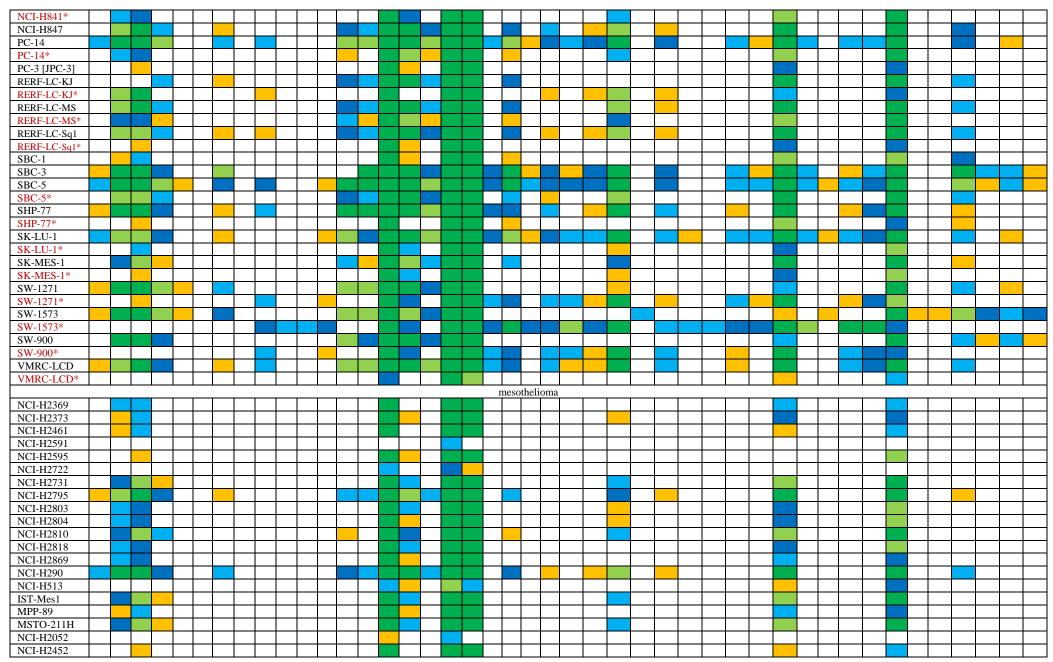


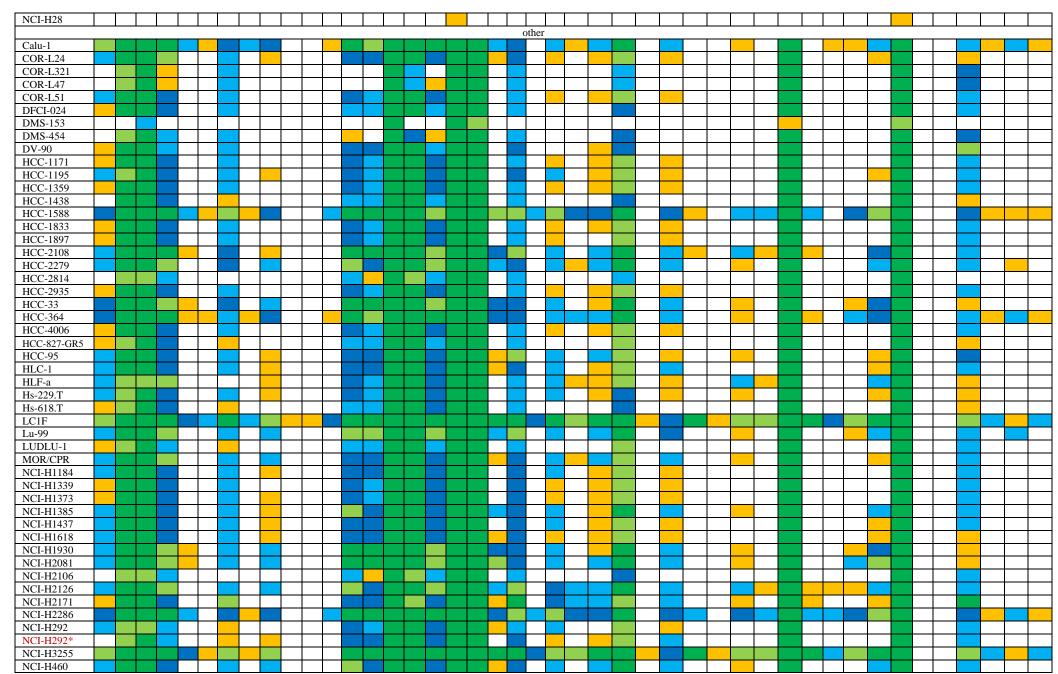
Lung (Pulmo)

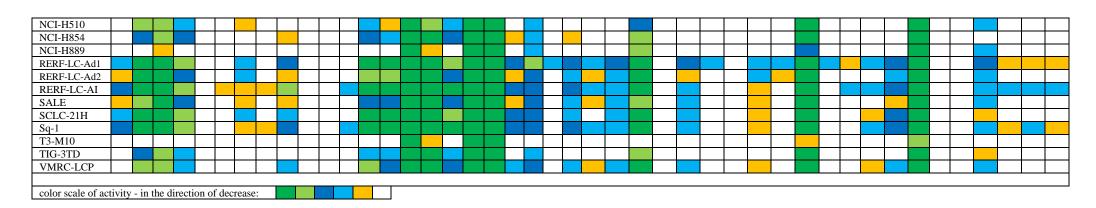

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Lung (*Tabl.4.14. a & b.*), it is concluded that:

- main potential medicines: AACF 4.C., 5.C., 5.D., 19., 23.A., 31.B., 40., 51.A., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 1.C., 5.A., 12., 31.C., 34., 39., 45.E. and 48.

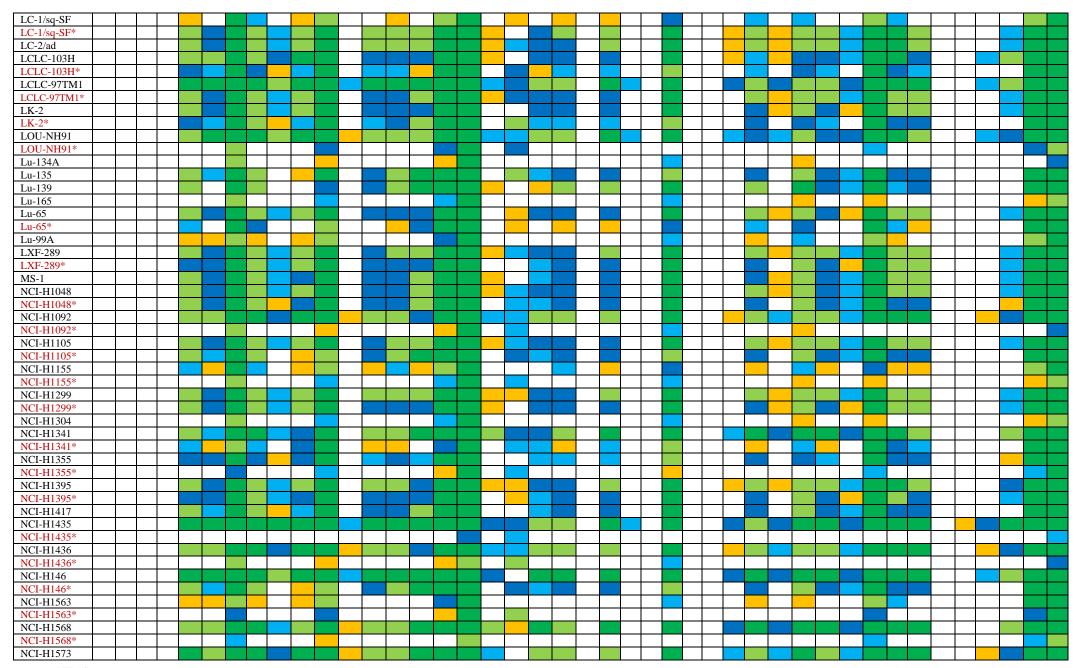

Table 4.14. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Lung: Part 1

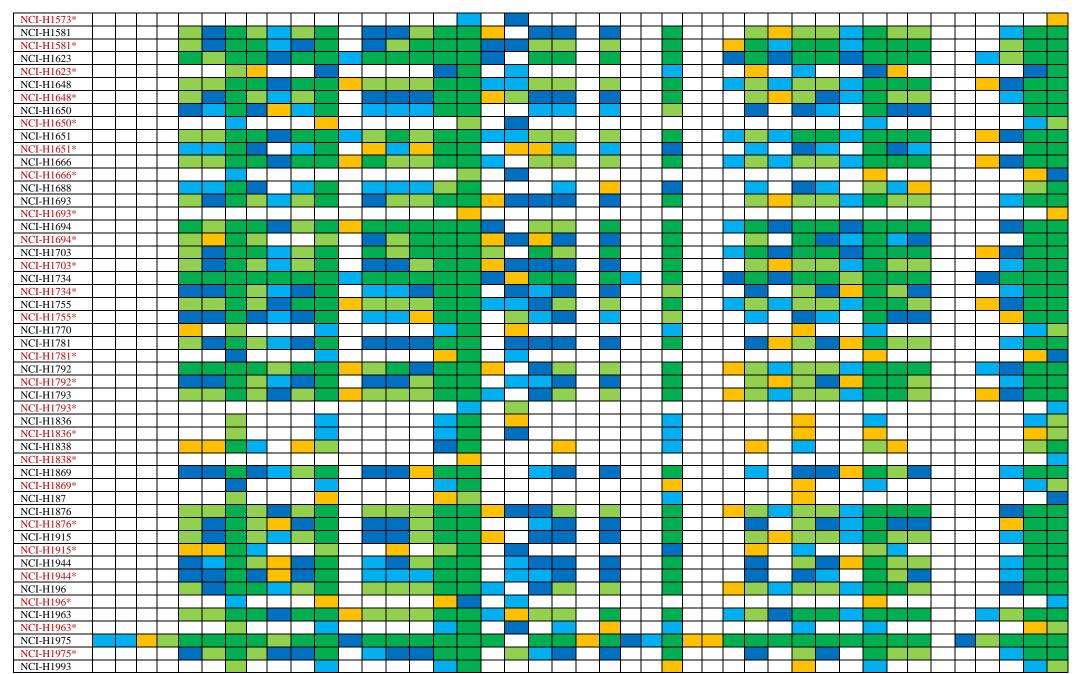

CAL-18 CAL-18 CAL-19 CA																	
Chalos X-1 COLOGO X-17 COLOGO X-17 COLOGO X-17 COR-109 COR-109 COR-109 COR-109 COR-139 COR-139 COR-131 COR-132 COR-132 COR-133 COR-133 COR-133 COR-135 COR-135 COR-137 COR-138 COR-13	CAL-U6																
CNG-068																	
COLO-888 CORL-116 CORL-116 CORL-116 CORL-117 CORL-127 CORL-127 CORL-127 CORL-127 CORL-127 CORL-127 CORL-127 CORL-127 CORL-138 COR	ChaGo-K-1																
COLOSS																	
COR-LIOS COR																	
CORL129																	
CORL23	COR-L105																
CORL279 CORL279 CORL279 CORL279 CORL279 CORL310 CORL311 CORL312 CORL312 CORL32 CORL32 CORL32 CORL32 CORL32 CORL32 CORL33 CORL33 CORL35 CORL35 CORL35 CORL35 CORL35 CORL35 CORL35 CORL37 CORL37 CORL37 CORL38	COR-L105*																
CORLEZPS CORLESS CO	COR-L23																
CORL-1279 CORL-1311 CORL-1311 CORL-132 CORL-132 CORL-138	COR-L23*																
CORL-1279 CORL-1311 CORL-1311 CORL-132 CORL-132 CORL-138	COR-L279																
CORL31 CORL32 CORL32 CORL38 CORL38 CORL38 CORL58 CORL58 CORL58 CORL58 CORL59 COR	COR-L279*																
CORL31 CORL32 CORL32 CORL38 CORL38 CORL38 CORL58 CORL58 CORL58 CORL58 CORL59 COR	COR-L303																
COR.131 COR.188 COR.188 COR.188 COR.195 COR.189 COR.195 COR.189 COR.195 COR.189 COR.195 COR.19	COR-L311																
CORL32 CORL38* CORL58* CORL59* CORL95*	COR-L311*																
CORLSS CORLSS CORLOS CORLOS CORLOS CPC-N CPC-N CPC-N DMS-114 DMS-173 DMS-173 DMS-373 DMS-379 DMS-38 DMS-9 DMS-19 DMS-19 DMS-19 EBC-1	COR-L32																
COR-158* COR-195* COR	COR-L88																
CORL95 CORL95 CORL95 CORN CPC N CPC	COR-L88*																
CPC-N CP	COR-L95																
CPC-N																	
DMS-114	CPC-N																
DMS-273	CPC-N*																
DMS-273	DMS-114																
DMS-273*	DMS-114*																
DMS-53	DMS-273																
DMS-59	DMS-273*																
DMS-79	DMS-53																
DMS-79*	DMS-53*																
EBC-1 BC-1 B	DMS-79																
BEC-1*	DMS-79*																
EKVX EMC-BAC-1 EMC-BAC-2 EPLC-272H EPLC-272H EPLC-272H EVLC-172H E	EBC-1																
EMC-BAC-2 EMC-BAC-2 EDLC-272H EPLC-272H EPLC-272H EPLC-372H ENC-H3255 ENC-H3255 ENC-H3255 ENC-H3255 ENC-H3256 ENC-H3	EBC-1*																
EMC-BAC-2 EPLC-272H EPLC-272H NCI-H3255 HARA HARA* HAC-15 HCC-15* HCC-366* HCC-366* HCC-44 HCC-44 HCC-44 HCC-44 HCC-44 HCC-44 HCC-44 HCC-78 HCC-78 HCC-78 HCC-78 HCC-827 HCC-827	EKVX																
EPLC-272H* NCI-H3255 NCI-H3255 NCI-H3256	EMC-BAC-1																
EPLC-272H* NC-H3255 NC-H	EMC-BAC-2																
NCI-H3255 HARA HARA HARA* HCC-15* HCC-366* HCC-44* HCC-44* HCC-78* HCC-78* HCC-78* HCC-78* HCC-827* HCC-827*	EPLC-272H																
HARA* HA	EPLC-272H*																
HARA* HCC-15 HCC-366 HCC-366* HCC-44 HCC-44 HCC-478 HCC-78 HCC-78 HCC-78 HCC-827* HCC-827*	NCI-H3255																
HCC-15*																	
HCC-15*	HARA*																
HCC-366* HCC-44 HCC-44* HCC-78* HCC-78* HCC-827* HCC-827*	HCC-15																
HCC-366* HCC-44 HCC-44* HCC-44* HCC-78* HCC-78* HCC-827* HCC-827*	HCC-15*																
HCC-44 HCC-44* HCC-78 HCC-78* HCC-827* HCC-827*	HCC-366																
HCC-44*	HCC-366*																
HCC-78 HC	HCC-44																
HCC-78*	HCC-44*																
HCC-827	HCC-78																
HCC-827*	HCC-78*																
HCC-827* HOP-62	HCC-827																
HOP-62	HCC-827*																
	HOP-62																

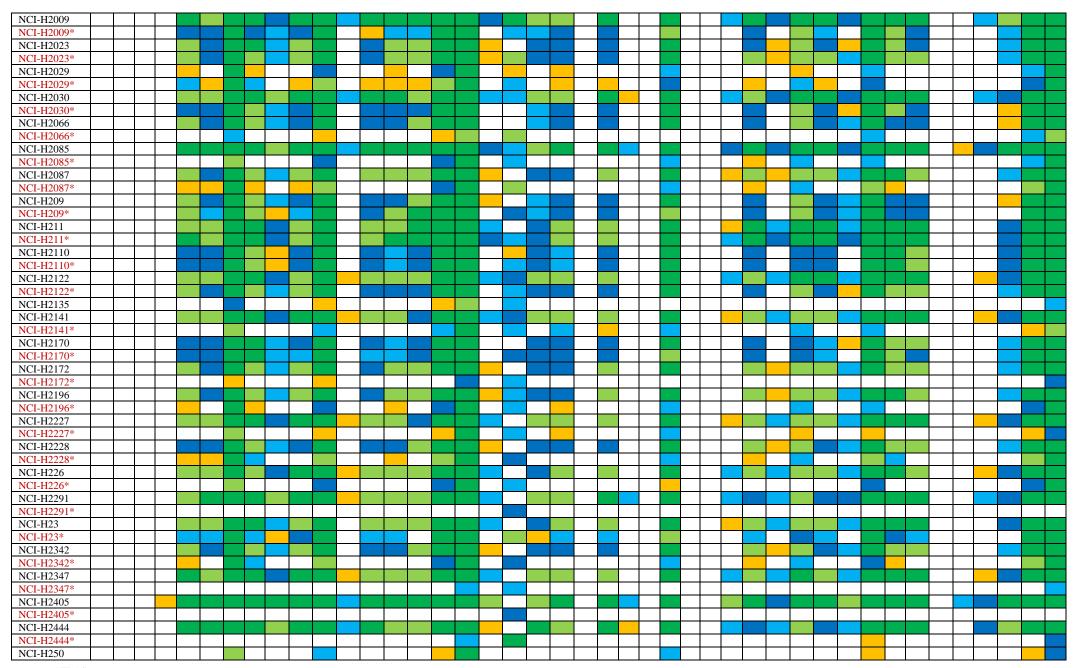


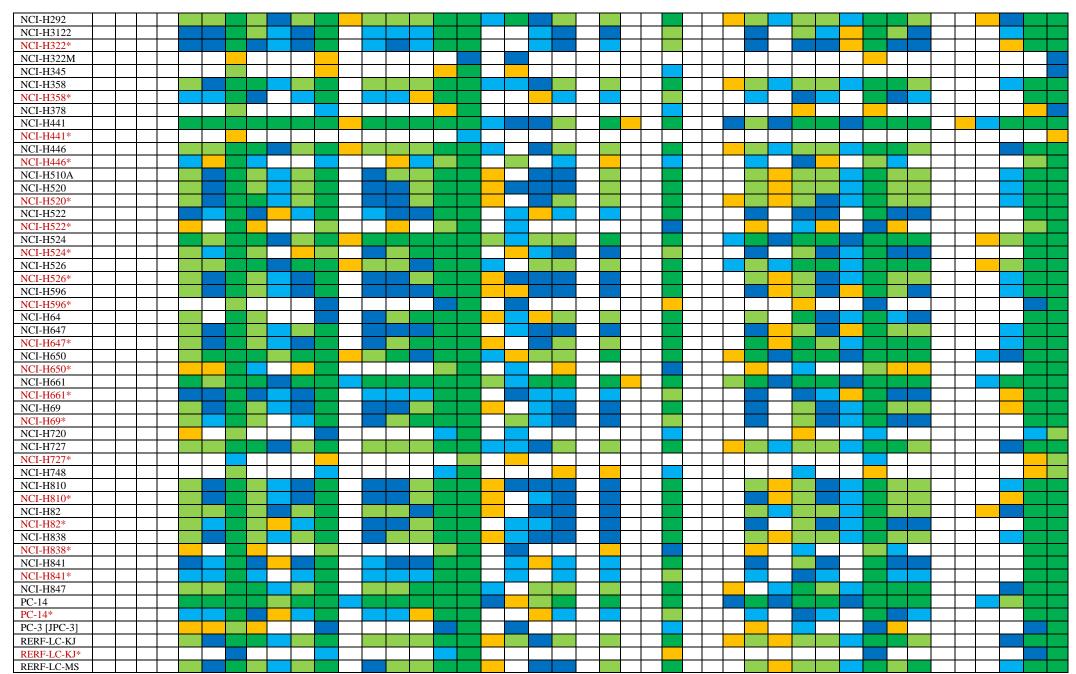

NCI-H1436*		1 1		1							-								- 1	 $\overline{}$	
NCI-H1436* NCI-H146																					
NCI-H146*																				_	
NCI-H146** NCI-H1563								┢				_	_							-+	-
NCI-H1563*																				-+	+
NCI-H1568																				-+	\rightarrow
NCI-H1568*																				-+	\rightarrow
NCI-H1508** NCI-H1573																					_
NCI-H1573*																					
NCI-H15/3																				-+	-+-
NCI-H1581*																				+	+
NCI-H1623																					
NCI-H1623*																					
NCI-H1648																				-	_
NCI-H1648*																				-+	-
NCI-H1650														1		-		\Box		-	\dashv
NCI-H1650*																	1				
NCI-H1651																					
NCI-H1651*																					\neg
NCI-H1666																					
NCI-H1666*																					
NCI-H1688																					
NCI-H1693																					
NCI-H1693*																					
NCI-H1694																					
NCI-H1694*																					
NCI-H1703																					
NCI-H1703*																					
NCI-H1734																				_	
NCI-H1734*																	_				
NCI-H1755																					
NCI-H1755* NCI-H1770																				-+	\longrightarrow
NCI-H1770 NCI-H1781																				-+	\rightarrow
NCI-H1781*																				-+	-+-
NCI-H1792																				-	
NCI-H1792*																		\vdash		一	
NCI-H1793					-									+				H		-+	\dashv
NCI-H1793*														1						-	\dashv
NCI-H1836																					
NCI-H1836*							1													-	\neg
NCI-H1838																			1		
NCI-H1838*																					
NCI-H1869																			1		
NCI-H1869*																					
NCI-H187																					
NCI-H1876																					
NCI-H1876*				$oxed{oxed}$																	
NCI-H1915				$oxed{oxed}$																	\Box
NCI-H1915*																				 	\longrightarrow
NCI-H1944																				L	

