
Pro tips for scaling bioinformatics
workflows to HPC

Matthew Downton, NCI
Sarah Beecroft, Pawsey
Georgina Samaha, SIH

When to move to HPC?

HPC architecture explained

Pro tips for bioinformatic workflows

Where to find support

Today

When should I move my bioinformatics
workflows to HPC?

What is a workflow good for?

1. Good science requires results be reproducible.
2. Standardised protocols foster collaboration.
3. Some analyses need to be run repeatedly.
4. Automating tasks saves time and resources.

Some
data

Check data
quality

Preprocess data

Some analysis

Some
results

Some
annotation

QC report

Processed
data

Where can I do bioinformatics?

Personal computer

Low processing power due
to limited cores and

memory.

Small storage capacity.

Manual environment
management.

Single user. Admin access.

Local workstation

Higher processing power,
single nodes.

Increased storage capacity
for intermediate and final

data.

Manual environment
management.

Few users. Admin access.

Institutional HPC

Multiple nodes allowing for
parallel processing.

Large-scale storage
systems.

Job scheduling system
distributes workload across

the system.

Many users. Limited
access.

Cloud platform

Scalable, on demand
resources.

Wide range of instance
types with varying

resources.

Managed services and
pre-configured
environments.

Single-few users. Admin
access.

National HPC

State of the art processing
capacity.

Advanced, high-capacity
storage systems.

Job scheduling system
distributes workload across

the system and users.

Many users. Limited
access.

Things to consider when working on HPC

Benefits
● Enhanced computational power enabling parallel processing
● Designed to handle massive datasets
● Simple scaling of resources for computationally demanding tasks
● Advanced hardware to enhance speed and efficiency

Drawbacks
● Access limitations due to allocation policies, shared resources
● Steep learning curve due to complex resource management techniques
● Dependence on system administrators to configure environment
● Increased code complexity allowing for system architecture

You know it is time to move to HPC when…

“My laptop burned a hole on my wooden desk because it was working so hard”- Real user story

➔ Your workflow has become computationally intensive.

➔ You are approaching a compute resource ceiling.

➔ Your workflow needs to be sped up for higher throughput.

➔ The size and scale of your datasets have grown.

➔ You have data governance obligations.

➔ You want to use software that requires specialised hardware.

Case study: cancer genomics at scale doi.org/10.1038/s41586-022-05154-6
doi.org/10.1186/s13073-022-01096-w

Project proposal

Research question
● Identify population-specific oncogenic

drivers in patients with prostate cancer

Dataset
● Whole genome data for ~200 patients

Bioinformatics

● Mapping to human reference genome
● Short and structural variant discovery

Compute facilities
● Existing access to institutional HPC
● Inadequate disk space and resources

Gained access to NCI Gadi
via NCMAS allocation

scheme

Developed optimised, public
workflows to process data

Generated ~200 TB data

Reduced processing time
from months to days

HPC is a bit different for bioinformatics…

Aspect Bioinformatics Other disciplines

Data intensity Varied dataset sizes and formats.
Commonly sequence analysis.

Arrays of data simulations and
calculations.

Algorithms NP-hard problems, dynamic
programming, interactive analysis.

Deep learning, large-scale optimisation,
dynamic simulations.

Tools and software Many designed for use on single
machines.

Often specialised and built for HPC.

Scale and complexity Multi-step workflows, resources are data
dependent, require multiple tools.

Large-scale data reduction and analyses
run by single tools.

HPC architecture explained

● Central processing unit (CPU)
○ Performs processing tasks that make computers

useful
● Random Access Memory (RAM)

○ Fast access storage used during processing
○ Analogous to human working memory

● Storage
○ Files live here persistently
○ Analogous to human long-term memory

Abridged anatomy of a laptop

HPC uses the same basic elements as a laptop

Supercomputers have thousands of cores, grouped

into ‘nodes’. In this example:

● 2 CPUs

● Each CPU has 64 cores

● 256 GB RAM shared by the 2 CPUs

● A supercomputer uses hundreds of nodes,

which share long-term storage

Simplified view of a single node with 128 cores and 256GB
RAM

256GB RAM

 CPU 0 CPU 1

Core
0

Core
 8

Core
16

Core
24

Core
32

Core
40

Core
48

Core
56

Core
0

Core
 8

Core
16

Core
24

Core
32

Core
40

Core
48

Core
56

Core
1

Core
 9

Core
17

Core
25

Core
33

Core
41

Core
49

Core
57

Core
1

Core
 9

Core
17

Core
25

Core
33

Core
41

Core
49

Core
57

Core
 2

Core
10

Core
18

Core
26

Core
34

Core
42

Core
50

Core
58

Core
 2

Core
10

Core
18

Core
26

Core
34

Core
42

Core
50

Core
58

Core
3

Core
11

Core
19

Core
27

Core
35

Core
43

Core
51

Core
59

Core
3

Core
11

Core
19

Core
27

Core
35

Core
43

Core
51

Core
59

Core
4

Core
12

Core
20

Core
28

Core
36

Core
44

Core
52

Core
60

Core
4

Core
12

Core
20

Core
28

Core
36

Core
44

Core
52

Core
60

Core
 5

Core
13

Core
21

Core
29

Core
37

Core
45

Core
53

Core
61

Core
 5

Core
13

Core
21

Core
29

Core
37

Core
45

Core
53

Core
61

Core
6

Core
14

Core
22

Core
30

Core
38

Core
46

Core
54

Core
62

Core
6

Core
14

Core
22

Core
30

Core
38

Core
46

Core
54

Core
62

Core
 7

Core
15

Core
23

Core
31

Core
39

Core
47

Core
55

Core
63

Core
 7

Core
15

Core
23

Core
31

Core
39

Core
47

Core
55

Core
63

Login nodes
● Launch job scripts, interact

with scheduler
Scheduler

● Program that handles
where/when to run jobs

Data mover nodes
● Specialised for

upload/download of data
Compute nodes

● Performs the computation
High performance storage

● Fast temporary read/write of
files

Anatomy of a supercomputer

Remote access to the supercomputer for administrative
work:

● Submit jobs
● Manage workflows
● Check results
● Install software

Many people (~100) share a login node

Do not run programs on the login nodes!

Remote access is via login nodes

Compute nodes work together:

• To perform large tasks

• Or to obtain a faster execution of your code

• Or to perform many different tasks at the same time

Please delete files when you’re done

These are shared resources, so your jobs are submitted
to a queue

Compute nodes do the heavy lifting

Pro tips

● HPC is a shared resource

○ No sudo for you!

○ Users can’t do system-wide

installations

● You can install in your own directories

Pro-tip 1: Software installation is different on HPC

In recommended order of preference:

● Modules are provided by System Administrators
○ Can ‘load’ or ‘unload’ them as needed, prevents version conflicts

● Containers
○ Totally isolated software environment, very reproducible and easy

● Conda/Mamba (HINT: If you’re going to use Conda, use Mamba instead)
○ Package manager software

● Local installs
○ Specify installation in your directory e.g. /software/your_project/user_name

Pro-tip 1: Software installation is different on HPC

Pro-tip 1: Software installation is different on HPC

What can you use containers for?

● Avoid installation of packages (e.g. Conda/Pip/apt)

● Handling clashing/multiple versions

● Shipping software you’ve published

● Fitting in with Nextflow/Snakemake/Cromwell

● Improved automation

Pro-tip 2: Tools to manage your project

Once you have an application accepted, you get quota for the following:
1. Compute time. Often measured in Service Units (SUs).
2. Storage. Measured in GB/TB and file count. May be of different types.

Facilities provide tools and information to help you manage your project well.
1. Quota.
2. Storage.
3. Jobs.

Pro-tip 2: Tools to manage your project - quota

Quarterly quota limits often apply.
● If you don’t use all of the

quota by the end of quarter, it
can’t be renewed.

● Important to use the quota
evenly over time.

○ Don’t get caught in the
end of quarter rush!

Pro-tip 2: Tools to manage your project - storage

Network filesystems
● High capacity, high throughput
● Quotas on file counts as well as

space

Different types of storage.
● Scratch. Used for calculations, files

can be deleted if they are not
accessed regularly (i.e. 90 days).

● Persistent. Used for storing files
over longer periods of time (gdata
at NCI).

nci-files-report Detailed report of usage

nci-file-expiry Files to be deleted from
scratch.

Fu
tu
re

Pro-tip 2: Tools to manage your project - jobs

Submitting a batch job tells the scheduler about the ‘shape’ of your
job.

● The scheduler considers all of the queued jobs as a candidate
for the next job to start.

● Three dimensions:
● Number of cores
● Memory
● Walltime

Getting this wrong can lower the system efficiency.
● Longer queue times.
● Underused resources.Now

Pro-tip 2: Tools to manage your quota - jobs

Facilities provide information to help you
see how well resources are used.

● At NCI a ‘postscript’ is added to the
end of standard output for every job.

● Other sites may do the same or have
a special command .e.g. seff for
slurm.

Efficiency = (CPU time used)/(maximum CPU time possible)
 = (54.3 core hours)/(2.3 hours * 24 cores)
 = 0.98

Pro-tip 3: Work smarter not harder

Now you can manage your project, is there anything else you can do to use the resources well?
● Might want to get more science out of the project.
● Maybe the number of samples has changed.

