

Optimal spatial and ecological sampling design tool:

OSSA (Optimal Spatial Sampling Algorithm)

Developer: Luigi Sedda

(l.sedda@lancaster.ac.uk)

Contents

Introduction .. 3

Data download .. 4

Box 1. Some open access data repositories .. 5

R preparation .. 6

Optimal Spatial Sampling Algorithm (OSSA) ... 8

OSSA: Step 1. Importing geographic rasters ... 8

OSSA: Step 2. Ecological classification .. 16

OSSA: Step 3. Lattice with close pairs design for the spatial allocation of sampling sites 23

OSSA: Step 4. Adaptive sampling design... 26

Acknowledgments and contact... 29

Introduction

OSSA is a geographic and statistical framework. In the same folder you will find
OSSAtools.RData which contains a set of codes and data that you will need for
masking land from sea (landsea), MODIS extraction code (pextract), area
ecological classification (lqdaloop), spatial sampling design algorithm (lcp) and
adaptive spatial sampling design algorithm (asd). These codes are written in R
statistical language (https://cran.r-project.org), therefore you will need to
install R in your machine before using the codes and datasets. In addition,
OSSAtools.RData contains a table with mosquito collection from the same
region (benin) and a grid for predictions in an extended area (beningrid).

All codes in bold (both black and red) can be copied and pasted in R console.

The algorithms are applied to an area of 50 by 50 km in South West Benin
which encompasses the provinces of Athiémé, Bopa, Comè, Grand Popo,
Houeyogbé, Kpomassè, Ouidah and Sè in the region of Atlantique.

https://cran.r-project.org/

Data download
Due to the right to attribution, environmental data files are not provided

within this folder. These need to be download separately. Repositories are

described in Box 1 below.

These are the files used in this example:

Global land 30: n31_05_2010lc030.tif

SRTM elevation: N06E001.hgt, N06E002.hgt, N06E003.hgt, N07E001.hgt,

N07E002.hgt, N07E003.hgt.

FAO soil: hwsd_soil1.tif

BIOCLIM precipitation: wc2.1_30s_bio_12.tif

MODIS folders: evi.zip, temp.zip and aetpet.zip.

Box 1. Some open access data repositories.

GlobeLand30

(http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/download_e
n.html&head=download&type=data) . Land cover mapping with 30 m resolution produced by
the National Geomatics Center of China, and released for 2000, 2010 and 2020 contains 10
classes. The images utilized for GlobeLand30 classification are multispectral images with 30
meters, including the TM5 and ETM + of America Land Resources Satellite (Landsat) and the
multispectral images of China Environmental Disaster Alleviation Satellite (HJ-1). GlobeLand30
data adopts WGS84 coordinate system, UTM projection, 6-degree zoning and the reference
ellipsoid is WGS 84 ellipsoid.

MODIS (satellite)

MODIS Enhanced Vegetation Index (EVI) from the MOD13C2 product comprises monthly, global
EVI at 0.05 degree resolution. This product provides consistent spatial and temporal comparisons
of vegetation canopy greenness, a composite property of leaf area, chlorophyll and canopy
structure. EVI minimizes canopy-soil variations and improves sensitivity over dense vegetation
conditions when compared to NDVI. MODIS Air Temperature (Temp) from the MOD07_L2
Atmospheric Profile product comprises monthly, global temperature at 0.05 degree resolution
and at the closest level to the surface. MODIS Evapotranspiration (ET) from the MOD16 Global
Evapotranspiration product is calculated monthly at 0.05 degree as the ratio of Actual to
Potential Evapotranspiration (AET/PET). All the MODIS products are provided in monthly time-
series at 0.05 degree (~5km) resolution from observations by the MODIS sensor on Terra (AM)
for the period February 2000-December 2013 inclusive
(https://ora.ox.ac.uk/objects/uuid:896bf37f-a56b-4bc0-9595-8c9201161973).

Recent daily data can be downloaded from USGS (https://earthexplorer.usgs.gov) or
https://lpdaac.usgs.gov/tools/data-pool/.

Precipitation

Can be obtained from WorldClim Version 2.1 (2020 release) as average annual precipitation from
1970 to 2000 at 30s (around 1km2)
(https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_bio.zip).