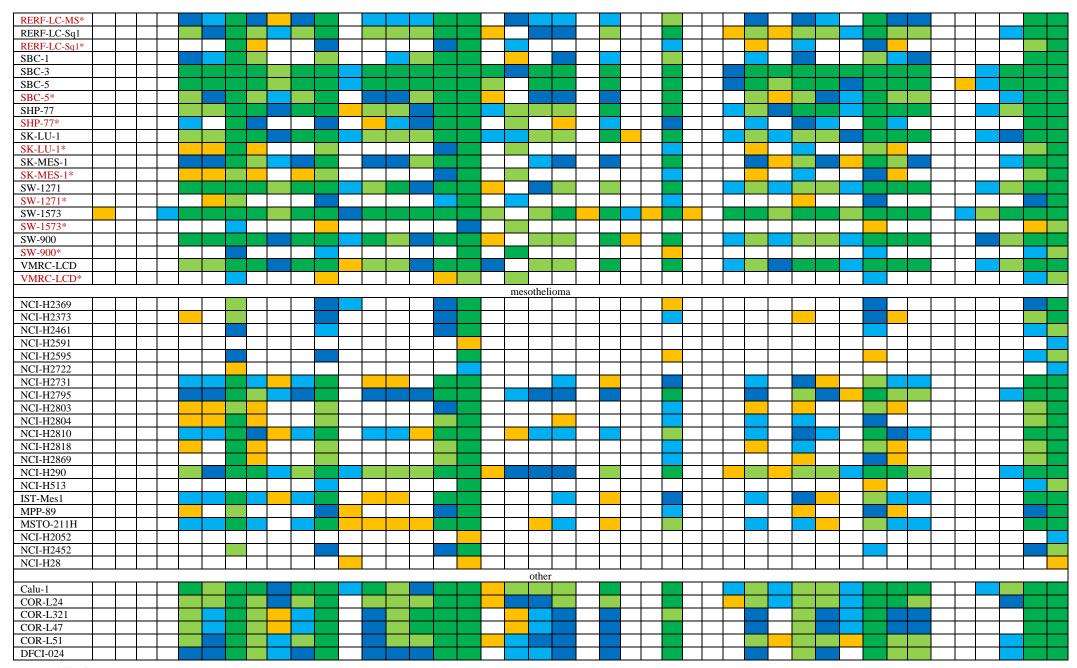
NCI-H2342*																									
NCI-H2347																									
NCI-H2347*																									
NCI-H2405																									
NCI-H2405*																									
NCI-H2444																									
NCI-H2444*																									
NCI-H250																									\dashv
NCI-H292											<u> </u>														
NCI-H3122								+	_													_		-	_
NCI-H3122*									_																-
NCI-H322M																									-
NCI-H345	\rightarrow	-	-								-					+		+							+
NCI-H343																_									+
NCI-H358																							_		-
NCI-H358*			-	+ +		-	+			+ +	-+		+			-					_		-+		\rightarrow
NCI-H378					\vdash																				
NCI-H441																									
NCI-H441*																									\perp
NCI-H446											_												_		-
NCI-H446*																									
NCI-H510A																									
NCI-H520																									
NCI-H520*																									
NCI-H522																									
NCI-H522*																									
NCI-H524																									
NCI-H524*																									
NCI-H526																									
NCI-H526*																									
NCI-H596																									
NCI-H596*																									
NCI-H64																									
NCI-H647																									
NCI-H647*																									
NCI-H650																									
NCI-H650*																									
NCI-H661																									
NCI-H661*																									
NCI-H69																									
NCI-H69*																									
NCI-H720																									
NCI-H727																									
NCI-H727*																									
NCI-H748																									\neg
NCI-H810																									\neg
NCI-H810*											T		\top												\neg
NCI-H82																									+
NCI-H82*																				_					+
NCI-H838						_					_					1				_	_				\dashv
NCI-H838*																+				_					+
NCI-H841				\vdash		+					\dashv		+			-					-		_		+
1101-11041					ı I						1	1	- 1	ı I	1	1	1 1		1	1	1			1	1 1



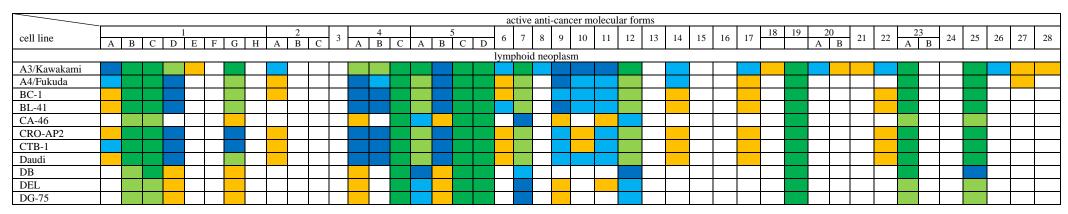



Table 4.14. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Lung: Part 2

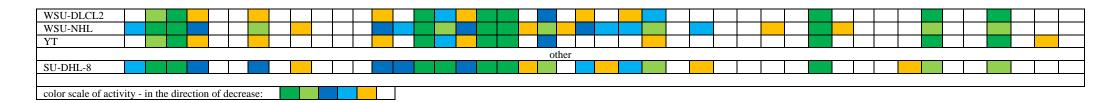

																		acti	ve anti	i-cance	er mole	cular f	orms																
line cell	A	29 B (2 D	30	A	31 B	С	32	33	34	35	36	37	38	39	40	41	42	43	44	A	D	C	45	7 I 17	G	11	46	47	48	49	50	51 A I	52	5	3 B	54	55	56 A B
	А	Ы	D		Α	D	C		<u> </u>							<u> </u>	carcir	oid a	ndoor	ing to			C	ווע	2 F	U	п			1			AI)	А	Ь	<u> </u>		АВ
NCI-H835					1												Carcii	ioiu-e	ndoci	me tu	iiiioui																		
UMC-11		_						i																	_		<u> </u>									1			
201E																		ca	rcinor	na																1			
201T																																	_					_	
A-427																																							
A-549																																							
A-549*																																						_	
ABC-1																																							
ABC-1*																																							
BEN																																							
BEN*																																							
CAL-12T																																							
CAL-12T*																																							
CAL-U3																																							
CAL-U3*																																							
CAL-U6																																							
CAL-U6*																																							
ChaGo-K-1																																							
ChaGo-K-1*																																							
COLO-668																																							
COLO-668*																																							
COR-L105																																							
COR-L105*																																							


COR-L23																							
COR-L23							_					_						_					
COR-L23* COR-L279	\vdash	-+					_						+										
COR-L279*																							-
COR-L279**	1		_										_										
																							-
COR-L311																							-
COR-L311*																							-
COR-L32 COR-L88																							-
COR-L88*																							
COR-L95																							
COR-L95													+									-	
CPC-N													+										_
CPC-N*			_				-					-						_					-
DMS-114			_				_					_											-
DMS-114*	+		-										+										
DMS-273			-										-										
DMS-273*	+												+						+				
DMS-53			+										+						+				
DMS-53*													\dashv										
DMS-79													+										
DMS-79*													+										
EBC-1													+										
EBC-1*																							
EKVX																							
EMC-BAC-1																							
EMC-BAC-2																							
EPLC-272H																							
EPLC-272H*																							
NCI-H3255																							
HARA																							
HARA*																							
HCC-15																							
HCC-15*																							
HCC-366																							
HCC-366*																							
HCC-44																							
HCC-44*																							
HCC-78																							
HCC-78*																							
HCC-827																							
HCC-827*																							
HOP-62																							
HOP-92																							
IA-LM																							
IA-LM*																							
IST-SL1																							
IST-SL2																							
KNS-62																							
KNS-62*																							
LB647-SCLC																							

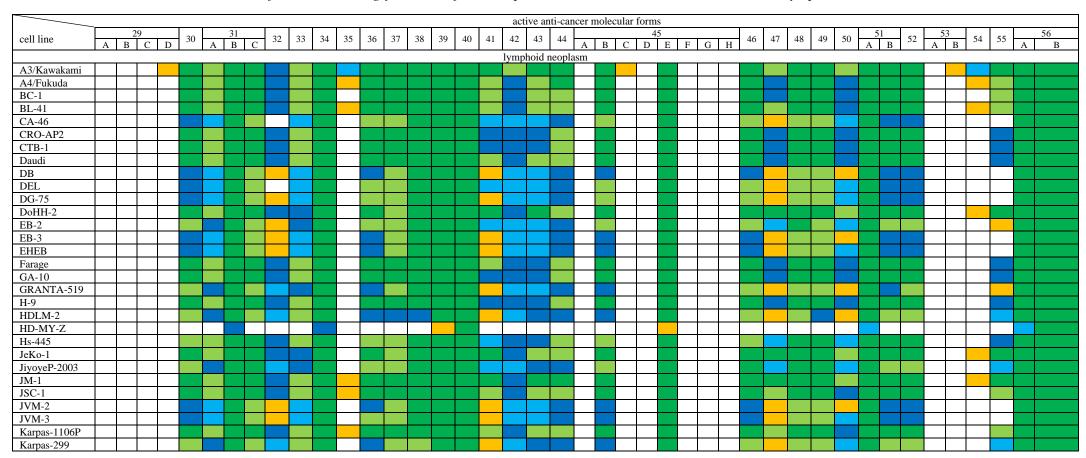
	 		,			1			,																 			
DMS-153																												
DMS-454																												
DV-90																												
HCC-1171																												
HCC-1195																												
HCC-1359																												
HCC-1438																												
HCC-1588																												
HCC-1833																												
HCC-1897																												
HCC-2108																												
HCC-2279																												
HCC-2814																												
HCC-2935																												
HCC-33	 														<u> </u>									4	_			
HCC-364																									_			
HCC-4006		-													1		_	-							_			
HCC-827-GR5		_													1										_			
HCC-95	 	_													}													
HLC-1															<u> </u>													
HLF-a		_							1						-											_		
Hs-229.T		_							1						-				_			_						
Hs-618.T LC1F																												
																											_	
Lu-99 LUDLU-1															1		_											
MOR/CPR															-													
NCI-H1184																												
NCI-H1184 NCI-H1339															1													
NCI-H1373															1													
NCI-H1373 NCI-H1385															1													
NCI-H1437		-			+				+										_					_		_		
NCI-H1618									+						1								_		-			
NCI-H1930																												
NCI-H2081							+																				_	
NCI-H2106																												
NCI-H2126		1													<u> </u>										-			
NCI-H2171															1													
NCI-H2286																												
NCI-H292																												
NCI-H292*															1													
NCI-H3255																												
NCI-H460																												
NCI-H510																												
NCI-H854															1													
NCI-H889															1													
RERF-LC-Ad1																												
RERF-LC-Ad2																												
RERF-LC-AI																												
SALE															1													
SCLC-21H										_	_		_			_					_							

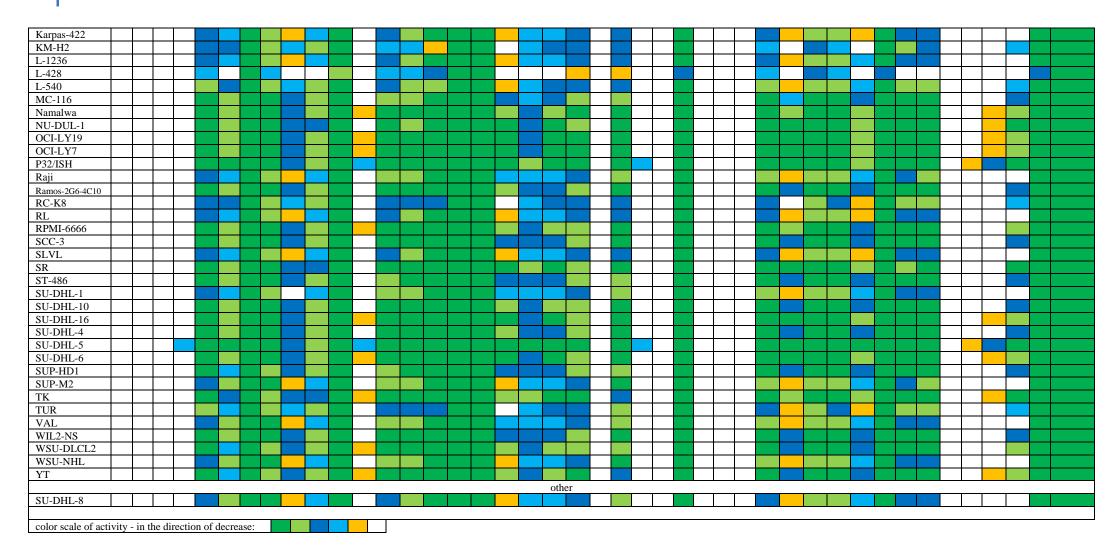

Sq-1																					
T3-M10																					
TIG-3TD																					
VMRC-LCP																					
color scale of activity	, in th	e direc	tion of de	rreace.																	

Lymphoma (Lymphoma)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Lymphoma (*Tabl.4.15. a.* & *b.*), it is concluded that:

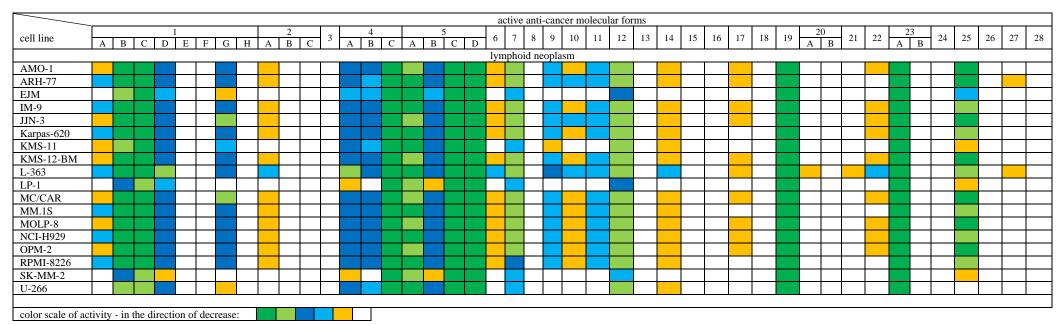
- main potential medicines: AACF 1.C., 4.C., 5.B., 5.C., 5.D., 12., 19., 23.A., 31.B., 34., 39., 40., 45.E., 51.A., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.G.*, *4.A.*, *5.A.*, *7.*, *25.*, *30.*, *31.A.*, *31.C.*, *32.*, *33.*, *36.*, *37.*, *38.*, *41.*, *42.*, *43.*, *44.*, *45.B.*, *46.*, *47.*, *48.*, *49.*, *50.*, *51.B.* and *52.*


Table 4.15. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Lymphoma: Part 1

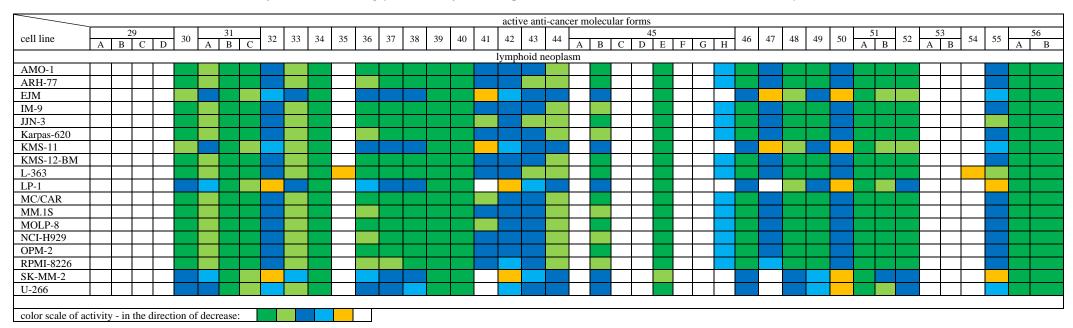


DoHH-2																		
EB-2																		
EB-3																		
EHEB																		
Farage																		
GA-10																		
GRANTA-519																		
H-9																		
HDLM-2																		
HD-MY-Z																		
Hs-445																		
JeKo-1																		
JiyoyeP-2003																		
JM-1																		
JSC-1																		
JVM-2																		
JVM-3																		
Karpas-1106P																		
Karpas-299																		
Karpas-422																		
KM-H2																		
L-1236																		
L-428																		
L-540																		
MC-116																		
Namalwa																		
NU-DUL-1																		
OCI-LY19																		
OCI-LY7																		
P32/ISH																		
Raji																		
Ramos-2G6-4C10																		
RC-K8																		
RL																		_
RPMI-6666																		_
SCC-3														1				_
SLVL											_			1				
SR														1				
ST-486														1				_
SU-DHL-1		_				_					_			1				
SU-DHL-10														-				
SU-DHL-16				+			-							+				+
SU-DHL-4				+			-											
SU-DHL-5				\vdash														
SU-DHL-6				\vdash														+
SUP-HD1		_		\vdash			-							 			_	
SUP-M2		_		\vdash			-							+			_	
TK				\vdash					<u> </u>			_		1				4
TUR														1				_
VAL				\vdash										1				
WIL2-NS																		

Table 4.15. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Lymphoma: Part 2



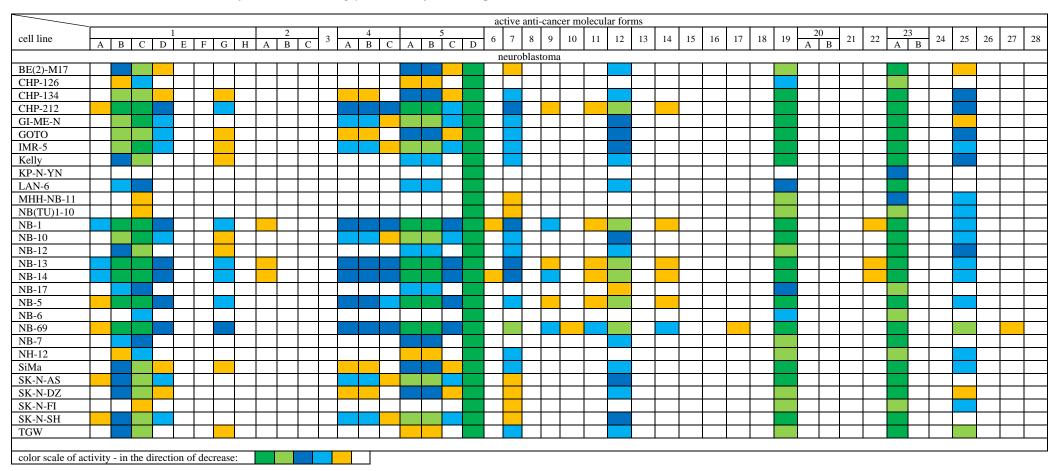
Myeloma (Myeloma)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Myeloma (*Tabl.4.16. a. & b.*), it is concluded that:

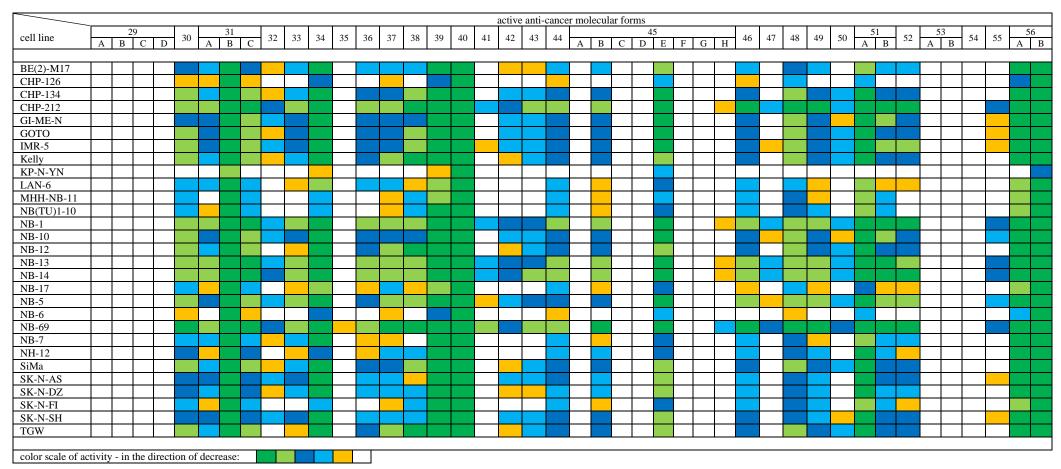
- main potential medicines: *AACF 1.C.*, *4.A.*, *4.C.*, *5.1.*, *5.B.*, *5.C.*, *7.*, *12.*, *19.*, *23.A.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *32.*, *33.*, *34.*, *36.*, *37.*, *38.*, *39.*, *40.*, *42.*, *43.*, *44.*, *45.B.*, *45.E.*, *46.*, *48.*, *49.*, *50.*, *51.A.*, *51.B.*, *52.*, *55.*, *56.A.* and *56.B.*;
- duplication of treatment and / or substitution on medical grounds: AACF 4.B. and 25.

