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Introduction 

OSSA is a geographic and statistical framework. In the same folder you will find 
OSSAtools.RData which contains a set of codes and data that you will need for 
masking land from sea (landsea), MODIS extraction code (pextract), area 
ecological classification (lqdaloop), spatial sampling design algorithm (lcp) and 
adaptive spatial sampling design algorithm (asd). These codes are written in R 
statistical language (https://cran.r-project.org), therefore you will need to 
install R in your machine before using the codes and datasets. In addition, 
OSSAtools.RData contains a table with mosquito collection from the same 
region (benin) and a grid for predictions in an extended area (beningrid). 

 

All codes in bold (both black and red) can be copied and pasted in R console. 

 

The algorithms are applied to an area of 50 by 50 km in South West Benin 
which encompasses the provinces of Athiémé, Bopa, Comè, Grand Popo, 
Houeyogbé, Kpomassè, Ouidah and Sè in the region of Atlantique. 

  

https://cran.r-project.org/


              
 
 

Data download 
Due to the right to attribution, environmental data files are not provided 

within this folder. These need to be download separately. Repositories are 

described in Box 1 below. 

These are the files used in this example: 

Global land 30: n31_05_2010lc030.tif 

SRTM elevation: N06E001.hgt, N06E002.hgt, N06E003.hgt, N07E001.hgt, 

N07E002.hgt, N07E003.hgt. 

FAO soil: hwsd_soil1.tif 

BIOCLIM precipitation: wc2.1_30s_bio_12.tif 

MODIS folders: evi.zip, temp.zip and aetpet.zip. 



              
 
 

Box 1. Some open access data repositories. 

GlobeLand30 

(http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/download_e
n.html&head=download&type=data) . Land cover mapping with 30 m resolution produced by 
the National Geomatics Center of China, and released for 2000, 2010 and 2020 contains 10 
classes.  The images utilized for GlobeLand30 classification are multispectral images with 30 
meters, including the TM5 and ETM + of America Land Resources Satellite (Landsat) and the 
multispectral images of China Environmental Disaster Alleviation Satellite (HJ-1). GlobeLand30 
data adopts WGS84 coordinate system, UTM projection, 6-degree zoning and the reference 
ellipsoid is WGS 84 ellipsoid. 

MODIS (satellite) 

MODIS Enhanced Vegetation Index (EVI) from the MOD13C2 product comprises monthly, global 
EVI at 0.05 degree resolution. This product provides consistent spatial and temporal comparisons 
of vegetation canopy greenness, a composite property of leaf area, chlorophyll and canopy 
structure. EVI minimizes canopy-soil variations and improves sensitivity over dense vegetation 
conditions when compared to NDVI. MODIS Air Temperature (Temp) from the MOD07_L2 
Atmospheric Profile product comprises monthly, global temperature at 0.05 degree resolution 
and at the closest level to the surface.  MODIS Evapotranspiration (ET) from the MOD16 Global 
Evapotranspiration product is calculated monthly at 0.05 degree as the ratio of Actual to 
Potential Evapotranspiration (AET/PET). All the MODIS products are provided in monthly time-
series at 0.05 degree (~5km) resolution from observations by the MODIS sensor on Terra (AM) 
for the period February 2000-December 2013 inclusive 
(https://ora.ox.ac.uk/objects/uuid:896bf37f-a56b-4bc0-9595-8c9201161973). 

Recent daily data can be downloaded from USGS (https://earthexplorer.usgs.gov) or 
https://lpdaac.usgs.gov/tools/data-pool/. 

Precipitation  

Can be obtained from WorldClim Version 2.1 (2020 release) as average annual precipitation from 
1970 to 2000 at 30s (around 1km2) 
(https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_bio.zip). 

Elevation  

The NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 Global 1 arc second product is 

void-filled using elevation data from ASTER, GDEM2, GMTED and NED. The data are available for 

download via Earthdata Search (https://search.earthdata.nasa.gov/search). 