Elevation

The NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 Global 1 arc second product is

void-filled using elevation data from ASTER, GDEM2, GMTED and NED. The data are available for

download via Earthdata Search (https://search.earthdata.nasa.gov/search).

Human density

Constrained total number of people per grid-cell is provided by WORLDPOP at a resolution of 3

arc (approximately 100m at the equator) with projection WGS84 Geographic Coordinate System.

https://www.worldpop.org/geodata/listing?id=78

Soil data

The FAO Harmonized World Soil Database v 1.2 raster contains more than 16,000 soil units at

approximately 1km resolution.

http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-

database-v12/en/

http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/download_en.html&head=download&type=data
http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/download_en.html&head=download&type=data
https://ora.ox.ac.uk/objects/uuid:896bf37f-a56b-4bc0-9595-8c9201161973
https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/tools/data-pool/
https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_bio.zip
https://search.earthdata.nasa.gov/search
https://www.worldpop.org/geodata/listing?id=78
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/

R preparation

Open RStudio. Set the working directory (the folder containing the data and
codes): from the top bar of the main RStudio Session-> Set Working Directory-
> Choose directory and then select your folder. If you want to set your folder
as default, go to Tools-> Global Options and browse the default working
directory to select it and press OK. You should be able to see the files
contained in the folder in the Files tab in the bottom-right panel.

If have not done it yet, please install the R packages needed to run the OSSA
functions from the lower left panel by typing (or copy and paste in R-studio
console):

install.packages(c("raster","sf","rrcov","sp","tmap","plotKML"))

Alternatively they can be installed from the lower right panel and by clicking on
‘Packages’ and click on install and type raster, sf etc...

New directory

List of files in

the directory

raster allows to work with raster or grid file format. A raster is a common data
format for environmental variables (as those listed in Box 1 above). In simple
word, a raster is just a matrix or table of values (elevation for example) with
associated information about its geographical position and pixel (or cell)
dimension. To import/work with rasters we will use the package raster.

To activate the packages in the workspace we need to upload them:

library(raster)

library(sf)

library(rrcov) #for luqdaloop

library(sp)

library(tmap)

library(plotKML)

or tick in the box next to raster, sf etc… in the list shown under the tab
Packages in the lower right panel (this does the same as the function library).

Optimal Spatial Sampling Algorithm (OSSA)

The use of # after a command allow to comment without affecting the
command itself (therefore can be included in your copy and paste).

OSSA: Step 1. Importing geographic rasters

Let’s start importing the land cover for the area of interest.

lc=raster("n31_05_2010lc030.tif")

lc #and press enter

This gives you useful information about the raster: resolution (30 by 30
meters), area covered in number of pixels (dimensions and extent), projection
(crs), directory where the original file was (source, this is likely to be different
in your computer) and range of the values (values). The raster is “connected”
to the original source (in order to reduce the amount of memory in use),
therefore if you move the folder where the raster is, the object lc will not
work. You can visualize the imported land cover by using the function plot().

plot(lc)

To get familiar with the plot() options, especially on how to customize the
location of the legend see:
https://biologyforfun.wordpress.com/2013/03/11/taking-control-of-the-
legend-in-raster-in-r/

Here an example of customisation:

x=c(seq(10,100,10),255)

plot(lc,col=rainbow(255)[x],legend=FALSE)

plot(lc, legend.only=TRUE, col=rainbow(255)[x],

 legend.width=1, legend.shrink=0.75,

 axis.args=list(at=x,labels=x,cex.axis=0.6),

 legend.args=list(text='Land cover', side=4, font=2, line=2.5, cex=0.8))

https://biologyforfun.wordpress.com/2013/03/11/taking-control-of-the-legend-in-raster-in-r/
https://biologyforfun.wordpress.com/2013/03/11/taking-control-of-the-legend-in-raster-in-r/

Table 1. Legend for land cover.

10 Cultivated land

20 Forest

30 Grassland

40 Shrubland

50 Wetland

60 Water bodies in the land area

70 Tundra

80 Artificial surfaces

90 Bareland

100 Permanent snow and ice

255 Sea

lc units are in meters. To convert the raster’s units in degrees (since all the rest
of the rasters are in degrees) use the function projectRaster from sf package.