Table 4.16. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Myeloma: Part 1

Table 4.16. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Myeloma: Part 2



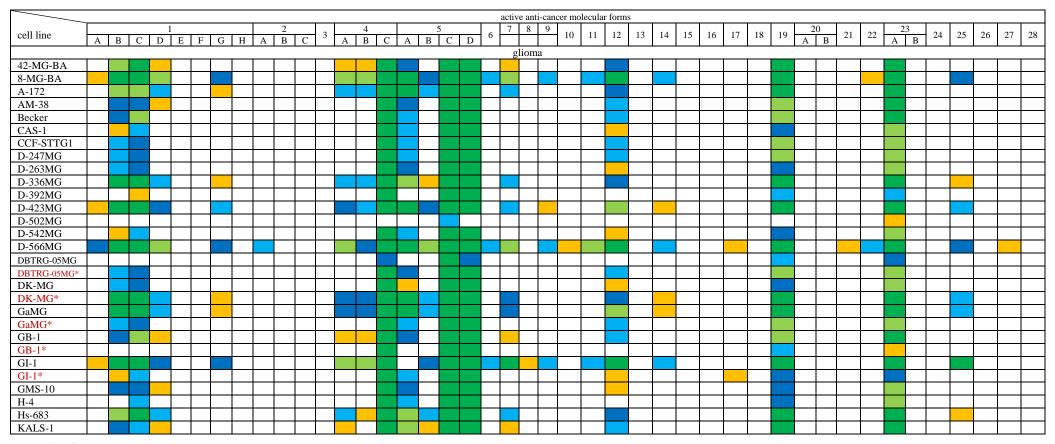
Neuroblastoma (Neuroblastoma)

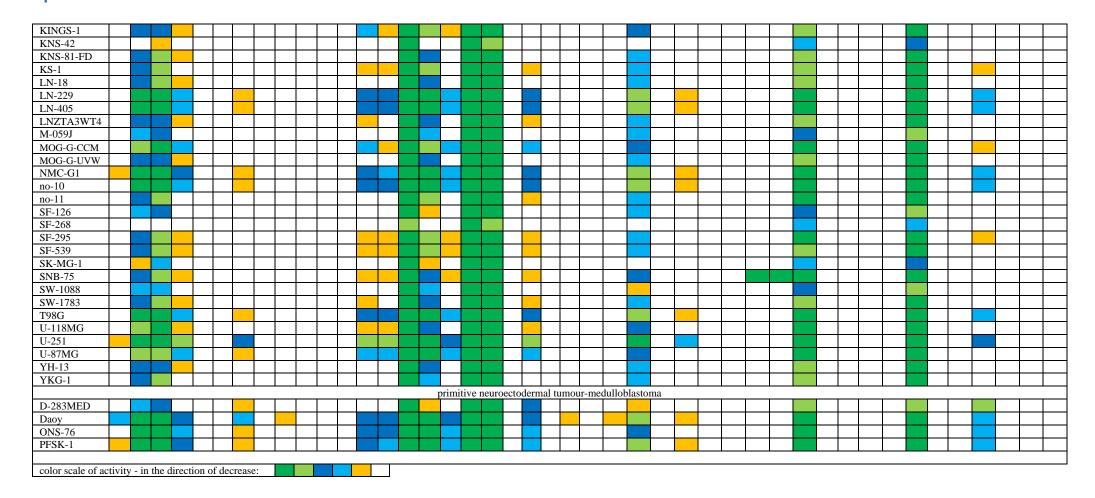

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Neuroblastoma (*Tabl.4.17. a. & b.*), it is concluded that:

- main potential medicine: AACF 5.D., 23.A., 31.B., 34., 39., 40., 45.E. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 1.C., 19., 30., 31.C., 44., 46., 48., 51.A. and 56.A.

Table 4.17. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Neuroblastoma: Part 1

Table 4.17. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Neuroblastoma: Part 2




Nervous system (Systema nervosum)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Nervous system (*Tabl.4.18. a. & b.*), it is concluded that:

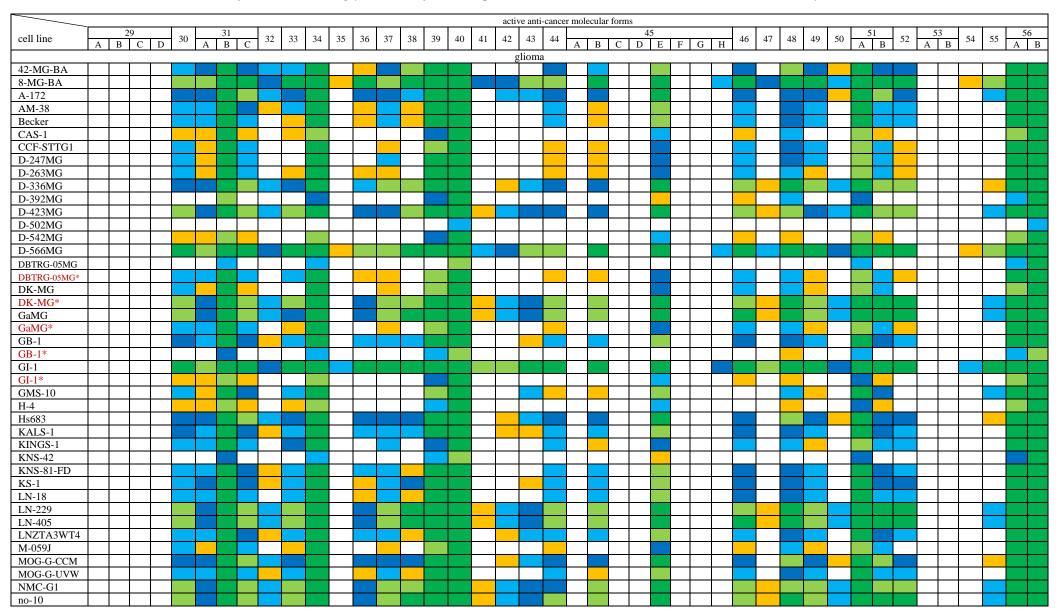
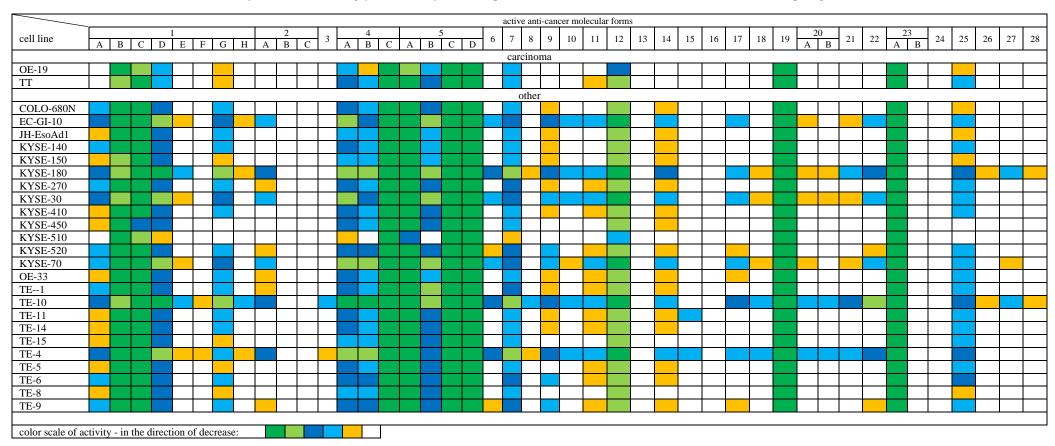
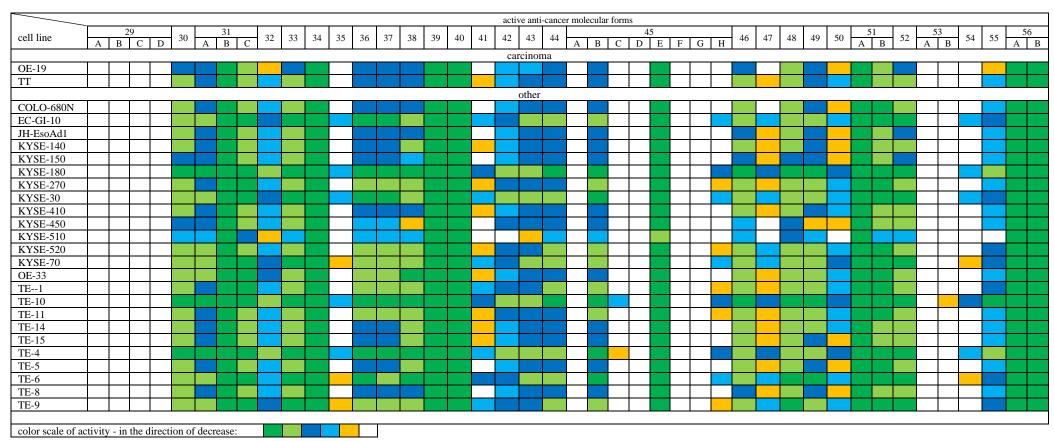

- main potential medicines: AACF 4.C., 5.C., 23.A., 40. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 5.D., 19., 31.B., 34., 51.A. and 56.A.

Table 4.18. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Nervous system: Part 1

Table 4.18. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Nervous system: Part 2


no-11 SF-126 SF-268 SF-295 SF-539 SK-MG-1	
SF-268 SF-295 SF-539	
SF-295 SF-539	
SF-539	
SK-MG-1	
SNB-75	
SW-1088	
SW-1783	
T-98G	
U-118MG	
U-251	
U-87MG	
YH-13	
YKG-1	
primitive neuroectodermal tumour-medulloblastoma	
D-283MED	
Daoy Daoy	
ONS-76	
PFSK-1	
color scale of activity - in the direction of decrease:	

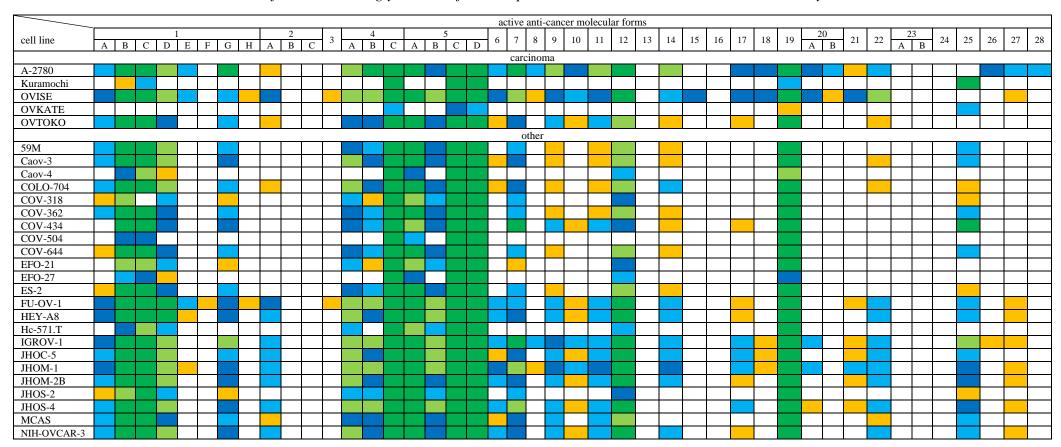
Oesophagus (Oesophagus)

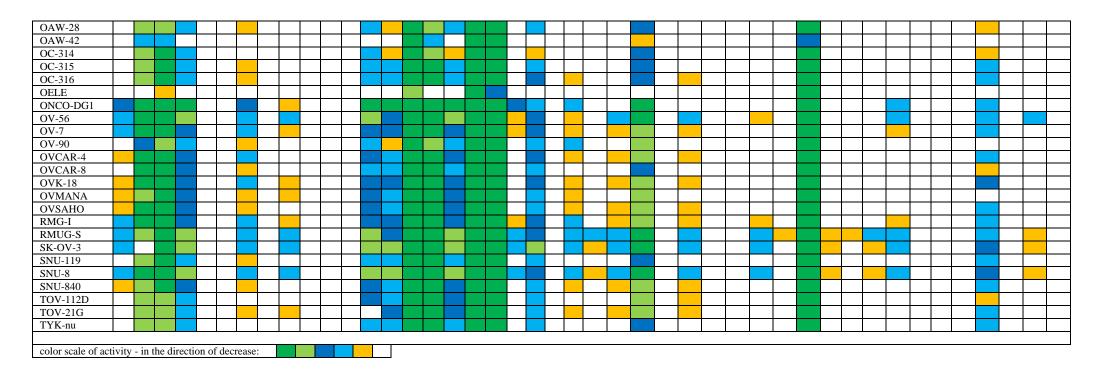

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Oesophagus (*Tabl.4.19. a. & b.*) it is concluded that:

- main potential medicines: *AACF 1.C.*, *1.D.*, *4.A.*, *4.C.*, *5.A.*, *5.B.*, *5.D.*, *7.*, *12.*, *19.*, *23.A.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *32.*, *33.*, *34.*, *36.*, *37.*, *38.*, *39.*, *40.*, *43.*, *44.*, *45.B.*, *45.E.*, *46.*, *48.*, *49.*, *51.A.*, *51.B.*, *52.*, *56.A.* and *56.B.*;
- duplication of treatment and / or substitution on medical grounds: AACF 1.G., 4.B., 5.B., 25., 42., 50. and 53.

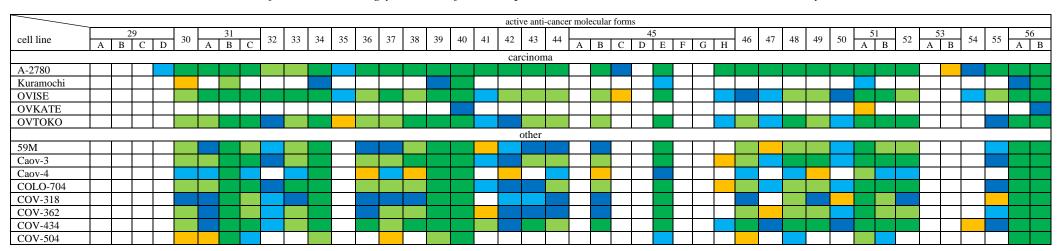
Table 4.19. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Oesophagus: Part 1

Table 4.19. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Oesophagus: Part 2




Ovary (Ovarium)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Ovary (*Tabl.4.20. a & b*), it is concluded that:


- main potential medicines: AACF 4.C., 5.C., 5.D., 19., 31.B., 34., 40., 51.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.C.*, *5.A.*, *12.*, *30.*, *31.A.*, *31.C.*, *32.*, *33.*, *39.*, *45.E.*, *46.*, *48.*, *55.* and *56.A.*

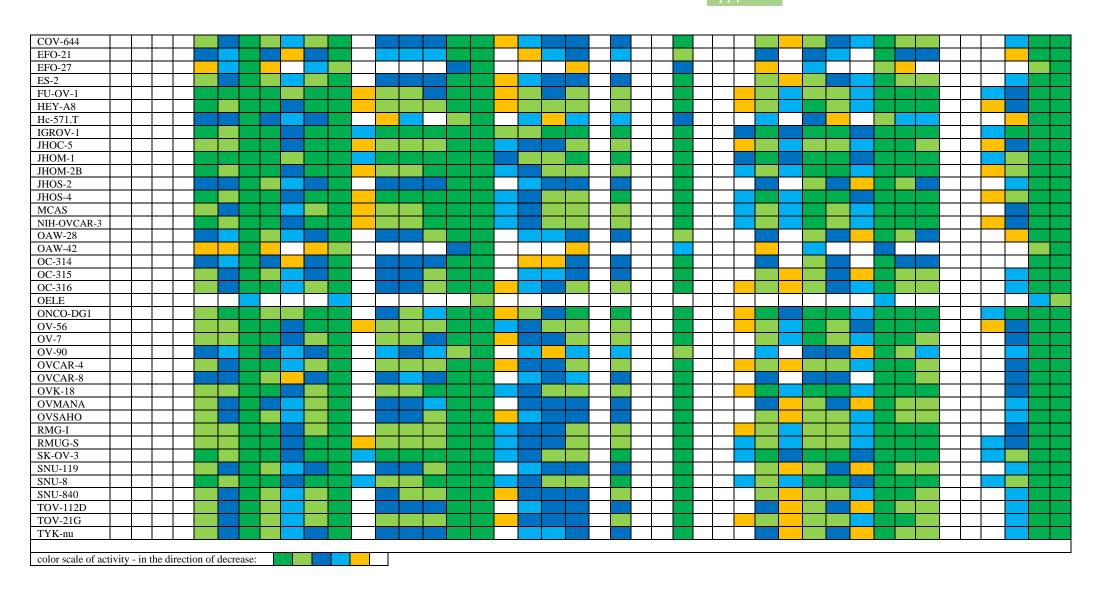
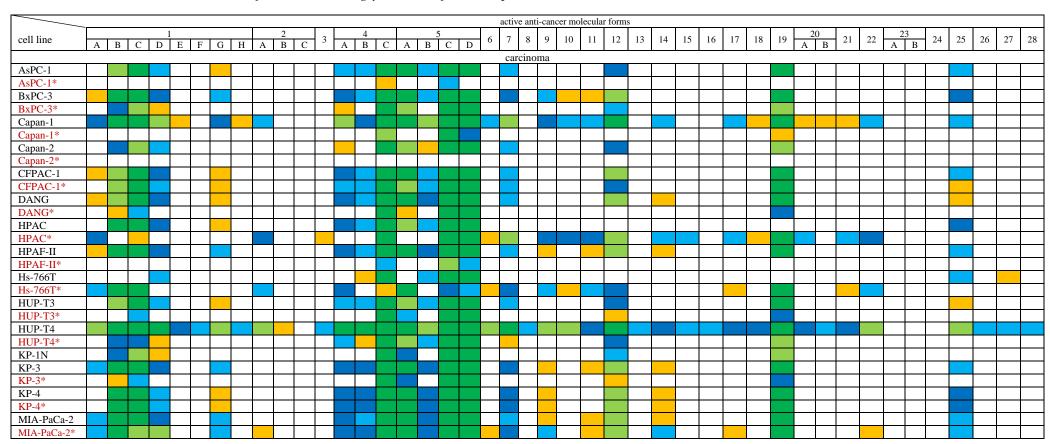
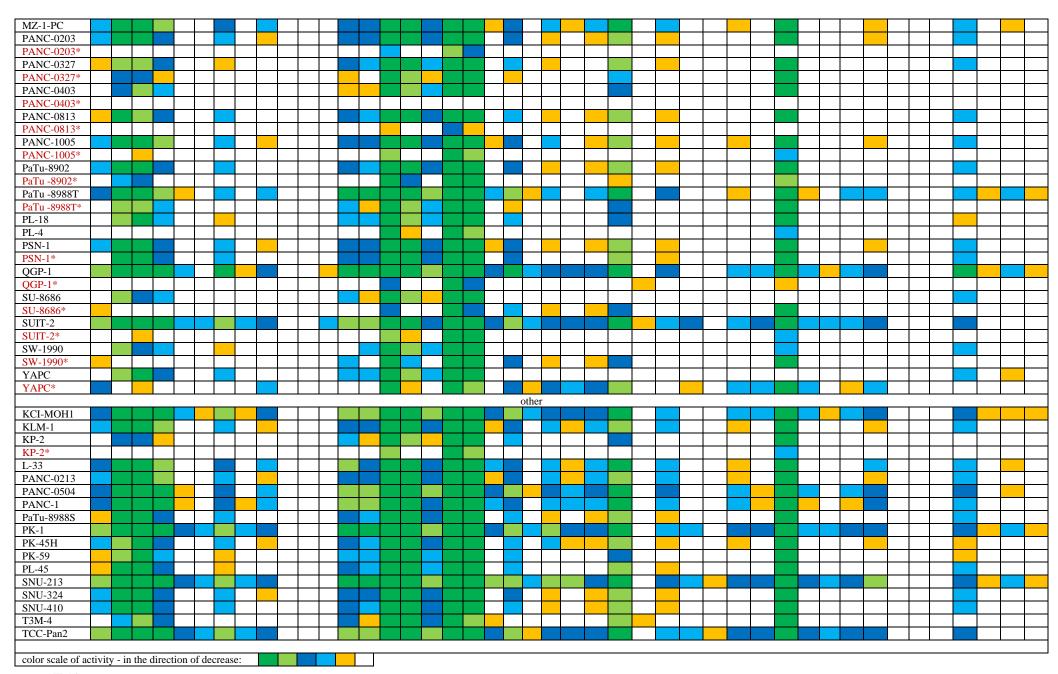