Human density 

Constrained total number of people per grid-cell is provided by WORLDPOP at a resolution of 3 

arc (approximately 100m at the equator) with projection WGS84 Geographic Coordinate System. 

https://www.worldpop.org/geodata/listing?id=78  

Soil data 

The FAO Harmonized World Soil Database v 1.2 raster contains more than 16,000 soil units at 

approximately 1km resolution.  

http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-

database-v12/en/  

http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/download_en.html&head=download&type=data
http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/download_en.html&head=download&type=data
https://ora.ox.ac.uk/objects/uuid:896bf37f-a56b-4bc0-9595-8c9201161973
https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/tools/data-pool/
https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_bio.zip
https://search.earthdata.nasa.gov/search
https://www.worldpop.org/geodata/listing?id=78
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/


              
 
 

R preparation 

Open RStudio. Set the working directory (the folder containing the data and 
codes): from the top bar of the main RStudio Session-> Set Working Directory-
> Choose directory and then select your folder.  If you want to set your folder 
as default, go to Tools-> Global Options and browse the default working 
directory to select it and press OK. You should be able to see the files 
contained in the folder in the Files tab in the bottom-right panel. 

 

 

 

If have not done it yet, please install the R packages needed to run the OSSA 
functions from the lower left panel by typing (or copy and paste in R-studio 
console): 

install.packages(c("raster","sf","rrcov","sp","tmap","plotKML")) 

 

 

Alternatively they can be installed from the lower right panel and by clicking on 
‘Packages’ and click on install and type raster, sf etc... 

New directory 

List of files in 

the directory 



              
 
 

raster allows to work with raster or grid file format. A raster is a common data 
format for environmental variables (as those listed in Box 1 above). In simple 
word, a raster is just a matrix or table of values (elevation for example) with 
associated information about its geographical position and pixel (or cell) 
dimension. To import/work with rasters we will use the package raster. 

 

To activate the packages in the workspace we need to upload them: 

library(raster) 

library(sf) 

library(rrcov) #for luqdaloop 

library(sp) 

library(tmap) 

library(plotKML) 

 

 

or tick in the box next to raster, sf etc… in the list shown under the tab 
Packages in the lower right panel (this does the same as the function library). 

  



              
 
 

Optimal Spatial Sampling Algorithm (OSSA) 

The use of # after a command allow to comment without affecting the 
command itself  (therefore can be included in your copy and paste). 

 

OSSA: Step 1. Importing geographic rasters 

Let’s start importing the land cover for the area of interest. 

lc=raster("n31_05_2010lc030.tif") 

lc #and press enter 

 

This gives you useful information about the raster: resolution (30 by 30 
meters), area covered in number of pixels (dimensions and extent), projection 
(crs), directory where the original file was (source, this is likely to be different 
in your computer) and range of the values (values). The raster is “connected” 
to the original source (in order to reduce the amount of memory in use), 
therefore if you move the folder where the raster is, the object lc will not 
work.  You can visualize the imported land cover by using the function plot().  

plot(lc) 

 

 



              
 
 

 

To get familiar with the plot() options, especially on how to customize the 
location of the legend see: 
https://biologyforfun.wordpress.com/2013/03/11/taking-control-of-the-
legend-in-raster-in-r/ 

 

Here an example of customisation: 

x=c(seq(10,100,10),255) 

plot(lc,col=rainbow(255)[x],legend=FALSE) 

plot(lc, legend.only=TRUE, col=rainbow(255)[x], 

     legend.width=1, legend.shrink=0.75, 

     axis.args=list(at=x,labels=x,cex.axis=0.6), 

     legend.args=list(text='Land cover', side=4, font=2, line=2.5, cex=0.8)) 

 

 

 

  

https://biologyforfun.wordpress.com/2013/03/11/taking-control-of-the-legend-in-raster-in-r/
https://biologyforfun.wordpress.com/2013/03/11/taking-control-of-the-legend-in-raster-in-r/


              
 
 

 

Table 1. Legend for land cover. 

10 Cultivated land 

20 Forest 

30 Grassland 

40 Shrubland 

50 Wetland 

60 Water bodies in the land area 

70 Tundra 

80 Artificial surfaces 

90 Bareland 

100 Permanent snow and ice 

255 Sea 

 

lc units are in meters. To convert the raster’s units in degrees (since all the rest 
of the rasters are in degrees) use the function projectRaster from sf package. 