Mind that this step can take up to two hours to complete (depending on the
computer – but usually 15-30min)!

lcd=projectRaster(lc,crs="+init=epsg:4326",method="ngb",filename="lcd.grd
")

You must define a filename (here we used lcd.grd, which will be saved in your
working directory). More information on the function and in particular on the
method “ngb” (used for categorical variables) can be found here:
https://www.rdocumentation.org/packages/raster/versions/3.4-
10/topics/projectRaster

https://www.rdocumentation.org/packages/raster/versions/3.4-10/topics/projectRaster
https://www.rdocumentation.org/packages/raster/versions/3.4-10/topics/projectRaster

Elevation is provided in multiple files (N06E001.hgt, N06E002.hgt,
N06E003.hgt, N07E001.hgt, N07E002.hgt, N07E003.hgt). We will need to
mosaic the files in order to work on a single raster instead of six. The format
‘.hgt’ is recognised by the package raster. In order to speed up the conversion
of the rasters and merge them we will first list them (incorporate multiple files
in a single object). First create a vector of raster names:

f = list.files(pattern = ".hgt", full.names = TRUE)

This is looking at your directory and listing all files you have there with
extension ‘.hgt’. Now import all the ‘.hgt’ files in a single object (elevation_list)

elevation_list <- lapply(f, raster)

lapply simply apply the function raster to each source listed in the object ‘f’
and create another list with all the raster imported.

Mosaic the six rasters in a single one:

elevation <- do.call(merge, elevation_list)

again, do.call allows you to work with list (elevation_list) to produce a single
object (this is the reason why we don’t use lapply again).

To evaluate the success of the operation, let’s plot elevation over the land
cover:

plot(lcd)

plot(elevation,add=TRUE)

Make sure you have ‘plot’ open in the lower right box of RStudio.

(this may look different in your computer)

For precipitation we will import the BIO12 bioclim raster (annual precipitation).
However, there are other precipitation variables that can be considered:
precipitation of wettest month (BIO13), precipitation of dries month (BIO14),
precipitation seasonality (BIO15) etc… . If you want to import all the
precipitation products you will need to get the other raster from the bioclim
project (see Box 1), extract the raster in your folder and repeat the step below
bearing in mind to change the name of the raster you upload and create.

prec=raster("wc2.1_30s_bio_12.tif")

for a quick evaluation that prec has the same projection of the others, we can
use the function st_crs (from package sf, already uploaded):

st_crs(prec) == st_crs(elevation)

which will return ‘[1] TRUE’, i.e. they have the same projection.

For the soil the procedure is identical to the one above:

soil=raster("hwsd_soil1.tif")

st_crs(soil) == st_crs(elevation) #as a check for projection

For the MODIS satellite data, we will extract three parameters: Temperature
(Temp), Evapotranspiration (aetpet) and Enhanced Vegetation Index (EVI).
They are provided monthly from 2000 to 2013 at a 5 km by 5 km for the entire
globe. Therefore, we need to extract these values to a grid of the region we are

interested in. Once the values are extracted, we are going to produce the
following variables: Temp mean, Temp range (amplitude), Temp standard
deviation; EVI mean, EVI amplitude, EVI standard deviation, aetpet mean,
aetpet amplitude, aetpet standard deviation.

Please be prepared, the computation will take 2 to 6 hours. In order to extract
the MODIS data and convert in the variables described above, you will need
the ‘pextract’ function saved in the R file ‘OSSAtools.Rdata’.

load("OSSAtools.RData")

args(pextract) #to see what is required to run the function

To run pextract we need 3 elements: landsea, xyz and the MODIS directories
storying the monthly files (for each parameter: Temp, EVI and aetpet).

landsea, this object is already provided within the ‘OSSAtools.RData’ and
allows to remove places that follow in the sea.

xyz is the matrix of coordinates from which we want to extract the MODIS
data. We can create this easily, but first we need to define the area we want to
survey. For the area of Ouidah, Kpomassè and Comè we can define a square
with the upper/left corner coordinates as 7N/1.5E and lower/right corner are
6N/2.1E. Given these coordinates, to create a 70 by 70 grid (4900 nodes) we
need:

Longitudes=seq(1.5,2.1,l=70)

Latitudes=seq(6,7,l=70)

xyz=expand.grid(Longitudes,Latitudes)

seq create a set of number starting from the first argument (1.5 in Longitudes)
to the second (2.1), with 70 breaks (therefore the range is broken in 70
intervals). expand.grid create all the possible combinations between
Longitudes and Latitudes. To see the area covered by the points:

plot(lcd,useRaster=FALSE)#useRaster=False allows a better zoom of the area

points(xyz[,1],xyz[,2])

With xyz[,1] you are selecting the first (longitude) column of xyz, and with
xyz[,2] the second (latitude) column of xyz.

Black square shows the area interested by the grid.

Finally, please keep the three directories inside a folder called MODIS. Each of
them should have 167 files. In this way you can run the following (substitute
‘your directory’ with the path of your computer where the MODIS folder is –
also notice that temperature MODIS files must be stored in temp folder,
evapotraspiration in aetpet folder and enhanced vegetation index in the evi
folder, if you keep the same names as in the code below).

MODIS=pextract(landsea,xyz,dire=c("C:\\yourdirectory\\MODIS\\temp","C:\
\ yourdirectory\\MODIS\\aetpet","C:\\ yourdirectory\\MODIS\\
evi"),stat="T",varn=c("Temp","ET","EVI"))

MODIS is a table with 3825 rows (representing a grid of the area) and 514
columns, e.g. monthly averaged of the 3 parameters from February 2000 to
December 2013 (167 values for each parameter) plus the mean, amplitude and
standard deviation for the entire time series (one value each, for each
parameter).

Instead of using all the 514 columns, we will use the total mean, amplitude and
standard deviation for each parameter (temp, evi and aet), including the
longitude and latitude (columns 1 and 2):

MODIS2=MODIS[,c(1:2,172:174,342:344,512:514)]

To look at the first 6 rows: head(MODIS2). MODIS and MODIS2 contain some
NA values or infinite. To remove the rows with NA:

MODIS2=na.omit(MODIS2)

xyz=MODIS2[,1:2] #this is needed for later

Let’s check if we have any infinite value.

MODIS2=as.matrix(MODIS2) #this helps all the next calculations

length(which(is.finite(MODIS2)==FALSE))

As you can see the length is 0, we don’t have infinite values and neither NAs.

Finally combine the MODIS data with land cover, elevation, precipitation and
soil information in a new table called data:

data=cbind(MODIS2,extract(lcd,xyz),extract(elevation, xyz),extract(prec, xyz)
,extract(soil, xyz))

colnames(data)=c("x","y","temM","temV","temA","etM","etV","etA","eviM
","eviV","eviA","LC","Elev","Prec","Soil")

data=na.omit(data) #for the NAs in lcd, elvation, prec and soil

data=as.data.frame(data)

We have removed other NAs using again na.omit. Now data table is ready to
be used for step 2 of OSSA (classification).

OSSA: Step 2. Ecological classification

Box 2. Discriminant analysis.

The ecological classification is based on a locally (or spatially) adjusted
quadratic discriminant analysis (Box 2). Before running this algorithm, we need
three preliminary steps.

The first is to define the training classes. Assuming that land cover (in our data
is the column ‘LC’) is the strongest local factor, then we can decide that land
cover defines (or drives) the ecological classes. For simplicity, at the beginning
we can consider the number of ecological classes equal to the number of land
cover classes in the area. Given land cover = class, the second step is to check

The theory on discriminant analysis, a multivariate method for clustering, is based on the
multivariate normal distribution, which parameters are the mean (of the environmental
variables at the class-point locations) and the variance-covariance matrix (of the environmental
variables at the class-point locations).