Table 4.20. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Ovary: Part 1

Table 4.20. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Ovary: Part 2




Pancreas (Pancreas)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Pancreas (*Tabl.4.21 a & b*), it is concluded that:

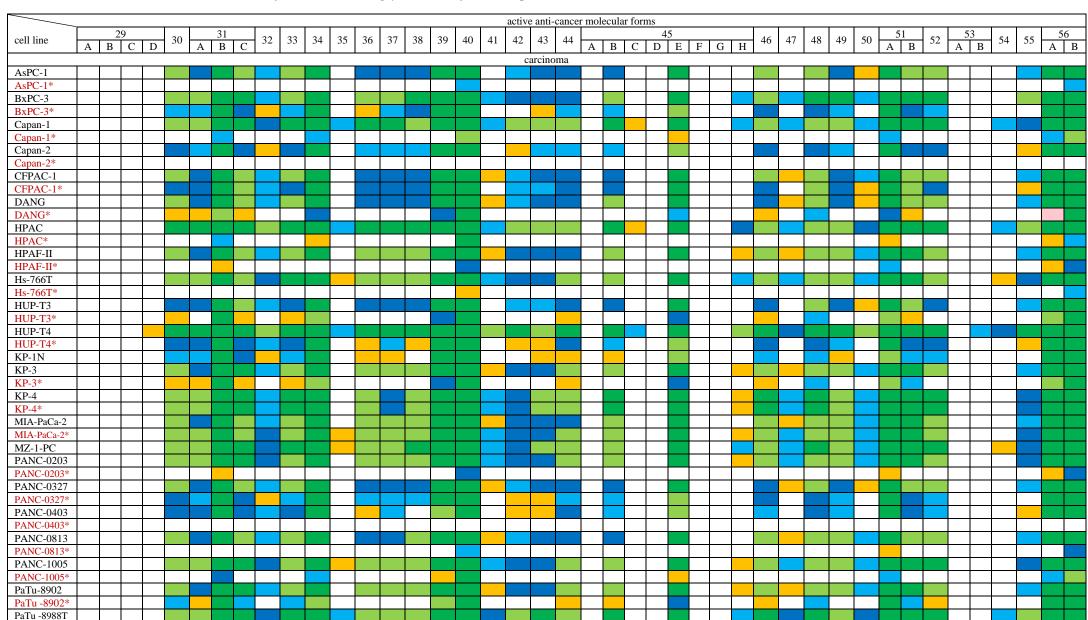

- main potential medicines: AACF 4.C., 5.C., 31.B., 40., 51.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 1.C., 5.D., 19., 39., 44., 45.E. and 56.A.

Table 4.21. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Pancreas: Part 1

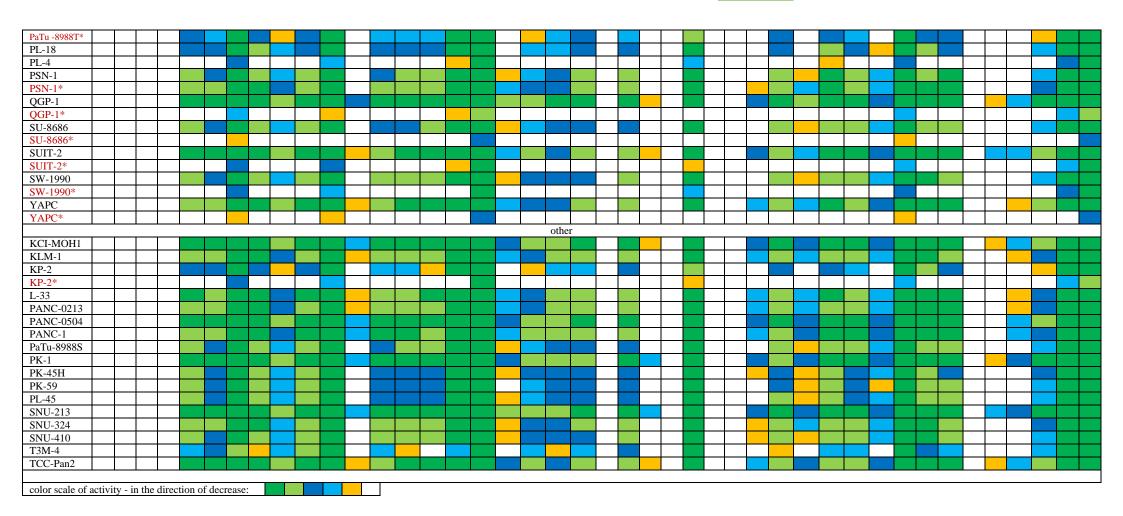
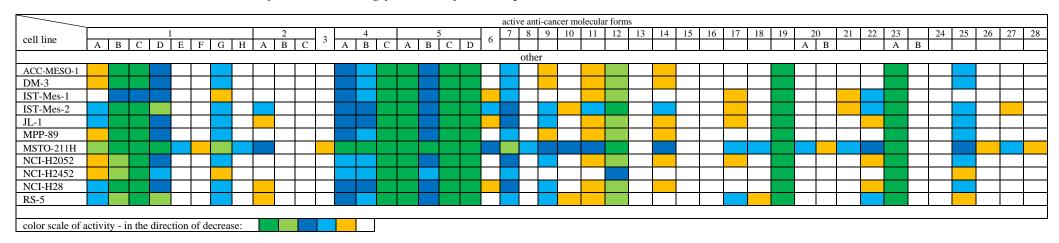


Table 4.21. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Pancreas: Part 2

Vasil Tsanov & Hristo Tsanov



Pleura (Pleurae)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Pleura (*Tabl.4.22. a. & b.*), it is concluded that:

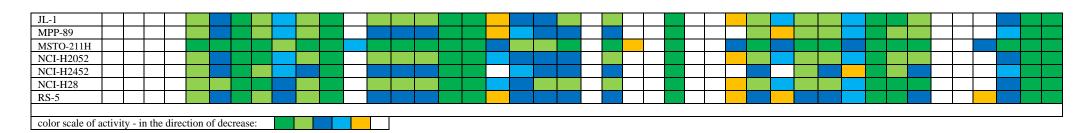
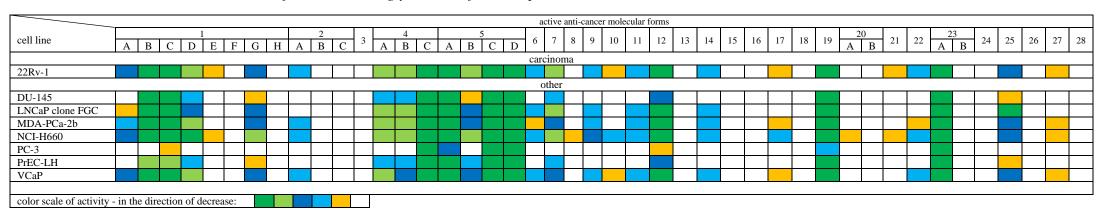

- main potential medicines: *AACF 1.C.*, *1.D.*, *1.G.*, *4.A.*, *4.B.*, *4.C.*, *5.A.*, *5.B.*, *5.C.*, *5.D.*, *7.*, *12.*, *19.*, *23.A.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *32.*, *33.*, *34.*, *36.*, *37.*, *38.*, *39.*, *40.*, *42.*, *43.*, *44.*, *45.B.*, *45.E.*, *46.*, *48.*, *49.*, *50.*, *51.A.*, *52.B.*, *55.*, *56.A.* and *56.B.*;
- duplication of treatment and / or substitution on medical grounds: AACF 1.A., 11., 25. and 47.

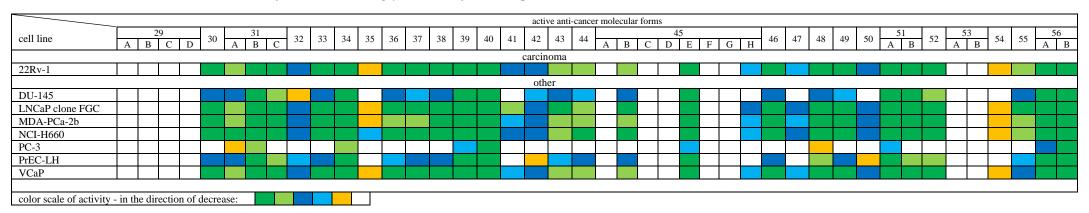
Table 4.22. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Pleura: Part 1

Table 4.22. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Pleura: Part 2

																	activ	e anti-	-cance	r mole	cular fo	orms																
cell line	A	29 B C	D	30	3 A E	1 B C	32	33	34	35	36	37	38	39	40	41	42	43	44	A	В	С	45 D E	F	G	Н	46	47	48	49	50	A	51 B	52	53 A I	54	55	56 A B
																		other	•																			
ACC-MESO-1																																						
DM-3																																						
IST-Mes-1																																						
IST-Mes-2																																						

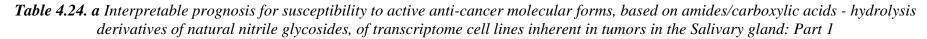


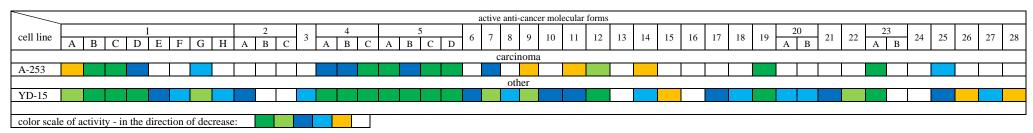
Prostate (Prostata)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Prostate (*Tabl.4.23. a. & b.*), it is concluded that:

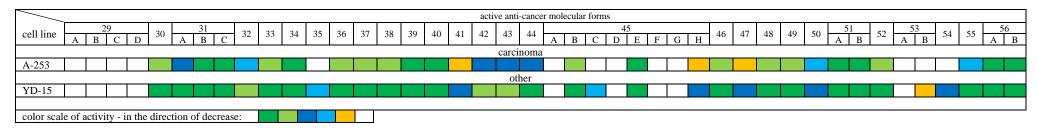
- main potential medicines: AACF 1.C., 4.C., 5.A., 5.D., 12., 19., 23.A., 31.A., 31.B., 34., 39., 40., 45.E., 48., 51.A., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.D.*, *1.G.*, *4.A.*, *4.B.*, *5.B.*, *7.*, *25.*, *30.*, *31.C.*, *32.*, *33.*, *36.*, *37.*, *38.*, *42.*, *43.*, *44.*, *45B.*, *46.*, *49.*, *51.B.*, *52.* and *55.*

Table 4.23. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Prostate: Part 1


Table 4.23. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Prostate: Part 2



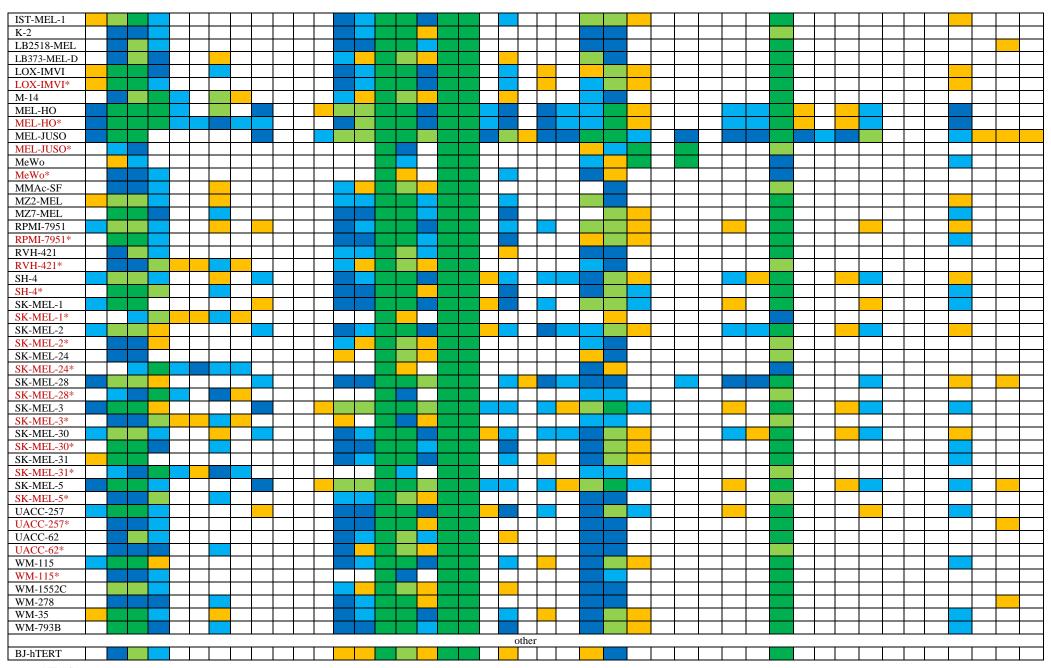
Salivary gland (Glandulae salivariae oris)

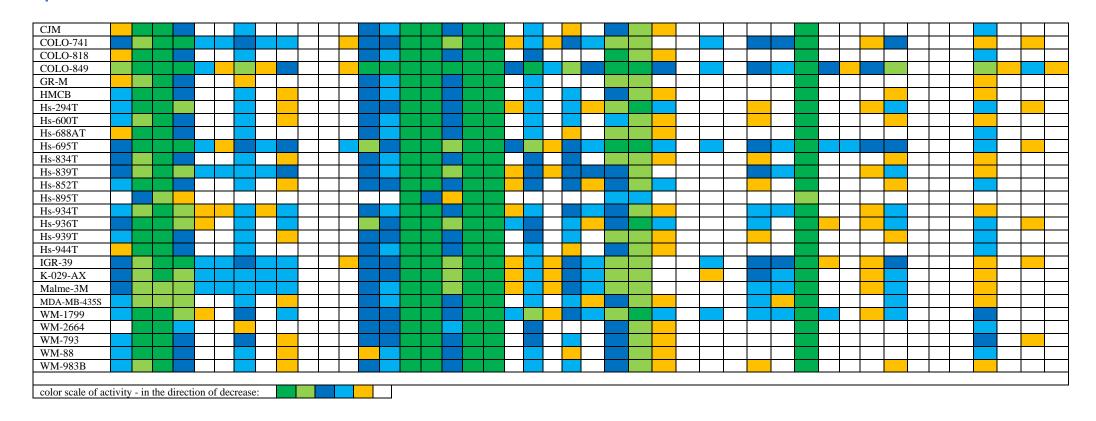

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Salivary grand (*Tabl.4.24. a. & b.*), it is concluded that:

- main potential medicines: *AACF1.A.*, *1.C.*, *1.D.*, *1.G.*, *4.A.*, *4.B.*, *4.C.*, *5.A.*, *5.B.*, *5.C.*, *5.D.*, *7.*, *9.*, *11.*, *12.*, *14.*, *19.*, *23.A.*, *25.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *32.*, *33.*, *34.*, *36.*, *37.*, *38.*, *39.*, *40.*, *41.*, *42.*, *43.*, *44.*, *45.B.*, *45.E.*, *45.H.*, *46.*, *47.*, *48.*, *49.*, *50.*, *51.A.*, *51.B.*, *56.A.* and *56.B.*;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.E.*, *1.F.*, *1.H.*, *2.A.*, *3.*, *6.*, *8.*, *10.*, *15.*, *17.*, *18.*, *20.A.*, *20.B.*, *21.*, *22.*, *26.*, *27.*, *28.*, *35.*, *45.C.*, *53.B.* and *54*.

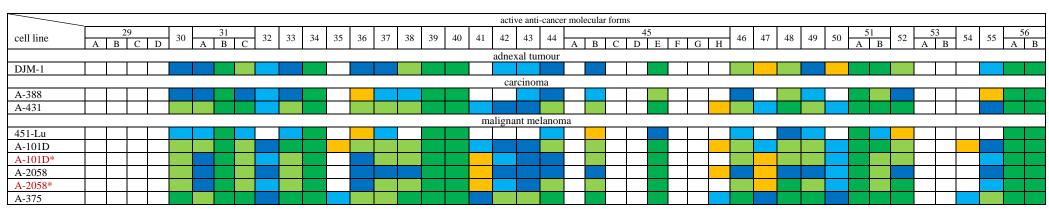
Table 4.24. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Salivary gland: Part 2

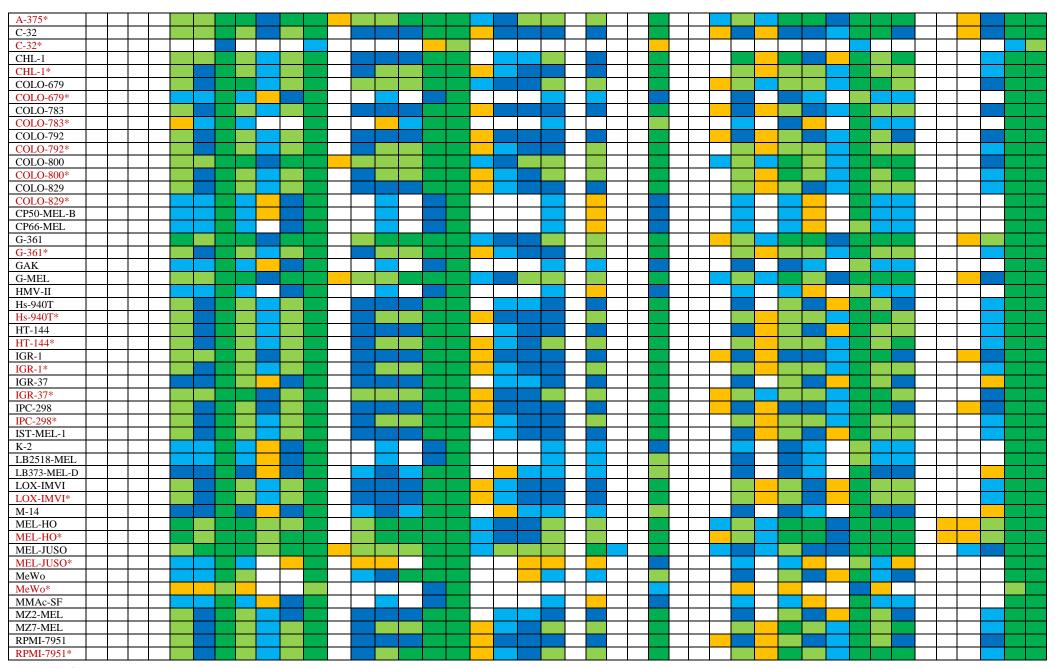


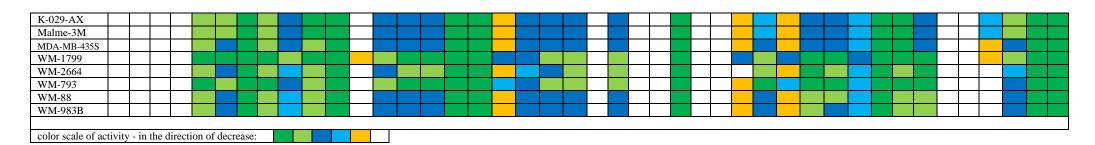

Skin (Cutis)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Skin (*Tabl.4.25. a. & b.*), it is concluded that:

- main potential medicines: AACF 4.C., 5.C., 5.D., 19., 31.B., 34., 39., 40., 45.E., 51.A., 56.A. and 56.B.;
- duplication of treatment and/or substitution on medical grounds: *AACF 1.C.*, *5.A.*, *11.*, *12.*, *30.*, *31.A.*, *31.C.*, *33.*, *37.*, *44.*, *45.B.*, *46.*, *48.*, *49.*, *51.B.* and *52*.