Mind that this step can take up to two hours to complete (depending on the 
computer – but usually 15-30min)! 

lcd=projectRaster(lc,crs="+init=epsg:4326",method="ngb",filename="lcd.grd
") 

 

You must define a filename (here we used lcd.grd, which will be saved in your 
working directory). More information on the function and in particular on the 
method “ngb” (used for categorical variables) can be found here: 
https://www.rdocumentation.org/packages/raster/versions/3.4-
10/topics/projectRaster  

 

https://www.rdocumentation.org/packages/raster/versions/3.4-10/topics/projectRaster
https://www.rdocumentation.org/packages/raster/versions/3.4-10/topics/projectRaster


              
 
 

Elevation is provided in multiple files (N06E001.hgt, N06E002.hgt, 
N06E003.hgt, N07E001.hgt, N07E002.hgt, N07E003.hgt). We will need to 
mosaic the files in order to work on a single raster instead of six. The format 
‘.hgt’ is recognised by the package raster. In order to speed up the conversion 
of the rasters and merge them we will first list them (incorporate multiple files 
in a single object). First create a vector of raster names: 

f = list.files(pattern = ".hgt", full.names = TRUE) 

 

This is looking at your directory and listing all files you have there with 
extension ‘.hgt’. Now import all the ‘.hgt’ files in a single object (elevation_list) 

elevation_list <- lapply(f, raster) 

 

lapply simply apply the function raster to each source listed in the object ‘f’ 
and create another list with all the raster imported. 

Mosaic the six rasters in a single one: 

elevation <- do.call(merge, elevation_list) 

 

again, do.call allows you to work with list (elevation_list) to produce a single 
object (this is the reason why we don’t use lapply again). 

To evaluate the success of the operation, let’s plot elevation over the land 
cover: 

plot(lcd) 

plot(elevation,add=TRUE) 

 

Make sure you have ‘plot’ open in the lower right box of RStudio. 

 



              
 
 

 

(this may look different in your computer) 

 

For precipitation we will import the BIO12 bioclim raster (annual precipitation). 
However, there are other precipitation variables that can be considered: 
precipitation of wettest month (BIO13), precipitation of dries month (BIO14), 
precipitation seasonality (BIO15) etc… . If you want to import all the 
precipitation products you will need to get the other raster from the bioclim 
project (see Box 1), extract the raster in your folder and repeat the step below 
bearing in mind to change the name of the raster you upload and create. 

prec=raster("wc2.1_30s_bio_12.tif") 

 

for a quick evaluation that prec has the same projection of the others, we can 
use the function st_crs (from package sf, already uploaded): 

st_crs(prec) == st_crs(elevation) 

 

which will return ‘[1] TRUE’, i.e. they have the same projection. 

For the soil the procedure is identical to the one above: 

soil=raster("hwsd_soil1.tif") 

st_crs(soil) == st_crs(elevation) #as a check for projection 

 

For the MODIS satellite data, we will extract three parameters: Temperature 
(Temp), Evapotranspiration (aetpet) and Enhanced Vegetation Index (EVI). 
They are provided monthly from 2000 to 2013 at a 5 km by 5 km for the entire 
globe. Therefore, we need to extract these values to a grid of the region we are 



              
 
 

interested in. Once the values are extracted, we are going to produce the 
following variables: Temp mean, Temp range (amplitude), Temp standard 
deviation; EVI mean, EVI amplitude, EVI standard deviation, aetpet mean, 
aetpet amplitude, aetpet standard deviation. 