When the variance-covariance matrices are not homogeneous (essentially, are not the same) for
two or more classes, linear discriminant analysis cannot be used (just to remind you that linear
discriminant analysis assumes that all the classes have the same variance-covariance matrix but
not the mean). Instead a non-linear (quadratic) Discriminant Analysis (QDA) can be applied, with
discriminant function as:

𝑓𝑖
𝑄
= −

1

2
log|𝚺𝑖| −

1

2
((𝐗 − 𝜇𝑖)

𝑇𝚺𝑖
−1(𝐗 − 𝜇𝑖))+ log(𝑝𝑖)

Where X is the matrix of variables, µ the vector containing the mean of each variable and Σ is the
variance-covariance matrix, and i is the class. The larger is the f value, the higher is the
probability that the point belong to the i group.

As you can notice, apart from the last term (log(pi)), the rest is exactly the equation of a
multivariate normal distribution. The pi (the “prior” probability of each point to belong to the
class i) can be calculated in a number of ways, usually by “equal priors” method: each class has a
prior probability equal to 1/number of classes. In this analysis, and in order to take into account
the spatial proximity of the classes, a local frequency prior methods was used. It estimates the
class pi prior probability as the relative frequency of points belonging to i class in the (pre-
defined) neighbourhood.

For classification, a new data point can be assigned to the class at which the fi is at a maximum.
By calculating the position of a point with respect to all available class centroids, it is possible to
calculate the probability of membership to each class, or in other words, a point is allocated to
the class for which fQ is maximum.

the size of each class. Classes with a small amount of points can produce errors
(technically a singular matrix). As a role of tomb, we expect to have a number
of records for each class at least 5-10 times more than the number of
predictors. To see how many records we have for each class simply use the
function table():

table(data$LC) #Note the use of $ to select the column we want to use

In our data there are 7 land use cover classes (see Table 1 above and this link

for additional explanations:

http://www.globallandcover.com/Page/EN_sysFrame/dataIntroduce.html?col

umnID=81&head=product¶=product&type=data).

Three of them show a small number of records: 30 (Grassland), 50 (Wetland),

60 (Water bodies). To simplify, we will merge 30 (Grassland) with 40

(Shrubland) and 50 with 60. To do this we create a new column LC2 identical to

LC:

data$LC2=data$LC

and replace LC 30 and LC 50 with 40 and 60 respectively:

data$LC2[data$LC==30]=40 #replacing 30 with 40

data$LC2[data$LC==50]=60 #replacing 50 with 60

Now LC2 contains 5 classes instead of 7:

table(data$LC2)

The third step (although not necessary) is to remove variables with low

correlation with land cover (LC2), i.e. lower than |0.01| (absolute value of

0.01).

If you want to proceed with this, you can look at the correlations by using the

function cor(). We don’t need correlation between all the variables, therefore

we will only focus on the correlations with LC2:

http://www.globallandcover.com/Page/EN_sysFrame/dataIntroduce.html?columnID=81&head=product¶=product&type=data
http://www.globallandcover.com/Page/EN_sysFrame/dataIntroduce.html?columnID=81&head=product¶=product&type=data

cor(data)["LC2",] #in this way it returns only theLC2 correlations

We remove temA (-0.005), eviM (0.002), and Elev (-0.003):

datared=data[,-c(9,12,13)] #removing the fifth, ninth, … columns

If you use datared, make sure to substitute datared with data in the luqdaloop

command below.

Finally, the data is ready to go through the local quadratic discriminant

analysis. The function to use is luqdaloop (already available since contained in

OSSAtools.RData that you have previously loaded) that calculates the quadratic

discriminant analysis for the given dataset, plus collapse or merge the classes

to a given fixed maximum number of classes, and perform cross validation.

classanalysis=luqdaloop(X=data[,c(3:11,13:15)],y=data$LC2,grid=data[,1:2],n

=0.1,nx=7)

X is the matrix of variables used to classify the ecology of the area (excluding x

– the longitude - and y – the latitude - because they are considered in the grid;

and LC – column 12 - because we are using LC2), y is the initial or prior classes

(here assumed coincident with land cover), grid is the two columns matrix with

coordinates of each record. To calculate the local frequencies (prior

probabilities) we used a circular neighbourhood of 0.1 degrees (almost 12 km),

quite a large one (18 points in each direction). Finally, nx is the maximum

number of classes allowed (from splitting existing ones).

luqdaloop selects the best classification as the one with a relative minimisation

of the Wilks’ lambda value, equivalent to a minimisation of the within class

variance. We talk about ‘relative minimisation’ because the algorithm search

to the largest decrease in the Wilks’ lambda value from a classification with n

classes to a classification with n+1 classes.