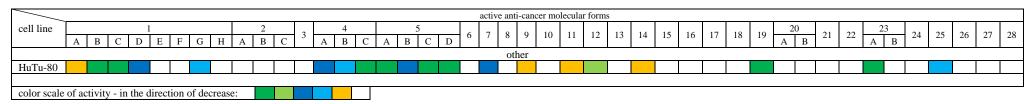

Table 4.25. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Skin: Part 1



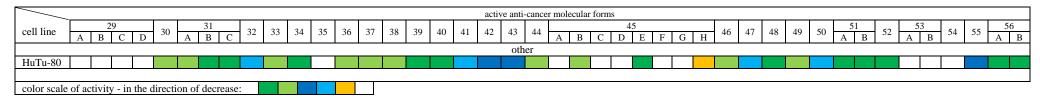

Table 4.25. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Skin: Part 2

RVH-421	1														1 1							1	1		
RVH-421*												_							_					$\overline{}$	
KVH-421*	-												_												
SH-4	-				_								_				_								
SH-4*					_									_											
SK-MEL-1																									
SK-MEL-1*																									
SK-MEL-2																									
SK-MEL-2*																									
SK-MEL-24																									
SK-MEL-24*																									
SK-MEL-28																									
SK-MEL-28*																									
SK-MEL-3																									
SK-MEL-3*																									
SK-MEL-30																									
SK-MEL-30*																									
SK-MEL-31																									
SK-MEL-31*																									
SK-MEL-5																									
SK-MEL-5*																									
UACC-257																									
UACC-257*																									
UACC-62																									
UACC-62*																									
WM-115																									
WM-115*																									
WM-1552C																									
WM-278																									
WM-35																									
WM-793B																									
										_	other														
BJ-hTERT																									
CJM																									
COLO-741																									
COLO-818																									
COLO-849																									
GR-M																									
HMCB																									
Hs-294T																									
Hs-600T																									
Hs-688AT																									
Hs-695T																									
Hs-834T																									
Hs-839T																									
Hs-852T																									
Hs-895T																									
Hs-934T																									
Hs-936T			1																						
Hs-939T																									
Hs-944T																									
IGR-39		_											-												
101(3)																					T	0. T		T	

Vasil Tsanov & Hristo Tsanov



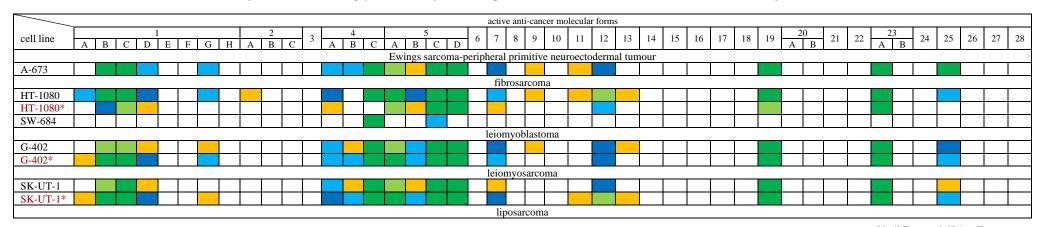
Small intestine (*Intestinum tenue*)

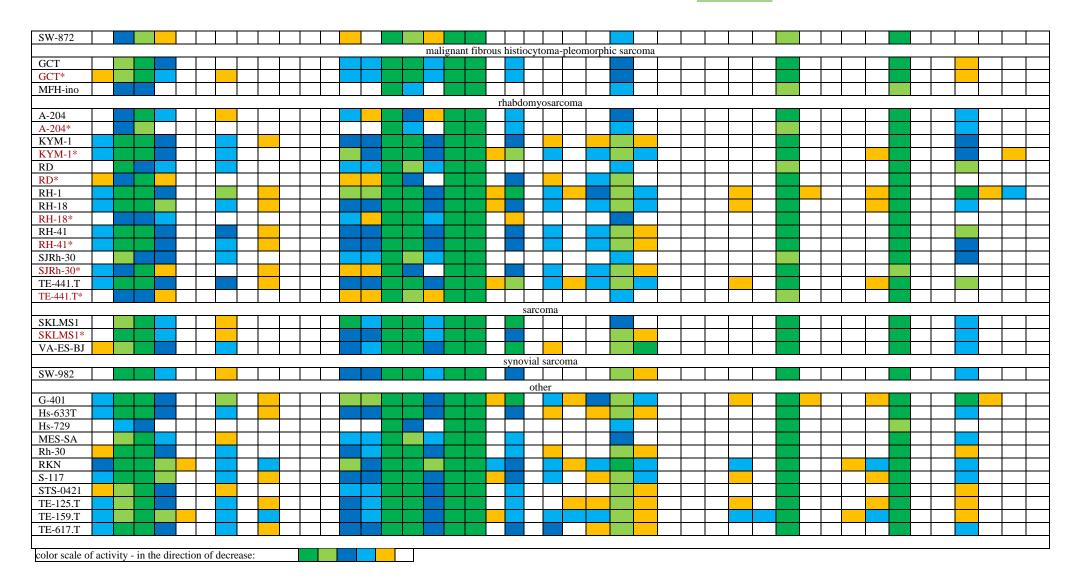

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Small intestine (*Tabl.4.26. a.* & *b.*) it is concluded that:

- main potential medicines: AACF 1.C., 4.C., 5.A., 5.C., 5.D., 19., 23.A., 31.B., 31.C., 32., 34., 39., 40., 45.E., 51.A., 51.B., 52., 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.A.*, *1.D.*, *1.G.*, *4.A.*, *4.B.*, *5.B.*, *7.*, *9.*, *11.*, *12.*, *14.*, *25.*, *30.*, *31.A.*, *33.*, *36.*, *37.*, *38.*, *41.*, *42.*, *43.*, *44.*, *45.B.*, *45.H.*, *46.*, *47.*, *48.*, *49.*, *50* and *55*.

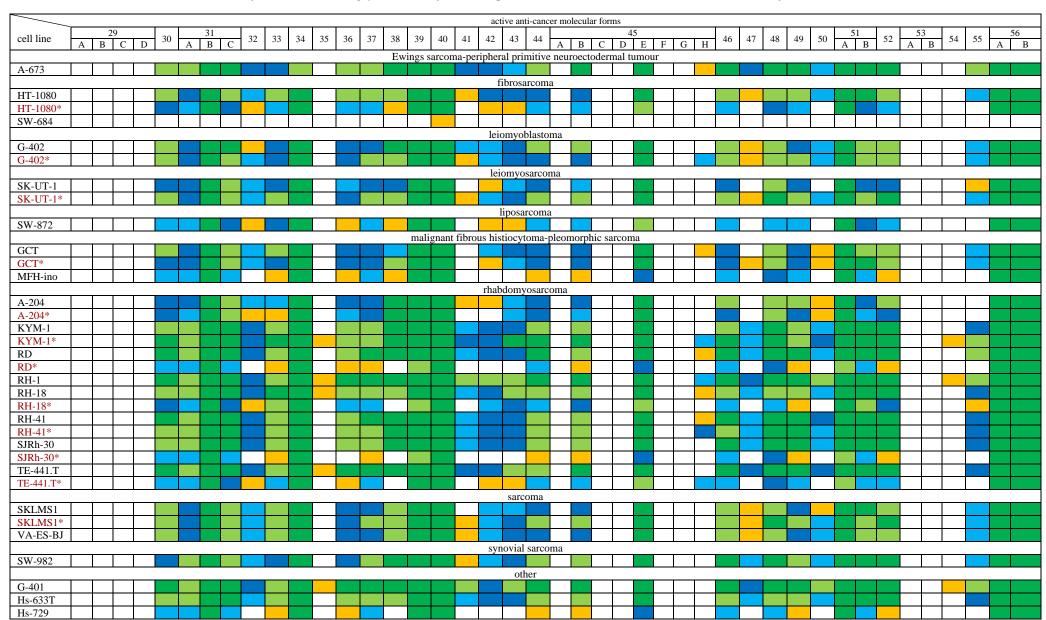
Table 4.26. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Small intestine: Part 1

Table 4.26. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Small intestine: Part 2




Soft tissue (*Mollis textus*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Soft tissue (*Tabl.4.27. a & b.*), it is concluded that:


- main potential medicines: AACF 1.C., 4.B., 5.C. and 40.;
- duplication of treatment and / or substitution on medical grounds: *AACF 1.D.*, *4.C.*, *5.D.*, *12.*, *19.*, *23.A.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *32.*, *33.*, *34.*, *36.*, *37.*, *38.*, *39.*, *42.*, *43.*, *44.*, *45.B.*, *45.E.*, *46.*, *48.*, *49.*, *51.A.*, *51.B.*, *56.A.* and *56.B.*

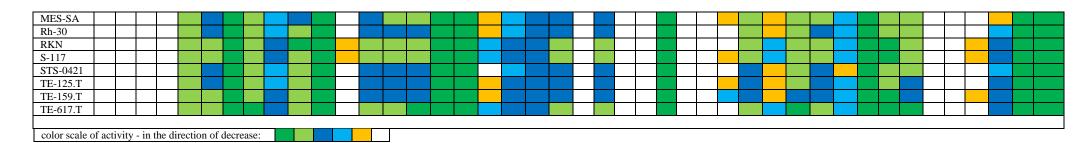
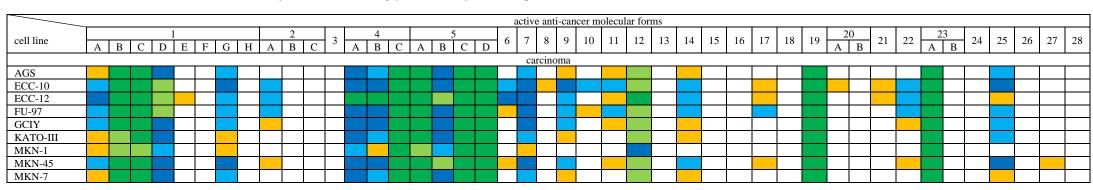
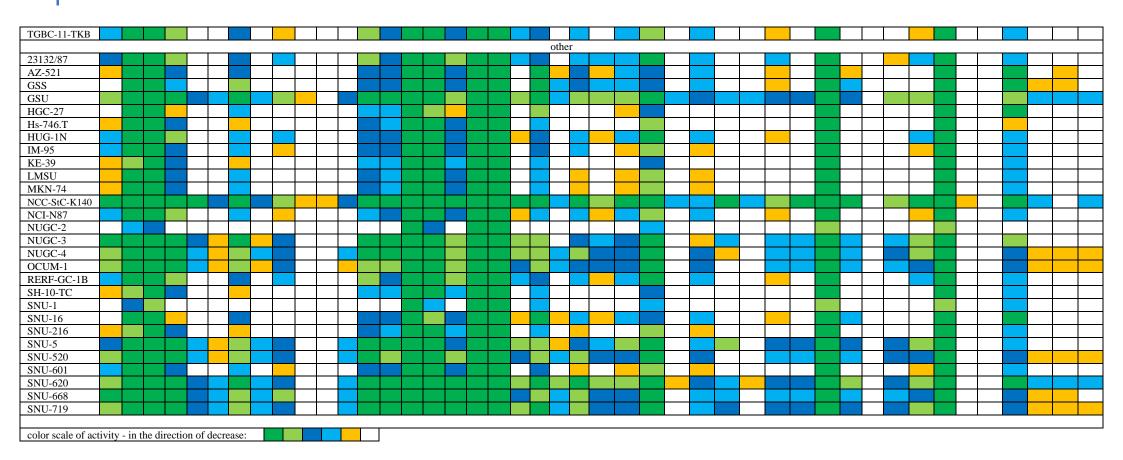

Table 4.27. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Soft tissue: Part 1

Table 4.27. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Soft tissue: Part 2




Stomach (Stomachus)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Stomach (*Tabl.4.28. a. & b.*), it is concluded that:

- main potential medicines: *AACF 1.C.*, *4.C.*, *5.A.*, *5.C.*, *5.D.*, *12.*, *19.*, *23.A.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *33.*, *34.*, *36.*, *37.*, *38.*, *39.*, *40.*, *43.*, *44.*, *45.B.*, *45.E.*, *46.*, *48.*, *49.*, *51.A.*, *51.B.*, *52.*, *56.A.* and *56.B.*;
- duplication of treatment and/or substitution on medical grounds: AACF 1.G., 4.A., 4.B., 5.B., 7., 25., 32., 50. and 55.

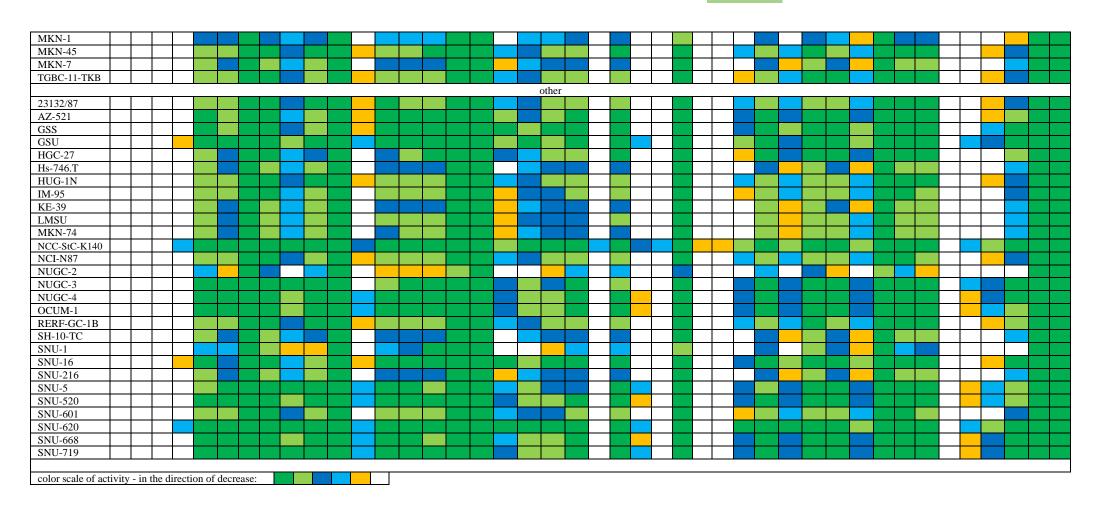
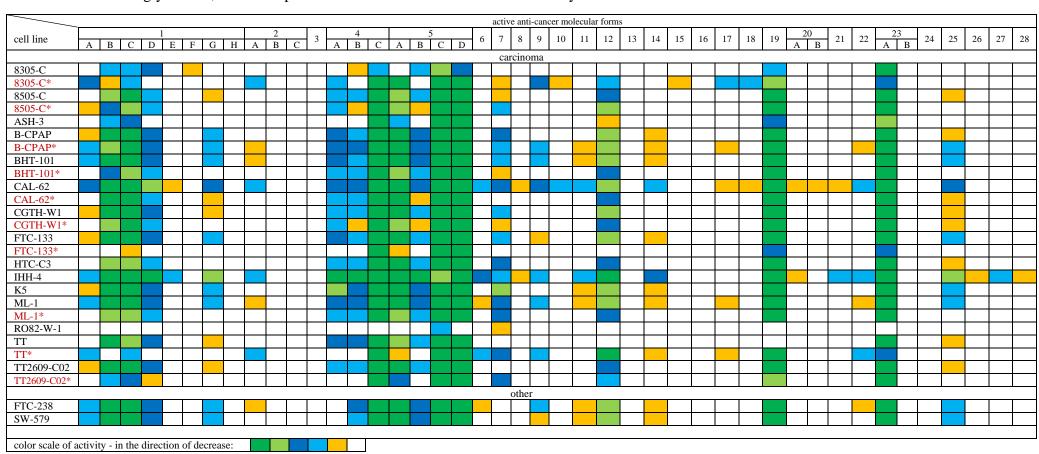
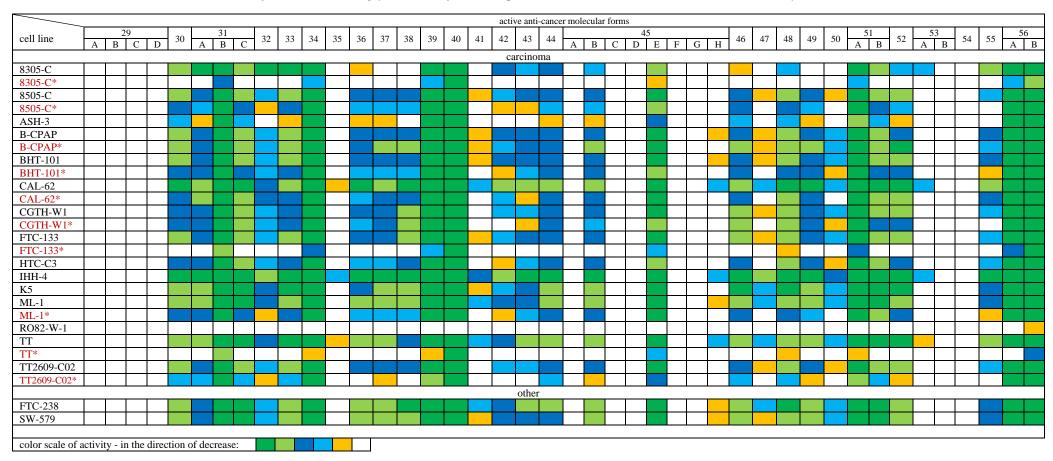

Table 4.28. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Stomach: Part 1

Table 4.28. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Stomach: Part 2

																			acti	ve anti	i-cance	er mol	ecular	form	s																		\neg
cell line	A	B 25	C D	- 30	A	31 B	C	32	33	34	35	36	37	7 3	88	39	40	41	42	43	44	A	В	С	4: D	5 E	F	G	Н	46	47	48	49	50	A	51 B	52	5	3 B	54	55	5 A	5 В
	1		0 2	-1		1 2	1 -		I		1	-							cai	rcinor	na	1								<u> </u>			1	1	1	12	l .			l			
AGS																																											
ECC-10																																											
ECC-12																																											
FU-97																																											
GCIY																																											
KATO-III																																											



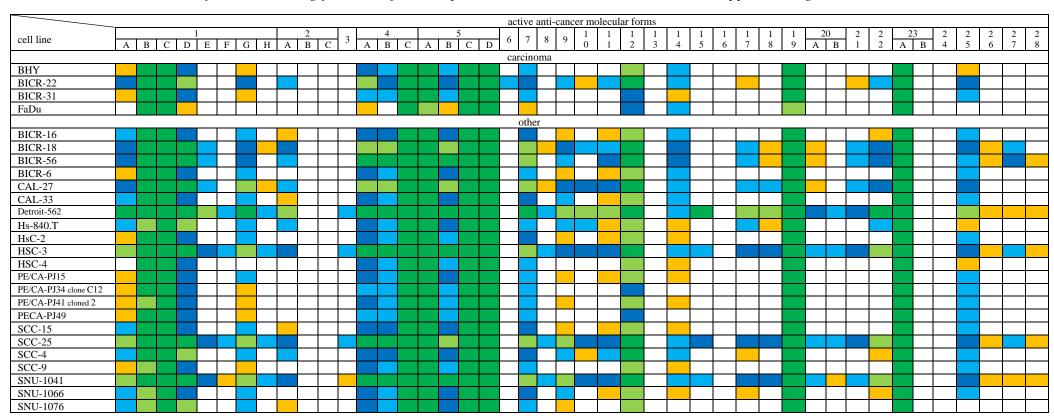
Thyroid (Glandula thyreoidea)

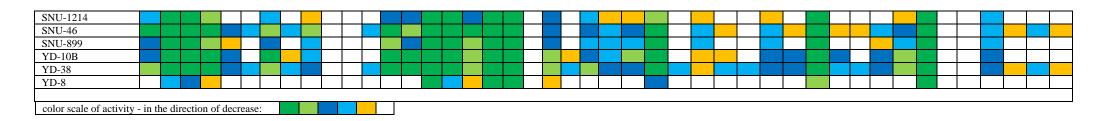

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Thyroid (*Tabl.4.29. a. & b.*), it is concluded that:

- main potential medicines: AACF 5.C. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 1.C., 4.C., 5.D., 23., 31.B., 34., 39., 40., 45.E., 48. and 51.A.