Please be prepared, the computation will take 2 to 6 hours. In order to extract 
the MODIS data and convert in the variables described above, you will need 
the ‘pextract’ function saved in the R file ‘OSSAtools.Rdata’. 

load("OSSAtools.RData") 

args(pextract) #to see what is required to run the function 

 

To run pextract we need 3 elements: landsea, xyz and the MODIS directories 
storying the monthly files (for each parameter: Temp, EVI and aetpet). 

landsea, this object is already provided within the ‘OSSAtools.RData’ and 
allows to remove places that follow in the sea. 

xyz is the matrix of coordinates from which we want to extract the MODIS 
data. We can create this easily, but first we need to define the area we want to 
survey. For the area of Ouidah, Kpomassè and Comè we can define a square 
with the upper/left corner coordinates as 7N/1.5E and lower/right corner are 
6N/2.1E. Given these coordinates, to create a 70 by 70 grid (4900 nodes) we 
need: 

Longitudes=seq(1.5,2.1,l=70) 

Latitudes=seq(6,7,l=70) 

xyz=expand.grid(Longitudes,Latitudes) 

 

seq create a set of number starting from the first argument (1.5 in Longitudes) 
to the second (2.1), with 70 breaks (therefore the range is broken in 70 
intervals). expand.grid create all the possible combinations between 
Longitudes and Latitudes. To see the area covered by the points: 

plot(lcd,useRaster=FALSE)#useRaster=False allows a better zoom of the area 

points(xyz[,1],xyz[,2]) 

 

With xyz[,1] you are selecting the first (longitude) column of xyz, and with 
xyz[,2] the second (latitude) column of xyz. 



              
 
 

 

 

Black square shows the area interested by the grid. 

 

Finally, please keep the three directories inside a folder called MODIS. Each of 
them should have 167 files. In this way you can run the following (substitute 
‘your directory’ with the path of your computer where the MODIS folder is – 
also notice that temperature MODIS files must be stored in temp folder, 
evapotraspiration in aetpet folder and enhanced vegetation index in the evi 
folder, if you keep the same names as in the code below). 

MODIS=pextract(landsea,xyz,dire=c("C:\\yourdirectory\\MODIS\\temp","C:\
\ yourdirectory\\MODIS\\aetpet","C:\\ yourdirectory\\MODIS\\ 
evi"),stat="T",varn=c("Temp","ET","EVI")) 

 

MODIS is a table with 3825 rows (representing a grid of the area) and 514 
columns, e.g. monthly averaged of the 3 parameters from February 2000 to 
December 2013 (167 values for each parameter) plus the mean, amplitude and 
standard deviation for the entire time series (one value each, for each 
parameter).  

Instead of using all the 514 columns, we will use the total mean, amplitude and 
standard deviation for each parameter (temp, evi and aet), including the 
longitude and latitude (columns 1 and 2): 



              
 
 

MODIS2=MODIS[,c(1:2,172:174,342:344,512:514)] 

 

To look at the first 6 rows: head(MODIS2). MODIS and MODIS2 contain some 
NA values or infinite. To remove the rows with NA: 

MODIS2=na.omit(MODIS2) 

xyz=MODIS2[,1:2]   #this is needed for later 

 

Let’s check if we have any infinite value. 

MODIS2=as.matrix(MODIS2) #this helps all the next calculations 

length(which(is.finite(MODIS2)==FALSE)) 

 

As you can see the length is 0, we don’t have infinite values and neither NAs. 

Finally combine the MODIS data with land cover, elevation, precipitation and 
soil information in a new table called data: 

data=cbind(MODIS2,extract(lcd,xyz),extract(elevation, xyz),extract(prec, xyz) 
,extract(soil, xyz)) 

colnames(data)=c("x","y","temM","temV","temA","etM","etV","etA","eviM
","eviV","eviA","LC","Elev","Prec","Soil") 

data=na.omit(data) #for the NAs in lcd, elvation, prec and soil 

data=as.data.frame(data) 

 

We have removed other NAs using again na.omit. Now data table is ready to 
be used for step 2 of OSSA (classification). 

  



              
 
 

OSSA: Step 2. Ecological classification 

 

Box 2. Discriminant analysis. 

 

The ecological classification is based on a locally (or spatially) adjusted 
quadratic discriminant analysis (Box 2). Before running this algorithm, we need 
three preliminary steps. 

The first is to define the training classes. Assuming that land cover (in our data 
is the column ‘LC’) is the strongest local factor, then we can decide that land 
cover defines (or drives) the ecological classes. For simplicity, at the beginning 
we can consider the number of ecological classes equal to the number of land 
cover classes in the area. Given land cover = class, the second step is to check 

The theory on discriminant analysis, a multivariate method for clustering, is based on the 
multivariate normal distribution, which parameters are the mean (of the environmental 
variables at the class-point locations) and the variance-covariance matrix (of the environmental 
variables at the class-point locations). 