The result classanalysis is a list containing the following values (you can see

the list of objected contained in classanalysis by typing names(classanalysis)

and press enter):

1. WilksSummary, a table showing the Wilks value for each number of

clusters (first row), the prediction error (second row), the Wilks value for

the test data (third row), and the prediction error for the test data (forth

row). If no number of records was defined for the argument test in

luqdaloop the last two rows will not show any values.

2. Cluster classifications. For nx clusters, classanalysis will show 2cluster,

3cluster… nx cluster. Each of this element is itself a list containing 11

elements (see below).

3. ExcludedData. For some classes it is not possible to evaluate the

discriminant value (often because the predictors tend to not vary much

within this class) and therefore they are excluded or simply considered

as a cluster that cannot be split or merged. This value is present only if

data is excluded.

4. NewData. This is the same data in input with the priors and new

classification. This is what will be used at the next OSSA step.

Each cluster classification contains:

1. WMqr, a list of pooled variance/covariance matrix for each class.

2. GM, a list of predictors means for each class.

3. ldet, a numeric vector containing the determinants for each class.

4. prior, a matrix where for each record (row) the probabilities to belong to

the different classes (columns) are provided.

5. scores, a numeric vector of discriminant values.

6. classification, a vector of new classes attributed at each record.

7. confusion, confusion matrix.

8. error_rate, probability to not belong to the cluster attributed in

classification.

9. Wlambda, Wilks’ lambda statistic for the classification.

10. Nclasses, classes and classes size of the classification.

11. Classes, a numeric vector with original classes.

To print the Wilks’ summary, simply:

classanalysis$WilksSummary

or

classanalysis[[1]] #show the first element of the list

To print the confusion matrix from classification with 4 classes:

classanalysis[[4]][[7]]

4 is the slot for 4 classes classification and within it 7 is the slot containing the

confusion matrix.

When luqdaloop finishes it prints the number of optimal classes found. You

can also retrieve it by first extracting the new data and applying table to the

new classification:

newdata=classanalysis$NewData

table(newdata$BestClass)

It is clear that the algorithm found 4 best classes in which it merged class 60

with 80 (water bodies with artificial surfaces). This is not surprising since large

urbanisations are close to wetlands and water bodies.

IMPORTANT: some of the original records may be re-classified. For example,

compare the results from table(newdata$BestClass) with table(data$LC2), you

will notice a decrease/increase in some land cover. This is because once,

luqdaloop calculates the probability for each record to be in a specific cluster,

it will assign the cluster associated with the largest probability to the record.

Now if you want to plot the Wilk’s over the number of classes:

plot(2:7,classanalysis[[1]][1,2:7],main="Wilks'

Lambda",ylab="Lambda",xlab="N classes",type="l")

7 was the number of classes explored (see luqdaloop command above).

From the plot above the largest difference (or drop) in the lambda is when

passing from 3 to 4 classes. Therefore 4 classes are the best classification.

Finally, let’s plot the new classification:

map=newdata[,c("x","y","BestClass")] #creating an object with x,y and class

coordinates(map)=~x+y # defining the coordinates’ columns

gridded(map)=TRUE

proj4string(map)=(CRS("+init=epsg:4326")) #defining the projection

map=raster(map) #converting in raster

tm_shape(map)+tm_raster() #plot

or to plot onto a map:

tmap_leaflet(tm_shape(map)+tm_raster())

To plot on google earth (make sure you have launched google earth first):

plotKML(map)

If not lunched, go in your working directory and double click on the file
‘map.kml’

A useful tutorial on plotKML can be found at the following URL:

http://gsif.isric.org/doku.php/wiki:tutorial_plotkml

http://gsif.isric.org/doku.php/wiki:tutorial_plotkml

OSSA: Step 3. Lattice with close pairs design for the spatial allocation of sampling sites

We will use the object map created in the previous step as the area where to
optimise the sampling design based on the ecological classes identified above.
See the properties of this raster by typing map and pressing enter:

We have already described these properties in step 1. As shown in attributes,
classes are converted in numeric values. In fact, the best classes (10, 20, 40,
MC60.80 called ‘levels’) are converted into classes 1, 2, 3 and 4 respectively
(see ‘ID’). This is important for interpreting maps and running the spatial
sampling design algorithm.