Table 4.29. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Thyroid: Part 1

Table 4.29. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Thyroid: Part 2




Upper aerodigestive tract (*Tractus superior aerodigestive*)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Upper aerodigestive tract (*Tabl.4.30. a. & b.*), it is concluded that:

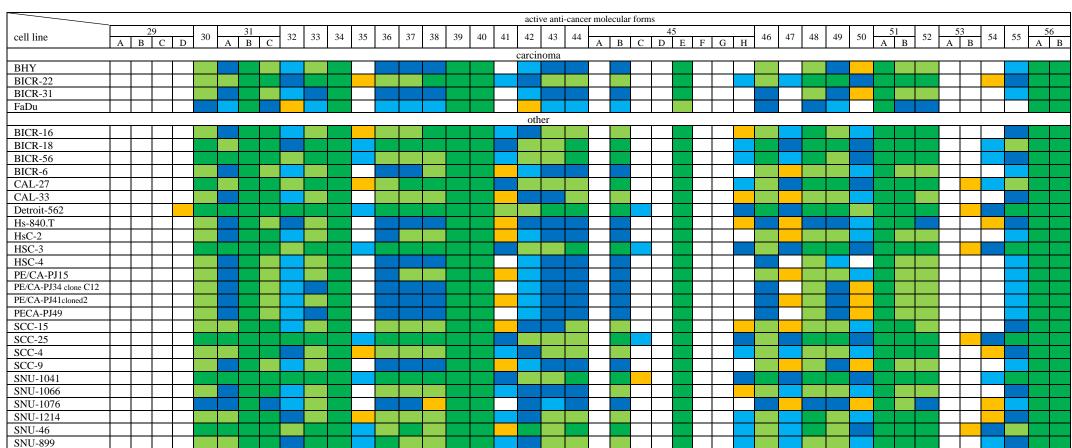
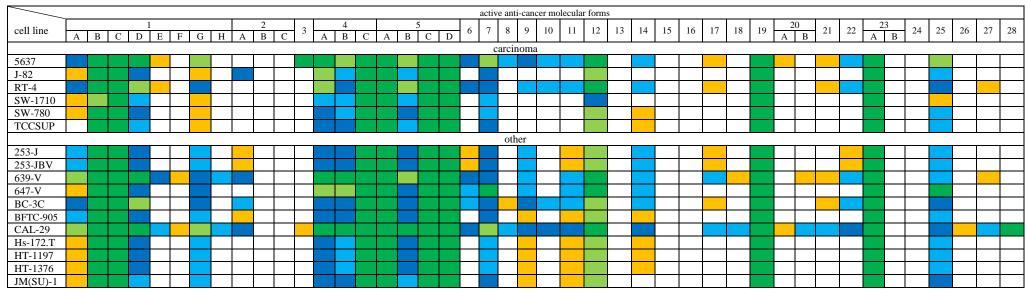
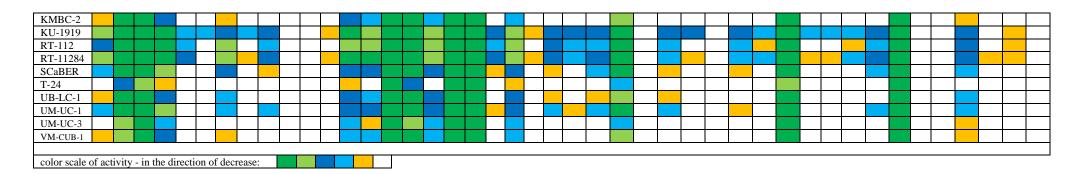

- main potential medicines: *AACF 1.C.*, *1.D.*, *4.C.*, *5.A.*, *5.B.*, *5.C.*, *5.D.*, *7.*, *12.*, *19.*, *23.A.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *32.*, *33.*, *34.*, *36.*, *37.*, *38.*, *39.*, *40.*, *43.*, *44.*, *45.B.*, *45.E.*, *46.*, *48.*, *49.*, *51.A.*, *51.B.*, *52.*, *56.A.* and *56.B.*;
- duplication of treatment and / or substitution on medical grounds: AACF 4.A., 42., 50. and 55.

Table 4.30. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Upper aerodigestive tract: Part 1

Table 4.30. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Upper aerodigestive tract: Part 2


YD-10B																										
YD-38																										
YD-8																										
color scale of activit	y - in th	e dire	ection	of de	creas	e:																				


Urinary tract (Tractus urinarii)

From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Urinary tract (*Tabl.4.31. a. & b.*), it is concluded that:

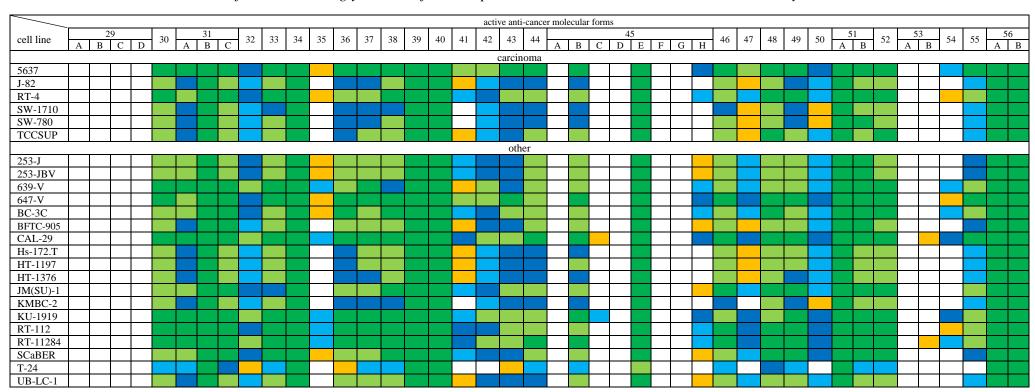
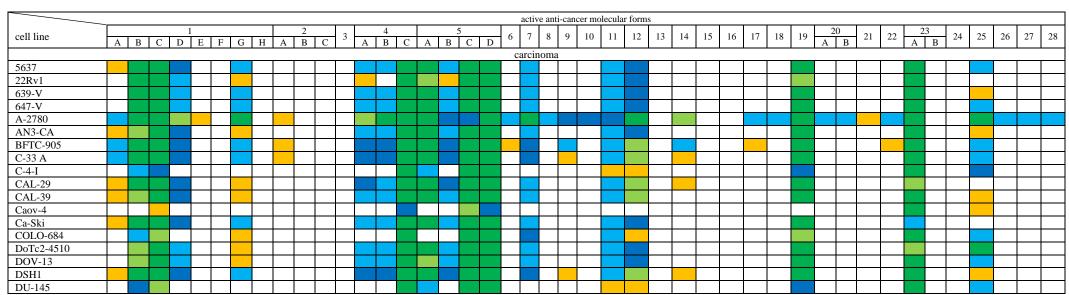
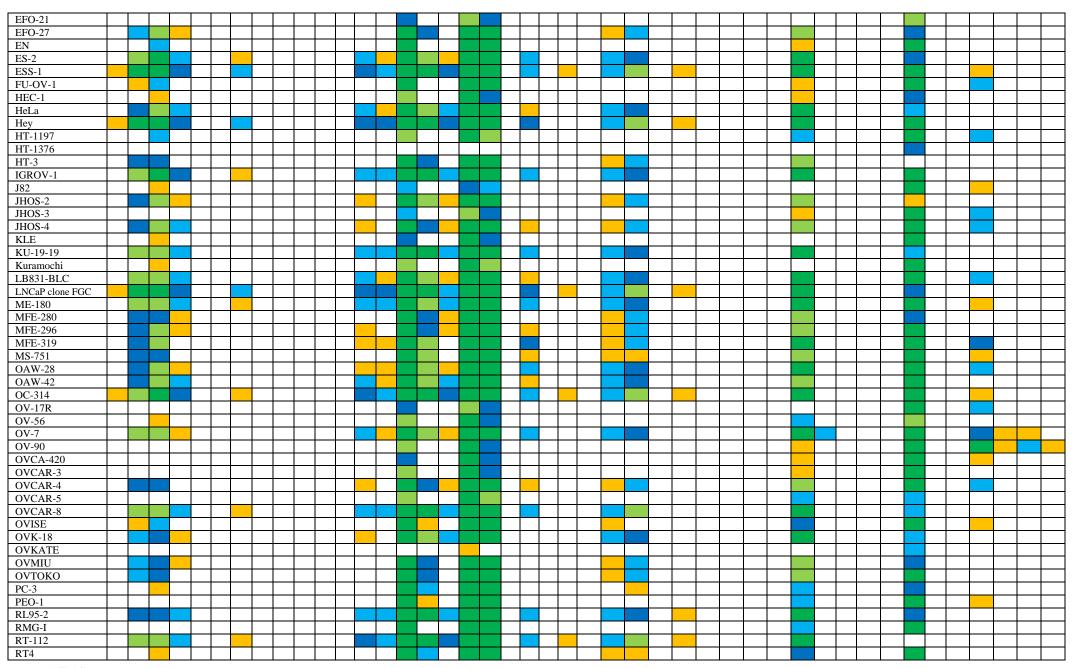
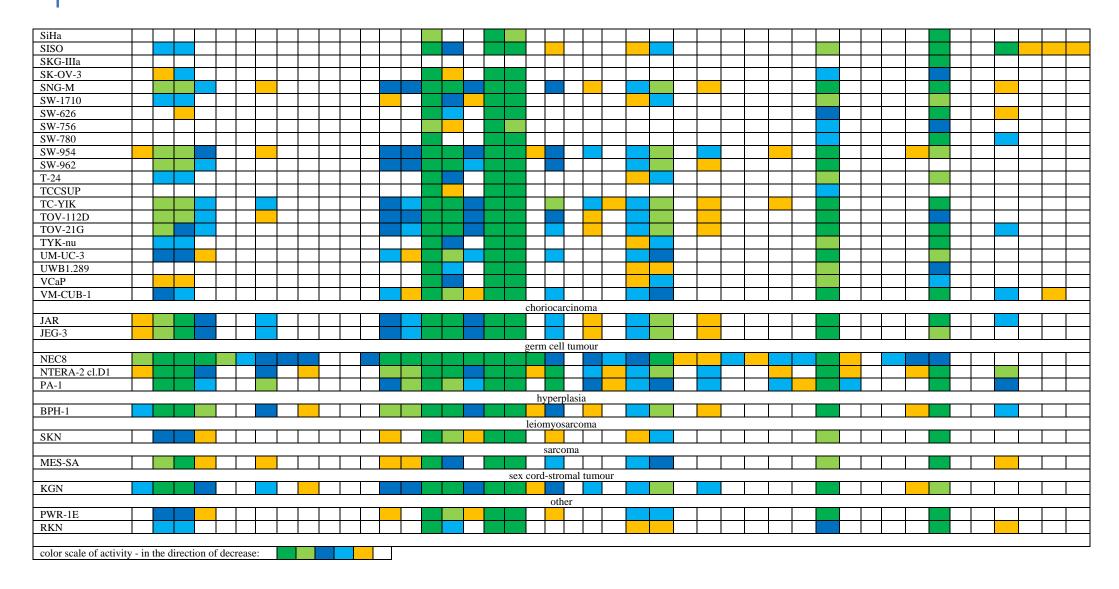

- main potential medicines: *AACF 1.C.*, *1.D.*, *1.G.*, *4.A.*, *4.B.*, *4.C.*, *5.A.*, *5.B.*, *5.C.*, *5.D.*, *7.*, *12.*, *19.*, *23.A.*, *25.*, *30.*, *31.A.*, *31.B.*, *31.C.*, *32.*, *33.*, *34.*, *36.*, *37.*, *38.*, *39.*, *40.*, *43.*, *44.*, *45.B.*, *45.E.*, *46.*, *48.*, *49.*, *50.A.*, *50.B.*, *52.*, *56.A.* and *56.B.*;
- duplication of treatment and / or substitution on medical grounds: AACF 9., 42., 47., 50. and 55.

Table 4.31. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Urinary tract: Part 1

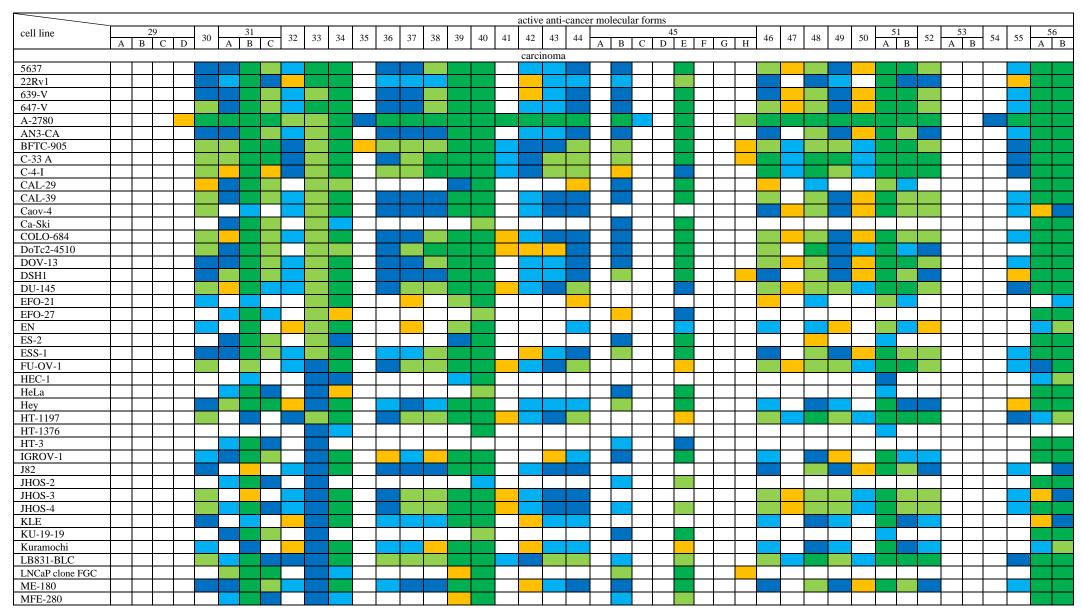
Table 4.31. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Urinary tract: Part 2


UM-UC-1																								
UM-UC-3																								
VM-CUB-1																								
color scale o	of activ	ity - ir	the di	rection	of de	creas	e:					•												


Urogenital system (Systema urogenitale)


From the data on the interpretable prognosis of sensitivity to active anti-cancer molecular forms (*Tabl. 2*) of transcriptome cell lines inherent in tumors in the Urogenital system (*Tabl.4.32. a. & b.*), it is concluded that:

- main potential medicines: AACF 4.C., 5.C., 23., 33., 40., 51.A., 51.B. and 56.;
- duplication of treatment and/or substitution on medical grounds: *AACF 1.C.*, *5.D.*, *19.*, *31.B.*, *34.*, *39.*, *44.*, *45.A.*, *45.E.*, *46.*, *48.*, *51.A.* and *56.A.*


Table 4.32. a Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Urogenital system: Part 1

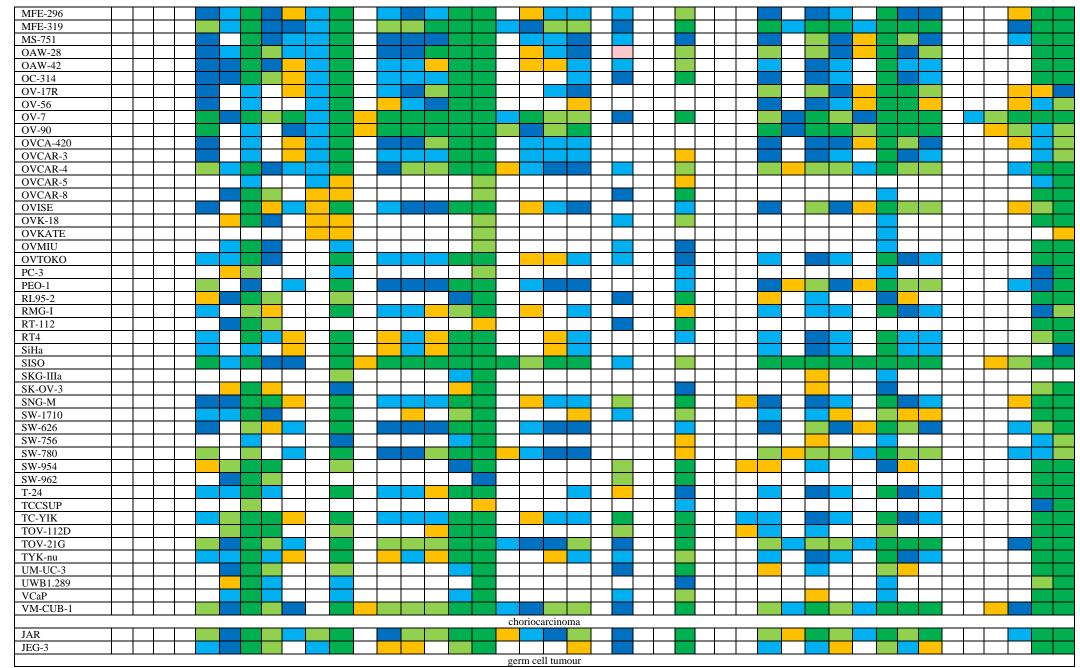


Table 4.32. b Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cell lines inherent in tumors in the Urogenital system: Part 2

NEC8																											Т	
NTERA-2 cl.D1																												
PA-1																												
													ŀ	ıyper	plasia	a												
BPH-1																												
	leiomyosarcoma																											
SKN																												
	sarcoma																											
MES-SA																												
												sex	core	d-stro	mal_	tumo	ur											
KGN																												
														otl	ner													
PWR-1E																												
RKN																												
color scale of activit	ty - in the	direc	tion of	f decrea	se.																							

Other pharmaceutical forms would be highly active and potential agents for personalized therapies.

RESULTS ANALYSIS

In *Fig.1* present (*§III.3.4.2*, *Tsanov & Tsanov*, *2023*) the descriptive dependences of the interpretable predictions of sensitivity to active anti-cancer molecular forms of transcriptional cell lines inherent in tumors of different nature.

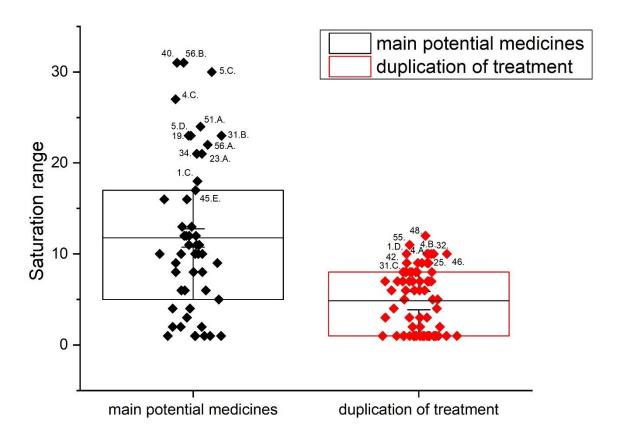


Figure 1 Schematic representation of the descriptive dependences of the interpretable predictions of sensitivity to active anti-cancer molecular forms of transcriptomal cell lines inherent in tumors

They highlight some molecular forms that are extremely active. These are: for basic pharmaceutical forms /sorted by total activity/-40., 56.B., 5.C., 4.C., 51.A., 5.D., 19., 31.B., 56.A., 34., 23.A., 1.C. and 45.E.; for substitute forms -48., 55., 1.D., 4.A., 4.B., 32., 42., 25., 31.C. and 46.