When the variance-covariance matrices are not homogeneous (essentially, are not the same) for 
two or more classes, linear discriminant analysis cannot be used (just to remind you that linear 
discriminant analysis assumes that all the classes have the same variance-covariance matrix but 
not the mean). Instead a non-linear (quadratic) Discriminant Analysis (QDA) can be applied, with 
discriminant function as: 

 

𝑓𝑖
𝑄
= −

1

2
log|𝚺𝑖| −

1

2
((𝐗 − 𝜇𝑖)

𝑇𝚺𝑖
−1(𝐗 − 𝜇𝑖))+ log(𝑝𝑖) 

 

Where X is the matrix of variables, µ the vector containing the mean of each variable and Σ is the 
variance-covariance matrix, and i is the class.  The larger is the f value, the higher is the 
probability that the point belong to the i group. 

As you can notice, apart from the last term (log(pi)), the rest is exactly the equation of a 
multivariate normal distribution. The pi (the “prior” probability of each point to belong to the 
class i) can be calculated in a number of ways, usually by “equal priors” method: each class has a 
prior probability equal to 1/number of classes. In this analysis, and in order to take into account 
the spatial proximity of the classes, a local frequency prior methods was used. It estimates the 
class pi prior probability as the relative frequency of points belonging to i class in the (pre-
defined) neighbourhood. 

For classification, a new data point can be assigned to the class at which the fi is at a maximum.  
By calculating the position of a point with respect to all available class centroids, it is possible to 
calculate the probability of membership to each class, or in other words, a point is allocated to 
the class for which fQ is maximum. 



              
 
 

the size of each class. Classes with a small amount of points can produce errors 
(technically a singular matrix). As a role of tomb, we expect to have a number 
of records for each class at least 5-10 times more than the number of 
predictors. To see how many records we have for each class simply use the 
function table(): 

table(data$LC) #Note the use of $ to select the column we want to use 

 

In our data there are 7 land use cover classes (see Table 1 above and this link 

for additional explanations: 

http://www.globallandcover.com/Page/EN_sysFrame/dataIntroduce.html?col

umnID=81&head=product&para=product&type=data).  

Three of them show a small number of records: 30 (Grassland), 50 (Wetland), 

60 (Water bodies). To simplify, we will merge 30 (Grassland) with 40 

(Shrubland) and 50 with 60. To do this we create a new column LC2 identical to 

LC: 

data$LC2=data$LC 

 

and replace LC 30 and LC 50 with 40 and 60 respectively: 

data$LC2[data$LC==30]=40 #replacing 30 with 40 

data$LC2[data$LC==50]=60 #replacing 50 with 60 

 

Now LC2 contains 5 classes instead of 7: 

table(data$LC2) 

 

The third step (although not necessary) is to remove variables with low 

correlation with land cover (LC2), i.e. lower than |0.01| (absolute value of 

0.01).  

If you want to proceed with this, you can look at the correlations by using the 

function cor(). We don’t need correlation between all the variables, therefore 

we will only focus on the correlations with LC2: 

http://www.globallandcover.com/Page/EN_sysFrame/dataIntroduce.html?columnID=81&head=product&para=product&type=data
http://www.globallandcover.com/Page/EN_sysFrame/dataIntroduce.html?columnID=81&head=product&para=product&type=data


              
 
 

cor(data)["LC2",] #in this way it returns only theLC2 correlations 

 

We remove temA (-0.005), eviM (0.002), and Elev (-0.003): 

datared=data[,-c(9,12,13)] #removing the fifth, ninth, … columns 

If you use datared, make sure to substitute datared with data in the luqdaloop 

command below. 