The allocation of the sampling locations in each of the classes of map area is
through a non-adaptive sampling design: sampling locations are chosen in
advance of any data collection.

Our optimisation of the spatial sampling design follows the theory of the
mixture design known as lattice with close pairs which itself can be considered
as an extension of an inhibitory designs adapted for inclusion of random close
pairs (Box 3). In fact, this design combines random close pairs design (good for
parameter estimation – i.e. reduces model uncertainty) with lattice design
(good for estimation when parameters are unknown – i.e. increases accuracy
in predictions).

Box 3. Spatial sampling designs.

The function ‘lcp’(lattice with close pairs - already available since contained in
OSSAtools.RData that you have previously loaded) distributes M (G+R)
sampling points under three conditions: (i) G % of sampling points are in grid
(lattice), (ii) R % are close-pairs randomly allocated; and (iii) each stratum (or
class) must contain a number of points proportional to the stratum size.

To run lcp we need the map object created above, e.g. a raster with classes,
and the following set of parameters:

delta inhibition distance or minimum distance between any two locations.

zeta radius around each grid location where to allocate the close pair(s)

total total number of locations to be optimised

grid proportion of locations in grid, the rest (1-grid) will be allocated as close
pairs.

If sampling sites are preferentially chosen to capture larger (or smaller) than average
values of a response, e.g., areas with abundant mosquitoes or with higher malaria
transmission, then subsequent estimation and prediction of the exposure surface using
standard geostatistical methods may be misleading due to the selective sampling.
Practical needs or deliberate actions often lead to preferential sampling.

A combination of theoretical and empirical work has led to general acceptance that
lattice designs should lead to efficient spatial prediction provided model parameters are
known. If model parameters are unknown, a completely random design has the
advantage that it will include a wider range of inter-point distances, and in particular
some small inter-point distances, and so provides more information on the shape of the
spatial covariance function. However, the resulting uneven spatial distribution makes
prediction less efficient, given the model parameters, and leaves open the possibility of
systematic bias. In inhibitory design parameters are unknown. Points are chosen at
random but with the constrain that the distance between points are not less than a
certain value. We included the conditions that random points are close pairs of a
random selection of nodes from a sampling grid. The term ‘close pairs’ here is used
loosely, since not all the points in the grid will have a close pair, and some close pairs
may be shared between points.

Other randomised designs include: complete randomised design stratified or clustered;
completely regular lattice design (square, equilateral, triangular or hexagonal); random-
tessellation stratified design which guarantees that no point from the target population
is too far from a sampling point; and that few points are very close together.

delta and zeta can be chosen based on the spatial process (e.g. zeta equal to
the spatial range of the process under study, e.g. dispersion of a mosquito)
while delta can be based on the desired spatial coverage (a larger delta allows
to increase the probability to have sparse close pairs within the grid, and
improve homogenous coverage of the area). For this example we have chosen
a delta of 1km (0.01 degrees), zeta of 0.16 degrees, total of 30 locations and
grid =0.7 (equivalent to 70% - 20 locations allocated in grid).

sites=lcp(map,delta=0.01,zeta=0.16,total=30,grid=0.7)

The optimised locations are shown in the figure below. The object sites is a
matrix with coordinates, class and type columns. ‘type’ is coded ‘G’ if the
location is allocated in the grid or ‘I’ if it is allocated as close pair.

plot(map)

points(sites[,1],sites[,2])

OSSA: Step 4. Adaptive sampling design

The 3 first steps of OSSA were designed to optimise the spatial allocation of
survey locations based on the ecology and the spatial characteristics of the
process under study (malaria distribution, mosquito presence/absence etc…).
The assumption is that the process is dependent on the ecology of the area
under study and its variation is spatially dependent. We have not used any
available data that can describe the process since we assumed operating in
absence of any prior information.