The final breakdown by active group and pharmaceutical form is presented in the front section.

CLINICAL CONTROL

Correlation of bio constants

The bio constants of the human organism should not be accepted as a dogma, but simply used as benchmarks of the norm. Deviation from them should not necessarily be considered pathology. The human body adapts extremely well to the environment and strives to respond adequately to each stimulus.

Especially when performing chemotherapy on cancer patients, it is necessary to monitor the overall reference picture of the patient. It is good to avoid interpreting individual deviations from the physiologically healthy organism and to direct the treatment of cancer in the direction of "suppression" of individual symptoms.

In *Tabl.* 5 the control forms that the clinician must comply with before and during chemotherapy are indicated. These are reference correlations that would directly affect the release of the active anticancer molecular form (*Tabl.* 2) within the cancer cell.

A. **VOLUME OF BLOOD**: it is directly related to the fluid ratio, and secondarily to the water content in the body - hence the change in a number of physicochemical parameters

When the total blood volume increases, it is important for the treating physician to rule out diagnoses:

- chronic leucosis:
- uremia (due to the change in nitrogen balance, which will prevent the transport of amide derivatives in the body) is often accompanied by hyperkalemia and hyperchloremia.

When the total blood volume decreases, it is necessary to exclude the diagnoses:

- acidosis increased water content is also reported;
- tubular acidosis IMPORTANT: do not rush with tenal tubular acidosis there may also be hypophosphatemia.

B. HEMATOCRIT:

In case of a decrease in the value of the hematocrit in the blood, it is obligatory for the attending physician to reject the diagnoses:

- spherocytic anemia at the beginning of treatment with amide / carboxylic derivative of nitrile glycosides there is a !!! **REAL POSSIBILITY FOR CRISIS** !!!;
- this condition is often an indicator of brain metastases.

C. NATREMIA:

Particular attention should be paid to cases of hyponatremia. Here the attending physician needs to comply with diagnoses such as:

- cystic fibrosis (CP) / mucoviscidose/- in these cases treatment should begin with a very low concentration of the dosage form;
- this condition is often an indicator of lung cancer.

D. KALEMIA:

To some extent, hyperkalemia has a synergistic effect on the action of the studied dosage forms. It is good for the doctor to maintain higher blood potassium reference values. In cases where this is difficult, two circumstances must be taken into account:

- to reject Cushing's syndrome, by control test and for hyperchloremia gives both increase and decrease;
- is often observed together with hypophosphatemia. If necessary, to introduce phosphorus preparations into the body.

E. CHLORAEMIA:

Hypochloraemia alters the ionic and electrostatic activity of both amides and carboxylic acids - especially when they are in low concentrations in the blood. It is good to consider:

- presence of liver cirrhosis - the analysis should be done at least 4 hours after glucose infusion and diuretics taken. The results should be differentiated from Hepato-renal syndrome.

F. CALCEMIA:

Hypercalcemia can suppress the spread of the drug form. Treatment should be resected and any comorbidities considered:

- extensive metastases;
- osteorenal sarcoma;
- breast carcinoma with bone metastases during treatment with ANDROGENS and ESTRONES;
- sarcoidosis.

G. SIDERINEMIA:

Hyposiderinemia could delay the detection of a more acidic environment around the cancer cell and from there slow down the action of the drug under study. The clinician should be aware that this is often accompanied by:

- ballast leukemia;
- carcinomas:
- uterine fibroids;
- myelosis and lymphadenosis (in terminal stage);
- erythraemia vera (in terminal stage).

Correction of iron in the blood is one of the most important factors in treatment with these doses.

Table 5 Correlation data of microcomponents in human blood that affect the digestibility and activity of amides and carboxylic acids derivatives of natural nitrile glycosides

control form	r	aise	re	duction				
. ,	indicator	indicator control	indicator	indicator control				
	-	1	1	-				
volume of blood	chronic leucosis		acidosis	increased water content is also reported				
volume of blood		hyperkalemia	tubular acidosis*	hypophosphatemia				
	uremia*	hyperchloremia						
hematocrit			spherocytic anemia					
			indicator of brain r	netastases				
			Mucoviscidose **					
natremia ▲			indicator of lung ca	ancer				
			indicator or rung co	unicci				
1 1 '			to reject Cushing's	syndrome◊				
kalemia			often seen with hyp					
	1		T					
chloraemia			indicator and of liv	ver cirrhosis§				
	extensive metastase	es						
	osteorenal sarcoma							
calcemia		ith bone metastases						
· · · · · · · · · · · · · · · · · · ·	during treatment w	ith ANDROGENS						
	and ESTROGENE sarcoidosis	<u>S</u>	_					
	sarcoldosis							
			ballast leukemia					
			carcinomas					
siderinemia			uterine fibroids					
siderillellila				hadenosis (in terminal				
			stage) erythraemia vera (i	· t				
			eryunraenna vera (1	in terminai stage)				
total iron-binding	bone marrow		hemosiderosis					
capacity	hypoplasia		malignant tumors					
	malignant tumors	increase in iodine in the blood						
	malignant							
	melanoma		_					
	hemochromatosis							
	malignant hemopathy (T-	increase of sulfates						
cupremia	leucosis)	in the blood						
	meligenic							
	lymphomas							
	treatment with							
	estrogen		_					
	cirrhosis of the	reduction of iodine						
	liver	in the blood						
		in th	ie serum					
	erythraemia vera	III UI	bone marrow hypo	plasia				
Zinc content in the	atrophic cirrhosis o	of the liver	lymphadenosis					
blood	acute leucosis		myelosis					
		in erv	throcytes					

bone marrow hypoplasia	myelosis
erythraemia vera	lifadenosis

- *- IMPORTANT: do not rush with tenal tubular acidosis there may also be hypophosphatemia
- *- due to a change in the nitrogen balance

☼- REAL POSSIBILITY FOR CRISIS!

- **- MANDATORY- the treatment should begin with a very low concentration of the dosage form
- ▲ to rule out myxedema as a concomitant disease
- ◊- control test and for hyperchloremia gives both increase and decrease
- §- the analysis should be performed at least 4 hours after glucose infusion and diuretics taken. The results should be differentiated from Hepato-renal syndrome

H. TOTAL IRON-BINDING CAPACITY

In case of increased content of total iron-binding capacity, it is necessary for the clinician to take into account the possible presence of:

- bone marrow hypoplasia,

and at reduced content with:

- hemosiderosis;
- malignant tumors.

I. CUPREMIA:

Hypercupremia would significantly increase the need for a higher drug dose. She herself is also an indicator for:

- malignant tumors as an control sample can be used and the increase in iodine in the blood; malignant melanoma;
- hemochromatosis;
- malignant hemopathy (T-leukemia) as an control sample can be used and the increase of sulfates in the blood;
- meligenic lymphomas;
- treatment with estrogen;
- cirrhosis of the liver as a control sample can be used and the reduction of iodine in the blood.

J. ZINC CONTENT IN THE BLOOD

The content of zinc in the blood determines its extremely complex role in cancer. Its compounds are both inhibitors and promoters. It can displace a number of metals from organometallic biologically active substances, but at the same time its coordination compounds in an in vivo medium are volatile.

We recommend a mandatory blood test for zinc in the blood before starting chemotherapy according to the studied experimental methodology. The following reference deviations must be taken into account:

a. in the serum:

increased serum zinc concentration:	decreased serum zinc concentration:
erythraemia vera;atrophic cirrhosis of the liver;	bone marrow hypoplasia;lymphadenosis;
- acute leukemia.	- myelosis.

b. in erythrocytes:

increased concentration of zinc in	decreased concentration of zinc in			
erythrocytes:	erythrocytes:			
- bone marrow hypoplasia; - myelosis;				
- erythraemia vera.	- lifadenosis.			

Chemoprevention and Homeopathy

The proposed methodological program for conservative treatment of oncological diseases does not contradict the good medical practices for chemotherapy. In order to improve the general condition of patients, chemoprevention (Lele, 2021) and/or homeopathy could be applied, but not at the expense of a varied diet, incl. table salt, water, culinary acidifiers and fats. Alternative medicine should only be used to treat individual symptoms, not syndromes.

THE CONCLUSIONS OF THE PREVIOUS STUDIES

On the first goal (Tsanov & Tsanov, 2020)

Our legacy of the *Hunza people* and the knowledge from tens-of-thousands of scientists who created modern synthesis and biochemistry make the production of nitrile amide into a routine (especially with nitrile hydratase). Thus, humanity holds in its hands a huge medicinal resource that can provide treatment for diseases of all parts of conservative medicine (including all listed in *Section 1.1*.).

The hydrolyzed to amide/carboxylic acid nitrile/cyanide carbohydrates will occupy one of the fundamental steps of countless future clinical practices. This is the purpose of our modest research!

Other substances in these groups with pronounced biological activity (including anti-tumor) are the hydrolyzed nitrile groups of *Linamarin*, (R) -Lotaustralin, S-Sambunigrin, etc., to their amide/carboxylic acid.

The second goal (Tsanov & Tsanov, 2021)

- 1) The amide derivatives of nitrile glycosides are potential chemical compounds with anti-cancer activity;
- 2) the cancer cell seeks to shift the hydrolysis of these derivatives in a direction that would not pass through its cell membrane;
- 3) the amide-carboxylic derivatives of nitrile glycosides can deliver extremely toxic compounds inside the tumor cell itself and thus block and / or permanently damage its normal physiology;
- 4) the use of these compounds in oncology could turn cancer from a lethal to a chronic disease (such as diabetes). The cause and conditions of the disease are not eliminated, but the number of cancer cells could be kept low for a long time (even a lifetime).

On the third goal (Tsanov & Tsanov, 2022)

- 1) Amides resulting from the hydrolysis of nitrile glycosides would be able to cross the cell membrane of a cancer cell and thus cause its cellular response;
- 2) the pharmaceutical form must represent the exact amide/carboxylic acid ratio for the corresponding active anticancer cell form;
- 3) clinical concentrations are more than 7 times higher than those of nitrile glycosides due to their reduced toxicity;
- 4) no significant deviations are observed, on a theoretical level, in the complex use of several pharmaceutical forms together and/or sequentially.

APPLYING THE RESULTS

The results of the analysis show that the studied molecular forms do NOT contradict conservative oncology. Their activity is significant and many times exceeds a number of approved products for treatment (§IV.3.2., p.718; Tsanov & Tsanov, 2023) (Tsanov & Tsanov, 2022).

This anti-cancer agents could best be administered orally ($\S IV.1.$, p.57; Tsanov & Tsanov, 2023).. Their toxicity is many times less than that of most references accepted in clinical chemotherapy ($\S IV.3.1.$, p.85; Tsanov & Tsanov, 2023) (Tsanov & Tsanov, 2020).

After analyzing the conclusions on the previous goals of the research ($\S IV.1 \div 3.$, p.718; Tsanov & Tsanov, 2023) (Tsanov & Tsanov, 2021), taking into account the presented clinical control, the data for the interpretable prognosis for susceptibility to active anti-cancer molecular forms of transcriptome cell lines inherent in tumors - for each anatomical system, good medical practices and the data from *Fig. 1.*, we conclude that the treatment of oncological diseases should be carried out in four stages (*Fig.2.*):

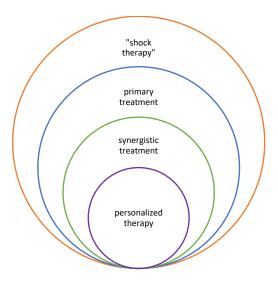


Figure 2 Schematic representation of the sequence of treatment with amide and carboxyl derivatives of natural nitrile glycosides of cancer cell lines

- "shock therapy" - in the case of a primary diagnosis of the presence of oncological disease and/or observation of pathological activity of cancer cells (including the growth of tumor tissues), the patient should be treated with:

(hydroxymethyl) tetrahydro-2H-pyran-2-

yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetamide

(hydroxymethyl)tetrahydro-2H-pyran-2-

yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetic acid

Thus, the active anticancer molecule released inside the cell itself will be ((R)-2-hydroxy-2-phenylacetamide), which in turn would pass in a small amount into the carboxyl form - (R)-2-hydroxy-2-phenylacetic acid (§IV.2.3.2.). Applying pharmaceutical form I.B. (Tabl. 1.), the concentration of the amide toxic to the cancer cell is 0.40 mg/ml, compared to the pharmaceutical oral form (§IV.2. 4., Tsanov & Tsanov, 2023). Based on the analysis for determining the medicinal dose of the amide and carboxylic derivatives of amygdalin (§IV.1. 3., Tsanov & Tsanov, 2023), it follows that the treatment dose for the ratio, -amide: -carboxylic = 4.87: 1 is:

210-465 mg PO q6-8hr; not to exceed 2.1 g/day.

!!! If the patient shows allergic symptoms, he should undergo diuretic cleansing, after consultation with a nephrologist - after which the treatment should be started again. If similar symptoms appear again, this stage of treatment can be skipped!!!

- primary treatment – after making the final diagnosis and determining the exact active cell lines, the clinical oncologist must proceed to the actual treatment - **Introduction of the main active pharmaceutical form into the body**.

This concept includes clinical selection from a pre-calculated set of substances active enough to influence the physiological activity of the cancer cell. This stage aims to "attack" the cancer cells in a wider range of cell lines, incl. those that overlap with other cancer formations (including metastases), which at this moment may be in another stage of their development. The choice is made between the chemical compounds from the *Tabl.* 6.

Table 6 Basic pharmaceutical forms for oral use for primary treatment of cancer, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides

login number*	active pharmaceutical forms for oral use**	UPAC component names.
40.	O (OH) NH ₂ O OH	(Z)-2-((2S,3R,4S,6R)-2,3-dihydroxy-4-methoxy-6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohexylidene)acetamide
	HO HO OH	(Z)-2-((2S,3R,4S,6R)-2,3-dihydroxy-4-methoxy-6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohexylidene)acetic acid
56.B.	HO/////NO NH2 (OH)	((2R,3S,4S,5R,6R)-6-(((2S,3R)-4-amino-3-methyl-4-oxobutan-2-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (2S,3R)-2-ethyl-2,3-dihydroxybutanoate
	OH OO	(2R,3S)-3-(((2R,3R,4S,5S,6R)-6-((((2S,3R)-2-ethyl-2,3-dihydroxybutanoyl)oxy)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)-2-methylbutanoic acid

5.C.	он	(R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5- trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-
	OH	trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-
	o milloh	trihydroxy-6-(hydroxymethyl)tetrahydro-2H- pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-
	О О	yl)oxy)methyl)tetrahydro-2H-pyran-2-
	HO OH O	yl)oxy)butanamide (R)-2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-
	ОПППППППППППППППППППППППППППППППППППППП	trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-
	но Мон	trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5- trihydroxy-6-(hydroxymethyl)tetrahydro-2H-
	O	pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-
	O (OH) NH ₂	yl)oxy)methyl)tetrahydro-2H-pyran-2- yl)oxy)butanoic acid
4.C.	ОН <u>=</u>	2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-
	ОН	6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6- ((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
		(hydroxymethyl)tetrahydro-2H-pyran-2-
	HO/////	yl)oxy)methyl)tetrahydro-2H-pyran-2- yl)oxy)methyl)tetrahydro-2H-pyran-2-
	но	yl)oxy)propanamide
	/ NH ₂	2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-
	(OH)	6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6- ((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
	OHO,,,,MOH	(hydroxymethyl)tetrahydro-2H-pyran-2-
		yl)oxy)methyl)tetrahydro-2H-pyran-2- yl)oxy)methyl)tetrahydro-2H-pyran-2-
	OH OH	yl)oxy)propanoic acid
51.A.	OH E (OH)	(Z)-2-(hydroxymethyl)-4-(((2R,3R,4S,5S,6R)-
	HO ONH ₂	3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro- 2H-pyran-2-yl)oxy)but-2-enamide
	111111111111111111111111111111111111111	(Z)-2-(hydroxymethyl)-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-
		2H-pyran-2-yl)oxy)but-2-enoic acid
5.D.	но	(R)-2-(((2S,3R,4S,5S,6R)-6-
		(((((2R,3R,4R,5S,6R)-3,4-dihydroxy-6- (hydroxymethyl)-5-(((2S,3R,4S,5S,6R)-3,4,5-
	HO OH O OH	trihydroxy-6-(hydroxymethyl)tetrahydro-2H-
		pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)methyl)-3,4,5-trihydroxytetrahydro-2H-
	о но он о	pyran-2-yl)oxy)-2-methylbutanamide
		(R)-2-(((2S,3R,4S,5S,6R)-6- ((((2R,3R,4R,5S,6R)-3,4-dihydroxy-6-
	но	(hydroxymethyl)-5-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-
	o=<	pyran-2-yl)oxy)tetrahydro-2H-pyran-2-
	NH ₂ (OH)	yl)oxy)methyl)-3,4,5-trihydroxytetrahydro-2H- pyran-2-yl)oxy)-2-methylbutanoic acid
19.	(OH)	(2S,3S)-2-hydroxy-4-methoxy-1-methyl-6-oxo-3-
	-0 NH_2 OH	(((2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6- (hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-
	- I'MOW	1,2,3,6-tetrahydropyridine-3-carboxamide
	\(\right\):\(\lambda\):\(\lambda\)	(2S,3S)-2-hydroxy-4-methoxy-1-methyl-6-oxo-3-
	N OH	(((2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6- (hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-
	о́′он	1,2,3,6-tetrahydropyridine-3-carboxylic acid

31.B.	OH) NH ₂ OH	(R)-2-(3-hydroxy-4-methoxyphenyl)-2- (((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6- ((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6- (hydroxymethyl)tetrahydro-2H-pyran-2- yl)oxy)methyl)tetrahydro-2H-pyran-2- yl)oxy)acetamide
	HO OH HO OH	(R)-2-(3-hydroxy-4-methoxyphenyl)-2- (((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6- ((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6- (hydroxymethyl)tetrahydro-2H-pyran-2- yl)oxy)methyl)tetrahydro-2H-pyran-2- yl)oxy)acetic acid
56.A.	HO OH	((2R,3S,4S,5R,6R)-6-(((2R,3S)-4-amino-3-methyl-4-oxobutan-2-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (2S,3R)-2-ethyl-2,3-dihydroxybutanoate
	NH ₂ (OH)	(2S,3R)-3-(((2R,3R,4S,5S,6R)-6-((((2S,3R)-2-ethyl-2,3-dihydroxybutanoyl)oxy)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)-2-methylbutanoic acid
34.	HO OH OH OH OH NH2	(R)-3-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)but-3-enamide
	HOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(R)-3-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)but-3-enoic acid
23.A.	HO (OH) NH ₂	2-(3-hydroxy-4-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)phenyl)acetamide
	HOMM	2-(3-hydroxy-4-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)phenyl)acetic acid
1.C.	HO////////////////////////////////////	(R)-2-phenyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetamide
	OH OH	(R)-2-phenyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetic acid

45.E.	но
	$HO_{H_{1}}$ O
	≞ OH

(2R,3R,4S,5R,6R)-2-(((Z)-4-amino-2-methyl-4-oxobut-2-en-1-yl)oxy)-3,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-4-yl acetate

(Z)-4-(((2R,3R,4S,5R,6R)-4-acetoxy-3,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3-methylbut-2-enoic acid

- *- sorted by general activity descending
- **- this table represents a sample of Tabl. 2 and the data from §IV.4. 2. of (Tsanov & Tsanov, 2023)
- *- it is the most active isomeric molecular form. Any kind of optical isomerism is allowed.

The clinical approach here requires the selection of an active pharmaceutical form (*Tabl. 6*) against the Interpretable prediction of sensitivity to active anticancer molecular forms of transcriptomic cell lines intrinsic to tumors. Here the rule of greater activity is observed.

EXAMPLE:

for leukemia (\$\subseteq \text{INAL RESULTS} / Leukemia):

- basic potential medicines: AACF 1.C., 4.C., 5.C., 5.D., 19, 25, 30, 31.B., 31.C., 34, 39, 40, 45.E, 50, 56.A. and 56.B.;
- duplication of treatment and / or substitution on medical grounds: AACF 1.D., 4.A., 4.B., 5.A., 5.B., 7, 12, 32, 33, 42, 43, 44, 45.B., 49, 50, 51.A. and 51.B..