 

Finally, the data is ready to go through the local quadratic discriminant 

analysis. The function to use is luqdaloop (already available since contained in 

OSSAtools.RData that you have previously loaded) that calculates the quadratic 

discriminant analysis for the given dataset, plus collapse or merge the classes 

to a given fixed maximum number of classes, and perform cross validation. 

classanalysis=luqdaloop(X=data[,c(3:11,13:15)],y=data$LC2,grid=data[,1:2],n

=0.1,nx=7) 

 

X is the matrix of variables used to classify the ecology of the area (excluding x 

– the longitude - and y – the latitude - because they are considered in the grid; 

and LC – column 12 - because we are using LC2), y is the initial or prior classes 

(here assumed coincident with land cover), grid is the two columns matrix with 

coordinates of each record.  To calculate the local frequencies (prior 

probabilities) we used a circular neighbourhood of 0.1 degrees (almost 12 km), 

quite a large one (18 points in each direction). Finally, nx is the maximum 

number of classes allowed (from splitting existing ones). 

 

luqdaloop selects the best classification as the one with a relative minimisation 

of the Wilks’ lambda value, equivalent to a minimisation of the within class 

variance. We talk about ‘relative minimisation’ because the algorithm search 

to the largest decrease in the Wilks’ lambda value from a classification with n 

classes to a classification with n+1 classes. 

 



              
 
 

The result classanalysis is a list containing the following values (you can see 

the list of objected contained in classanalysis by typing names(classanalysis) 

and press enter): 

1. WilksSummary, a table showing the Wilks value for each number of 

clusters (first row), the prediction error (second row), the Wilks value for 

the test data (third row), and the prediction error for the test data (forth 

row). If no number of records was defined for the argument test in 

luqdaloop the last two rows will not show any values. 

2. Cluster classifications. For nx clusters, classanalysis will show 2cluster, 

3cluster… nx cluster. Each of this element is itself a list containing 11 

elements (see below). 

3. ExcludedData. For some classes it is not possible to evaluate the 

discriminant value (often because the predictors tend to not vary much 

within this class) and therefore they are excluded or simply considered 

as a cluster that cannot be split or merged. This value is present only if 

data is excluded. 

4. NewData. This is the same data in input with the priors and new 

classification. This is what will be used at the next OSSA step. 

Each cluster classification contains: 

1. WMqr, a list of pooled variance/covariance matrix for each class. 

2. GM, a list of predictors means for each class. 

3. ldet, a numeric vector containing the determinants for each class. 

4. prior, a matrix where for each record (row) the probabilities to belong to 

the different classes (columns) are provided. 

5. scores, a numeric vector of discriminant values. 

6. classification, a vector of new classes attributed at each record. 

7. confusion, confusion matrix. 

8. error_rate, probability to not belong to the cluster attributed in 

classification. 

9. Wlambda, Wilks’ lambda statistic for the classification. 

10.  Nclasses, classes and classes size of the classification. 

11.  Classes, a numeric vector with original classes. 

 

To print the Wilks’ summary, simply: 



              
 
 

classanalysis$WilksSummary 

or 

classanalysis[[1]] #show the first element of the list 

 

To print the confusion matrix from classification with 4 classes: 

classanalysis[[4]][[7]] 

 

4 is the slot for 4 classes classification and within it 7 is the slot containing the 

confusion matrix. 

When luqdaloop finishes it prints the number of optimal classes found. You 

can also retrieve it by first extracting the new data and applying table to the 

new classification: 

newdata=classanalysis$NewData 

table(newdata$BestClass) 

 

It is clear that the algorithm found 4 best classes in which it merged class 60 

with 80 (water bodies with artificial surfaces). This is not surprising since large 

urbanisations are close to wetlands and water bodies. 

IMPORTANT: some of the original records may be re-classified. For example, 

compare the results from table(newdata$BestClass) with table(data$LC2), you 

will notice a decrease/increase in some land cover. This is because once, 

luqdaloop calculates the probability for each record to be in a specific cluster, 

it will assign the cluster associated with the largest probability to the record. 

Now if you want to plot the Wilk’s over the number of classes:  

plot(2:7,classanalysis[[1]][1,2:7],main="Wilks' 

Lambda",ylab="Lambda",xlab="N classes",type="l") 



              
 
 

 

7 was the number of classes explored (see luqdaloop command above). 

 

From the plot above the largest difference (or drop) in the lambda is when 

passing from 3 to 4 classes. Therefore 4 classes are the best classification.  