But when previous data is available, we may want to conditionate the new

sampling to existing information in what is called an ‘Adaptive sampling

design’: sampling locations are chosen sequentially (singly or in batches) during

the data collection or during the design of the sampling campaign based on

historical data. The adaptive approach is preferential since guided by a

predictive target (e.g. where the prevalence is above a certain threshold or for

error minimisation). These sampling designs are becoming more important in

poor resource settings where uniformly precise mapping may be unrealistically

costly and the priority is often to identify critical areas where interventions can

have the most health impact. Two constructions are often applied: singleton

and batch adaptive sampling. In most settings, batch sampling is more

convenient than singleton sampling (one new location is added at each

sampling iteration).

Here we provide a simplified adaptive sampling design function (asd) with the
choice of two targets: ‘U’ minimise uncertainty and ‘H’ maximising accuracy in
hotspot (large value of the process – probability of presence of mosquitoes for
example) definition.

In the following example asd is applied to previous Benin mosquito collection
carried in the same area in 2018. The table is called benin and contains the
longitude (x), latitude (y), number of Anopheles gambiae collected overnight
(AnGam), the week of collection (Week), the village (Village), land cover class
(LCD), elevation (Elev) and soil type (Soil). The adaptive sampling will be
targeting the hotspot of An. gambiae – e.g. where the mosquito is more
prevalent with less certainty (target ‘H’ as described in the paragraph above).
In order to identify the adaptive locations we need to consider the continuous
area around the benin locations. This area is described by the beningrid table

which contains the same elements of benin that will be used in the model
apart from the outcome (AnGam).

benin, beningrid and asd are already available since contained in
OSSAtools.Rdata that you have previously loaded.

The arguments in the asd function are:

Data the data to be modelled (including outcome, predictors and
random effects);

area the area to be considered for sampling; must include the same
predictors and random effects as in Data;

formulaf formula of the model for the fixed effects;

formular formula of the model for the random effects;

total batch of adaptive sampling locations to be allocated

delta inhibition distance or minimum distance between any two
locations.

The modelling is done via glmmPQL
(http://127.0.0.1:25126/library/MASS/html/glmmPQL.html) that allows for
random effects to control for ‘grouped variability’; and for explicit definition of
the correlation function (exponential).

Let’s assume we want to allocate 15 trapping locations at a minimum distance
of 0.01 degrees (max undefined), then we simply run the following function:

adaptiveSites=asd(Data=benin[,-5], area=beningrid, formulaf =
as.formula("AnGam~Week+Elev+Soil"), formular = as.formula("~1|LCD"),
target="H", total=15, delta=0.01)

Note benin[,-5] it means that we are not using the fifth column (Village) in
benin table. The used predictors are Week, Elevation and Soil, while the
grouping variable is the land cover.

The visual results are shown in the figure below (the crosses are the adaptive
locations).

http://127.0.0.1:25126/library/MASS/html/glmmPQL.html

To view the adaptive location information saved by the asd function, simply
digit adaptiveSites and press enter:

‘Fit’ are the values predicted by the glmmPQL model and ‘Uncertainty’ is the
standard errors around these predictions.

Acknowledgments and contact
This work is funded by the Academy of Medical Sciences GCRF Networking

Grant Scheme (GCRFNGR7/1329).

A preliminary version of the same algorithm (without adaptive component)

was developed during the Medical Research Council grant GAARDIAN (grant

no. MR/P02520X/1) which was part of the EDCTP2 programme supported by

the European Union.

We thanks all the teams that used the preliminary version of OSSA (Eric R.

Lucas, Luc S. Djogbénou, Ako V. C. Edi, Alexander Egyir-Yawson, Bilali I. Kabula,

Janet Midega, Eric Ochomo, David Weetman, Martin J. Donnelly, Daniel

McDermott, Joshua Longbottom and El Hadji Amadou Niang) for sampling

campaigns in Benin, Democratic Republic for Congo, Ghana, Ivory Coast,

Kenya, Malawi, Tanzania, Senegal and UK.

We are planning to improve this stand-alone tool for optimal spatial

sampling design. It is essential for us to receive your feedback on these tools

and manual. Please send your feedback to:

Dr Luigi Sedda l.sedda@lancaster.ac.uk

We hope you have enjoyed OSSA!

mailto:l.sedda@lancaster.ac.uk