Performance optimisation is a very large topic. In the following some ideas are presented on how to
think about performance and introduce some things to try.

1. Metrics to understand cost.
2. Limits of parallelisation.
3. Scatter-gather patterns.
4. Explore different tools.

Pro-tip 3: Work smarter not harder - metrics

What’s important to you? Time, SUs, something else?

● Time (time per sample)
○ It’s important to process each sample in the minimum possible time.
○ Tradeoffs: Cost per sample; efficiency.

● Cost (SUs per sample)
○ Want to process as many samples as possible.
○ Maybe choose a slower & cheaper queue or reduce number of cores.

● Throughput (Samples/day or samples/week)
○ Processing data at the same rate it’s generated.

Pro-tip 3: Work smarter not harder - limits to parallelisation

Multithreaded tools may have an
option to set the number of threads.

● Why not set it to the largest
number possible?

● Only part of the problem can be
shared across threads.

Pro-tip 3: Work smarter not harder - scatter-gather

Data parallel workflows apply the same steps to different samples.
● Sometimes the data itself can be split into multiple pieces that are analysed independently.
● At the end of processing these can be stitched back together.

Tools to look at:
● GNU parallel. See also nci-parallel at NCI.
● Array jobs with slurm.
● Dask with python.

Pro-tip 3: Work smarter not harder - different tools

Often there are different software tools that do the same task.
● Find places in your workflow that are time consuming or need a lot of SUs.

○ Are there any alternative tools that could be used?
■ bwa , bwa-mem2, parabricks all do alignment.
■ current code may be in python, but a compiled alternative exists.

● Consideration 1: Scientific benchmarking
○ Results need to be identical
○ Results need to be equivalent

● Consideration 2: Performance benchmarking
○ Number of service units.
○ Time.

Pro-tip 4: Workflow management tools are your friend

https://janis.readthedocs.io/en/latest/userguide.html

Workflow management tools promote workflow portability, scalability, and reproducibility.

They can dynamically handle process dependencies, simultaneous task execution, and fault tolerance.

Pro-tip 4: Workflow management tools are your friend

Supports multiple
execution platforms and

languages.

Workflow re-entrancy.
Each task is cached.

Very active global
community.

Python-based language.

Automatic dependency
resolution and rule-based

execution.

Dynamic workflow
execution based on input

data.

Can be executed by
different workflow

management systems.

Specification language
for describing workflows

and tools.

Platform agnostic.

Ensures inputs and
outputs are compatible.

Task modularity for
reuse across workflows.

User defined
error-handling and retry

mechanism.

Cromwell-based
execution engine.

Consistent language for
describing workflows.

Framework that can
translate between

workflow languages.

JANIS

What can a workflow management tool do for you on HPC?

● Use multiple software installation methods including containers

● Allow you to port your workflow across different infrastructures and share with others

● Manage software versions and dependencies to ensure your workflow is reproducible

● Spawn jobs to the scheduler and increase throughput

● Checkpoint your workflow- you don’t have to start over if it crashes!

● Create nice resource usage graphs to help you better allocate resources

● Run someone else’s workflows with a bit of upskilling and practice

Pro-tip 4: Workflow management tools are your friend

Where to next?

Getting access to HPCs

What facilities?
● Institutional HPCs
● Australian research computing facilities

How do I get access?
● Contact your institutions ICT or eResearch services
● Merit schemes: Pawsey Partner,
● Start up, industry, institutional schemes
● Funded options

Where can I find support?
● Infrastructure Help Desks, documentation, training
● Slack

○ bioinformatics-hpc-au.slack.com
○ nfcore.slack.com
○ nextflow.slack.com

● YouTube
○ @NCIAustralia
○ @PawseySupercomputingCentre
○ @AustralianBioCommonsChannel

● Bioinformatics workflows community
○ https://www.biocommons.org.au/workflows

Bioinformatics @ national HPCs

● Shared bioinformatics software (if89)
● NVIDIA Parabricks GPU-enabled toolkit
● Nextflow Tower service
● Public workflows @ WorkflowHub
● Interactive environments
● NCI data collections

● Globally installed bioinformatics software
● Nextflow Tower service
● Public workflows @ WorkflowHub
● Interactive environments
● Reference datasets.

https://australianbiocommons.github.io/tower/

https://workflowhub.eu/programmes/8

So, is your workflow fit for purpose?

1. Use a software management tool to handle tool dependencies and avoid installation woes.
2. Understand the resource needs of your tools and tasks.
3. Allocate resources responsibly, don’t request more than you need.
4. Use workflow checkpointing to manage progression and workflow failure.
5. Tidy up after yourself, disk space is a shared resource.
6. Evaluate your workflow efficiency at the task level using job logs.
7. Ask for help! You are not alone, there are plenty of resources and communities out there.

Thank you