              
 
 

Finally, let’s plot the new classification: 

map=newdata[,c("x","y","BestClass")] #creating an object with x,y and class 

coordinates(map)=~x+y   # defining the coordinates’ columns 

gridded(map)=TRUE    

proj4string(map)=(CRS("+init=epsg:4326")) #defining the projection 

map=raster(map)    #converting in raster 

 

tm_shape(map)+tm_raster()  #plot 

 

or to plot onto a map: 

tmap_leaflet(tm_shape(map)+tm_raster()) 

 

To plot on google earth (make sure you have launched google earth first): 

plotKML(map)  

 

If not lunched, go in your working directory and double click on the file 
‘map.kml’ 

 

A useful tutorial on plotKML can be found at the following URL: 

http://gsif.isric.org/doku.php/wiki:tutorial_plotkml 

 

 

 

  

http://gsif.isric.org/doku.php/wiki:tutorial_plotkml


              
 
 

OSSA: Step 3. Lattice with close pairs design for the spatial allocation of sampling sites 

We will use the object map created in the previous step as the area where to 
optimise the sampling design based on the ecological classes identified above. 
See the properties of this raster by typing map and pressing enter: 

 

 

We have already described these properties in step 1. As shown in attributes, 
classes are converted in numeric values. In fact, the best classes (10, 20, 40, 
MC60.80 called ‘levels’) are converted into classes 1, 2, 3 and 4 respectively 
(see ‘ID’). This is important for interpreting maps and running the spatial 
sampling design algorithm. 

The allocation of the sampling locations in each of the classes of map area is 
through a non-adaptive sampling design: sampling locations are chosen in 
advance of any data collection. 

Our optimisation of the spatial sampling design follows the theory of the 
mixture design known as lattice with close pairs which itself can be considered 
as an extension of an inhibitory designs adapted for inclusion of random close 
pairs (Box 3). In fact, this design combines random close pairs design (good for 
parameter estimation – i.e. reduces model uncertainty) with lattice design 
(good for estimation when parameters are unknown – i.e. increases accuracy 
in predictions). 

 



              
 
 

Box 3. Spatial sampling designs. 

 

The function ‘lcp’(lattice with close pairs - already available since contained in 
OSSAtools.RData that you have previously loaded) distributes M (G+R) 
sampling points under three conditions: (i) G % of sampling points are in grid 
(lattice), (ii) R % are close-pairs randomly allocated; and (iii) each stratum (or 
class) must contain a number of points proportional to the stratum size.  

To run lcp we need the map object created above, e.g. a raster with classes, 
and the following set of parameters: 

delta inhibition distance or minimum distance between any two locations. 

zeta  radius around each grid location where to allocate the close pair(s) 

total total number of locations to be optimised 

grid proportion of locations in grid, the rest (1-grid) will be allocated as close 
pairs. 

 

If sampling sites are preferentially chosen to capture larger (or smaller) than average 
values of a response, e.g., areas with abundant mosquitoes or with higher malaria 
transmission, then subsequent estimation and prediction of the exposure surface using 
standard geostatistical methods may be misleading due to the selective sampling.  
Practical needs or deliberate actions often lead to preferential sampling.  

A combination of theoretical and empirical work has led to general acceptance that 
lattice designs should lead to efficient spatial prediction provided model parameters are 
known. If model parameters are unknown, a completely random design has the 
advantage that it will include a wider range of inter-point distances, and in particular 
some small inter-point distances, and so provides more information on the shape of the 
spatial covariance function. However, the resulting uneven spatial distribution makes 
prediction less efficient, given the model parameters, and leaves open the possibility of 
systematic bias. In inhibitory design parameters are unknown. Points are chosen at 
random but with the constrain that the distance between points are not less than a 
certain value.  We included the conditions that random points are close pairs of a 
random selection of nodes from a sampling grid.  The term ‘close pairs’ here is used 
loosely, since not all the points in the grid will have a close pair, and some close pairs 
may be shared between points. 

Other randomised designs include: complete randomised design stratified or clustered; 
completely regular lattice design (square, equilateral, triangular or hexagonal); random-
tessellation stratified design which guarantees that no point from the target population 
is too far from a sampling point; and that few points are very close together. 