According to Tabl. 7 it follows that the choice of be:

- basic potential medicines: AACF 40 /in this case the 1st of general activity/; and *Tabl. 7* then:
 - duplication of treatment and / or substitution on medical grounds: AACF 1.D. /in this case third in overall activity /.

Table 7 Substitute pharmaceutical forms for oral use for primary treatment of cancer, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides

login number*	active pharmaceutical forms for oral use**	UPAC component names*
48.	HO OH OH OH OH OH OH OH	(Z)-2-carbamoyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)but-2-en-1-yl (E)-3-(4-hydroxyphenyl)acrylate (Z)-2-((((E)-3-(4-hydroxyphenyl)acryloyl)oxy)methyl)-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)but-2-enoic acid
55.	HOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2-((S)-2-oxo-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydrobenzofuran-3-yl)acetamide 2-((S)-2-oxo-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydrobenzofuran-3-yl)acetic acid

(OH)	(D) 0 1 10 (((00 CD (D 50 CD) C) =
HO NH ₂	(R)-2-phenyl-2-(((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetamide
HO	(R)-2-phenyl-2-(((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetic acid
HO	2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propanamide
HO (OH) NH ₂	2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propanoic acid
он он	((2R,3S,4S,5R,6S)-6-((1-amino-2-methyl-1-oxopropan-2-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl 3,4,5-trihydroxybenzoate
HO NH ₂ (OH)	2-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(((3,4,5-trihydroxybenzoyl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)propanoic acid
HO O	(R)-2-(3,4-dimethoxyphenyl)-2- (((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6- (hydroxymethyl)tetrahydro-2H-pyran-2- yl)oxy)acetamide
HOIIIIII O O—	(R)-2-(3,4-dimethoxyphenyl)-2- (((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6- (hydroxymethyl)tetrahydro-2H-pyran-2- yl)oxy)acetic acid
HO OH	2-((2S,4aR,6S,8S,8aR)-8-hydroxy-6- (hydroxymethyl)hexahydro-6H-pyrano[2,3- b][1,4]dioxin-2-yl)acrylamide
NH ₂ (OH)	2-((2S,4aR,6S,8S,8aR)-8-hydroxy-6- (hydroxymethyl)hexahydro-6H-pyrano[2,3- b][1,4]dioxin-2-yl)acrylic acid
NH ₂ (OH)	2-(4-(((2S,3R,4S,5S,6R)-6-((((2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)phenyl)acetamide
OH OH	2-(4-(((2S,3R,4S,5S,6R)-6-((((2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)phenyl)acetic acid
	HO H

31.C.	(OII)	methyl (2S,3R,4S)-4-
31.0.	(OH) O _{>} ,NH ₂	(((2R,4aR,6S,7R,8R,8aS)-6-((R)-2-amino-1-
		(3-hydroxy-4-methoxyphenyl)-2-
		oxoethoxy)-7,8-
		dihydroxyhexahydropyrano[3,2-
		d][1,3]dioxin-2-yl)methyl)-2-
	HO	(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
		(hydroxymethyl)tetrahydro-2H-pyran-2-
	UNI	yl)oxy)-3-vinyl-3,4-dihydro-2H-pyran-5-
	HOMINI	carboxylate
		(R)-2-(((2R,4aR,6S,7R,8R,8aS)-7,8-
		dihydroxy-2-(((2S,3R,4S)-5-
		(methoxycarbonyl)-2-(((2S,3R,4S,5S,6R)-
	HO O O O O O O O O O O O O O O O O O O	3,4,5-trihydroxy-6-
		(hydroxymethyl)tetrahydro-2H-pyran-2-
	HOWING O	yl)oxy)-3-vinyl-3,4-dihydro-2H-pyran-4-
	HO, J. JOH A.	yl)methyl)hexahydropyrano[3,2-
	OH O	d][1,3]dioxin-6-yl)oxy)-2-(3-hydroxy-4-
		methoxyphenyl)acetic acid
46.		(Z)-2-carbamoyl-4-(((2R,3R,4S,5S,6R)-
	OH	3,4,5-trihydroxy-6-
	(OH)	(hydroxymethyl)tetrahydro-2H-pyran-2-
	HO NH ₂ OH	yl)oxy)but-2-en-1-yl 4-hydroxybenzoate
		(Z)-2-(((4-hydroxybenzoyl)oxy)methyl)-4-
	OMM	(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
	OH	(hydroxymethyl)tetrahydro-2H-pyran-2-
	011	yl)oxy)but-2-enoic acid

*- sorted by general activity – descending

**- this table represents a sample of *Tabl. 2* and the data from *§IV.4. 2.* of (*Tsanov & Tsanov*, 2023)

*- it is the most active isomeric molecular form. Any kind of optical isomerism is allowed.

If for some reason (financial, logistical, allergic, etc.) the first form cannot be used, then the next molecular form is chosen and so on. The same applies if the activity is too great and this leads to complications in other diseases (including chronic ones for the patient). Then apply (with the same selection) – the substitute per oral pharmaceutical forms in the main treatment of cancer (*Tabl. 7*).

Based on the analysis for determining the medicinal dose of the amide and carboxylic derivatives of amygdalin (§IV.1. 3., Tsanov & Tsanov, 2023), it follows that the treatment dose for the ratio, - amide: -carboxylic = 4.87: 1 is:

210-655 mg PO q6-8hr; not to exceed 2.3 g/day.

!!! If the patient shows allergic symptoms, he should undergo diuretic cleansing, after consultation with a nephrologist - after which the treatment should be started again !!!

- synergistic treatment – the very genesis of the treatment we offer is based on chronification of the disease, i.e. its transformation into controlled over time, by means of taking medicinal forms.

That is why there will inevitably come a time when the activity of the preparation will sharply decrease. At this point, the body's clinical response will be directed against the treated substances. That's why we have planned for a certain period of time to replace the medicinal products with those that will

preserve the overall activity. Medicinal substances are divided into two tables for each type of cancer, according to §IV.4. 1. – conditionally accepted for Part 1 and Part 2. Thus, the clinical doctor can easily select the substitute substances, observing the rule of substitutability according to tables, i.e. if he has chosen a medicinal form from the table. with a Part 1 title, he makes a choice with a Part 2 title (following exactly the same rules).

- Personalized therapy - in a small number of cases, it is necessary to act individually according to the patient's current anamnesis. For this purpose, after the application of the general therapy and / or in combination with it, the specific agent for the respective cell lines must be taken (§.4.1., Tsanov & Tsanov, 2023). The ratio of amide to carboxylic acid should again be 4.87:1.

The doctor is only required to comply with the color assessment of activity (activity decreases in order (§.III.3.4.1., Tsanov & Tsanov, 2023) -

AUTHOR'S NOTES

With the present scientific work we have tried to present in a more generalized form our long-term theoretical research. We tried to draw every value, every dependence and every conclusion precisely, in a form that is not subject to any personal view and/or to be enslaved to a generally "accepted" opinion.

Natural nitrile glycosides would not cross the tumor cell membrane. They decompose to HCN-acid, phenyl methanol and carbohydrate. They do NOT have antitumor activity due to their inability to reach the target unchanged. These compounds, in their natural form, are extremely toxic to the human body. Applying them is not a cure, even at higher concentrations they do more harm than good. Theoretically, we have derived dozens of their modified forms, but their amides and carboxylic acids are the most promising for their introduction in conservative oncology. The fact is that the tumor cell itself is trying to counteract in a way that is quite safe for it.

The knowledge that humanity has gained from the millennial battle between it and tumors, combined with the development of mathematics, statistical and quantum molecular thermodynamics, molecular topology and geometry, clinical oncology, pathophysiology, etc., with the unequivocal contribution of thousands of scientists, we tried to we present this thesis as a sentence and the most modest way to try to confirm and prove it.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not	appl	ica	ble.
1100	uppi	icu	OIC.

HUMAN AND ANIMAL RIGHTS

No Animals/Humans were used for studies that are the basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The authors confirm that the data supporting the findings of this study are available within the article.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

REFERENCES

Cadow, J., Born, J., Manica, M., Oskooei, A., & Martínez, M. R. (2020). PaccMann: a web service for interpretable anticancer compound sensitivity prediction. Nucleic Acids Research, 48(W1), W502-8. doi:10.1093/nar/gkaa327

Christopher, A. (2017). Drawing conclusions from data: descriptive statistics, inferential statistics, and hypothesis testing, In Interpreting and using statistics in psychological research. SAGE Publications Inc. doi:10.4135/9781506304144

Dimitrov, S. D., Diderich, R., Sobanski, T., Pavlov, T. S., Chankov, G., Chapkanov, A., . . . Mekenyan, O. (2016). QSAR Toolbox – workflow and major functionalities. SAR and QSAR in Environmental Research, 27(3), 203-19. doi:10.1080/1062936X.2015.1136680

Gary, W. C., Zhengyin, Y., Wensheng, L., & Masucci, A. (2012). The IC50 Concept Revisited. Current Topics in Medicinal Chemistry, 12(11). doi:10.2174/156802612800672844

Ghandi, M., Huang, F. W., & Jané-Valbuena, J. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 569, 503-8. doi:10.1038/s41586-019-1186-3

Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics & Data Analysis, 52(12), 5186-201. doi:10.1016/j.csda.2007.11.008

Marmolejo-Ramos, F., & Tian, T. (2010). he shifting boxplot. A boxplot based on essential summary statistics around the mean. International Journal of Psychological Research, 3(1), 37-45. doi:10.21500/20112084.823

Sebaugh, J. L. (2011). Guidelines for accurate EC50/IC50 estimation. Pharmaceutical Statistics, 10, 128-34. doi:10.1002/pst.426

Soares, J., Greninger, P., Yang, W., Edelman, E. J., Lightfoot, H., Forbes, S., . . . Garnett, M. (2013). Genomics of Drug Sensitivity in Cancer: a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 41(D1), D955-61. doi:10.1093/nar/gks1111

Tsanov, V., Tsanov, H., Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product, Anti-Cancer Agents in Medicinal Chemistry 2020; 20(7), DOI: 10.2174/1871520620666200313163801

Tsanov, V., Tsanov, H., Theoretical Analysis of Anticancer Cellular Effects of Glycoside Amides, Anti-Cancer Agents in Medicinal Chemistry 2022; 22(6), DOI: 10.2174/1871520621666210903122831

Tsanov, V., Tsanov, H., Theoretical Study of the Process of Passage of Glycoside Amides through the Cell Membrane of Cancer Cell, Anti-Cancer Agents in Medicinal Chemistry 2021; 21(12), DOI: 10.2174/1871520620999201103201008

Tsanov, V.; Tsanov, H., Theoretical study of anticancer activity of glycoside amides [third supplemented edition], pp. 857, ISBN: 978-619-91534-4-4, DOI: 10.5281/zenodo.7295357

Yordanova, D., Schultz, T., Kuseva, C., Tankova, K., Ivanova, H., Dermen, I., . . . Mekenyan, O. (2019). Automated and standardized workflows in the OECD QSAR Toolbox. Computational Toxicology, 10, 89-104. doi:10.1016/j.comtox.2019.01.006

CONTENTS OF FIGURES AND TABLES

FIGURE 1 SCHEMATIC REPRESENTATION OF THE DESCRIPTIVE DEPENDENCES OF THE INTERPRETABLE PREDICTIONS OF	
SENSITIVITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS OF TRANSCRIPTOMAL CELL LINES INHERENT IN TUMORS	.147
FIGURE 2 SCHEMATIC REPRESENTATION OF THE SEQUENCE OF TREATMENT WITH AMIDE AND CARBOXYL DERIVATIVES O	F
NATURAL NITRILE GLYCOSIDES OF CANCER CELL LINES	
TABLE 1 ACTIVE PHARMACEUTICAL FORMS FOR ORAL USE AND THEIR CORRESPONDING ACTIVE ANTI-CANCER MOLECUL	EC
	ಎಂ
OBTAINED AFTER PASSAGE THROUGH THE CELL MEMBRANE, BASED ON HYDROLYZED AMIDE/CARBOXYLIC ACID	10
DERIVATIVES OF NATURAL NITRILE GLYCOSIDES	
TABLE 2 ACTIVE APOPTOTIC AMIDE/CARBOXYLIC ACID MOLECULAR FORMS, BASED ON HYDROLYZED AMIDE/CARBOXYL	
ACID DERIVATIVES OF NATURAL NITRILE GLYCOSIDES	
TABLE 3 NATURE AND CONCENTRATION OF ACTIVE ANTICANCER CELL MOLECULES OBTAINED AFTER CROSSING THE CEL	
MEMBRANE BY THEIR NATURAL PRECURSORS	30
The standard of the standard s	
TABLE 4.1. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	
LINES INHERENT IN TUMORS IN THE AERODIGESTIVE TRACT: PART 1	
TABLE 4.1. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	
LINES INHERENT IN TUMORS IN THE AERODIGESTIVE TRACT: PART 2	36
TABLE 4.2. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	
LINES INHERENT IN TUMORS IN THE AUTONOMIC GANGLION: PART 1	38
TABLE 4.2. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	
LINES INHERENT IN TUMORS IN THE AUTONOMIC GANGLION: PART 2	39
TABLE 4.3. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	
LINES INHERENT IN TUMORS IN THE BILIARY TRACT: PART 1	
TABLE 4.3. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	
LINES INHERENT IN TUMORS IN THE BILIARY TRACT: PART 2	40
TABLE 4.4. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	
LINES INHERENT IN TUMORS IN THE BONE: PART 1	41
TABLE 4.4. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	ELL
LINES INHERENT IN TUMORS IN THE BONE: PART 2	43
TABLE 4.5. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	
LINES INHERENT IN TUMORS IN THE BREAST: PART 1	45
TABLE 4.5. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	ELL
LINES INHERENT IN TUMORS IN THE BREAST: PART 2	47

TABLE 4.6. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE CENTRAL NERVOUS SYSTEM: PART 1	
TABLE 4.6. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE CENTRAL NERVOUS SYSTEM: PART 2	L
TABLE 4.7. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE DIGESTIVE SYSTEM: PART 1	
TABLE 4.7. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE DIGESTIVE SYSTEM: PART 2	L
Table 4.8. A Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome cel lines inherent in tumors in the Endometrium: Part 1	
TABLE 4.8. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE ENDOMETRIUM: PART 2	
TABLE 4.9. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE HEMATOPOIETIC AND LYMPHOID TISSUES: PART 1	
TABLE 4.9. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE HEMATOPOIETIC AND LYMPHOID TISSUES: PART 2	L
TABLE 4.10. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE KIDNEY: PART 1	
TABLE 4.10. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE KIDNEY: PART 2	
TABLE 4.11. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE LARGE INTESTINE: PART 1	
TABLE 4.11. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE LARGE INTESTINE: PART 2	L
TABLE 4.12. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE LEUKEMIA: PART 1	
TABLE 4.12. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE LEUKEMIA: PART 2	L
TABLE 4.13. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELLINES INHERENT IN TUMORS IN THE LIVER: PART 1	

AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CEI LINES INHERENT IN TUMORS IN THE LIVER: PART 2	
Table 4.14. A Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome ceil lines inherent in tumors in the Lung: Part 1	
TABLE 4.14. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CEIL LINES INHERENT IN TUMORS IN THE LUNG: PART 2	
Table 4.15. A Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome ceil lines inherent in tumors in the Lymphoma: Part 1	.98 LL
TABLE 4.16. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CEIL LINES INHERENT IN TUMORS IN THE MYELOMA: PART 1	LL 102 LL
Table 4.17. A Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome ceil lines inherent in tumors in the Neuroblastoma: Part 1	104 LL
Table 4.18. A Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome ceil lines inherent in tumors in the Nervous system: Part 1	LL 106 LL
Table 4.19. A Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome ceil lines inherent in tumors in the Oesophagus: Part 1	l 10 LL
Table 4.20. A Interpretable prognosis for susceptibility to active anti-cancer molecular forms, based on amides/carboxylic acids - hydrolysis derivatives of natural nitrile glycosides, of transcriptome ceil lines inherent in tumors in the Ovary: Part 1	112

LE 4.21. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL			
LINES INHERENT IN TUMORS IN THE PANCREAS: PART 1			
TABLE 4.21. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON			
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE PANCREAS: PART 2			
TABLE 4.22. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED OF			
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE PLEURA: PART 1			
TABLE 4.22. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON			
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE PLEURA: PART 2	119		
TABLE 4.23. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED OF			
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE PROSTATE: PART 1			
TABLE 4.23. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON			
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE PROSTATE: PART 2	121		
TABLE 4.24. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED OF	N		
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE SALIVARY GLAND: PART 1			
TABLE 4.24. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON			
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE SALIVARY GLAND: PART 2	122		
TABLE 4.25. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED OF	N		
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	ELL		
LINES INHERENT IN TUMORS IN THE SKIN: PART 1			
TABLE 4.25. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON			
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE SKIN: PART 2	125		
TABLE 4.26. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED OF	N		
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C	ELL		
LINES INHERENT IN TUMORS IN THE SMALL INTESTINE: PART 1	128		
TABLE 4.26. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	N		
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE SMALL INTESTINE: PART 2	129		
TABLE 4.27. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED OF	N		
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE SOFT TISSUE: PART 1	129		
TABLE 4.27. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON	1		
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME C			
LINES INHERENT IN TUMORS IN THE SOFT TISSUE: PART 2	131		

1ABLE 4.20. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE STOMACH: PART 1
TABLE 4.28. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE STOMACH: PART 2
TABLE 4.29. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE THYROID: PART 1
TABLE 4.29. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE THYROID: PART 2
EN LED INVIERZENT IN TOMORG IN THE TITTRODE THAT 2
TABLE 4.30. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE UPPER AERODIGESTIVE TRACT: PART 1
TABLE 4.30. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE UPPER AERODIGESTIVE TRACT: PART 2
The No. 4.21 A INTERPRETARY EDUCATION OF THE STREET AND A COUNTY CANCER MOVE CALL AD FORM CONTRACTOR OF THE STREET CANCER MOVE
TABLE 4.31. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE URINARY TRACT: PART 1
TABLE 4.31. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
$AMIDES/CARBOXYLIC\ ACIDS\ -\ HYDROLYSIS\ DERIVATIVES\ OF\ NATURAL\ NITRILE\ GLYCOSIDES,\ OF\ TRANSCRIPTOME\ CELL$
LINES INHERENT IN TUMORS IN THE URINARY TRACT: PART 2
TABLE 4.32. A INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE UROGENITAL SYSTEM: PART 1
TABLE 4.32. B INTERPRETABLE PROGNOSIS FOR SUSCEPTIBILITY TO ACTIVE ANTI-CANCER MOLECULAR FORMS, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES, OF TRANSCRIPTOME CELL
LINES INHERENT IN TUMORS IN THE UROGENITAL SYSTEM: PART 2
LINES INTERENT IN TUNIORS IN THE UROUGHITAL STSTEM. FART 2
TABLE 5 CORRELATION DATA OF MICROCOMPONENTS IN HUMAN BLOOD THAT AFFECT THE DIGESTIBILITY AND ACTIVITY OF
AMIDES AND CARBOXYLIC ACIDS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES
TABLE 6 BASIC PHARMACEUTICAL FORMS FOR ORAL USE FOR PRIMARY TREATMENT OF CANCER, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES
TABLE 7 SUBSTITUTE PHARMACEUTICAL FORMS FOR ORAL USE FOR PRIMARY TREATMENT OF CANCER, BASED ON
AMIDES/CARBOXYLIC ACIDS - HYDROLYSIS DERIVATIVES OF NATURAL NITRILE GLYCOSIDES

Let the preferred version of reading this book be electronic. Print something really urgent on your recycled paper and printer toner!

This book is constructed in a structure aimed at limiting animal testing in laboratory and preclinical settings.

Only refurbished computers, tablets and smart devices were used in the creation of this book. Good practices have also been applied to reduce energy consumption. The goal is to prevent additional carbon load in the world around us.

Full calculations are posted here*:

Tsanov, V., Tsanov, H. (2023). Interpretable prediction for anticancer sensitivity of glycoside amides (Version 1) [Data set], Zenodo, DOI: 10.5281/zenodo.7550371

*- the information is constantly updated - choose the current version at the moment)

 $"Bunny-cruelty \ \textit{free}" \ \textit{logo-https://www.pngwing.com/en/free-png-izvhk}$

ⁱ Bibl - King James Version (KJV)