              
 
 

delta and zeta can be chosen based on the spatial process (e.g. zeta equal to 
the spatial range of the process under study, e.g. dispersion of a mosquito) 
while delta can be based on the desired spatial coverage (a larger delta allows 
to increase the probability to have sparse close pairs within the grid, and 
improve homogenous coverage of the area).  For this example we have chosen 
a delta of 1km (0.01 degrees), zeta of 0.16 degrees, total of 30 locations and 
grid =0.7 (equivalent to 70% - 20 locations allocated in grid). 

sites=lcp(map,delta=0.01,zeta=0.16,total=30,grid=0.7) 

 

The optimised locations are shown in the figure below. The object sites is a 
matrix with coordinates, class and type columns. ‘type’ is coded ‘G’ if the 
location is allocated in the grid or ‘I’ if it is allocated as close pair. 

plot(map) 

points(sites[,1],sites[,2]) 

 

 

  



              
 
 

OSSA: Step 4. Adaptive sampling design 

The 3 first steps of OSSA were designed to optimise the spatial allocation of 
survey locations based on the ecology and the spatial characteristics of the 
process under study (malaria distribution, mosquito presence/absence etc…). 
The assumption is that the process is dependent on the ecology of the area 
under study and its variation is spatially dependent. We have not used any 
available data that can describe the process since we assumed operating in 
absence of any prior information. 

But when previous data is available, we may want to conditionate the new 

sampling to existing information in what is called an ‘Adaptive sampling 

design’: sampling locations are chosen sequentially (singly or in batches) during 

the data collection or during the design of the sampling campaign based on 

historical data. The adaptive approach is preferential since guided by a 

predictive target (e.g. where the prevalence is above a certain threshold or for 

error minimisation). These sampling designs are becoming more important in 

poor resource settings where uniformly precise mapping may be unrealistically 

costly and the priority is often to identify critical areas where interventions can 

have the most health impact. Two constructions are often applied: singleton 

and batch adaptive sampling. In most settings, batch sampling is more 

convenient than singleton sampling (one new location is added at each 

sampling iteration). 

 

Here we provide a simplified adaptive sampling design function (asd) with the 
choice of two targets: ‘U’ minimise uncertainty and ‘H’ maximising accuracy in 
hotspot (large value of the process – probability of presence of mosquitoes for 
example) definition.  

In the following example asd is applied to previous Benin mosquito collection 
carried in the same area in 2018. The table is called benin and contains the 
longitude (x), latitude (y), number of Anopheles gambiae collected overnight 
(AnGam), the week of collection (Week), the village (Village), land cover class 
(LCD), elevation (Elev) and soil type (Soil). The adaptive sampling will be 
targeting the hotspot of An. gambiae – e.g. where the mosquito is more 
prevalent with less certainty (target ‘H’ as described in the paragraph above). 
In order to identify the adaptive locations we need to consider the continuous 
area around the benin locations. This area is described by the beningrid table 



              
 
 

which contains the same elements of benin that will be used in the model 
apart from the outcome (AnGam). 

benin, beningrid and asd are already available since contained in 
OSSAtools.Rdata that you have previously loaded. 

 

The arguments in the asd function are: 

Data the data to be modelled (including outcome, predictors and 
random effects); 

area the area to be considered for sampling; must include the same 
predictors and random effects as in Data; 

formulaf formula of the model for the fixed effects; 

formular formula of the model for the random effects; 

total batch of adaptive sampling locations to be allocated 

delta inhibition distance or minimum distance between any two 
locations. 

 

The modelling is done via glmmPQL 
(http://127.0.0.1:25126/library/MASS/html/glmmPQL.html) that allows for 
random effects to control for ‘grouped variability’; and for explicit definition of 
the correlation function (exponential). 

Let’s assume we want to allocate 15 trapping locations at a minimum distance 
of 0.01 degrees (max undefined), then we simply run the following function: 

adaptiveSites=asd(Data=benin[,-5], area=beningrid, formulaf = 
as.formula("AnGam~Week+Elev+Soil"), formular = as.formula("~1|LCD"), 
target="H", total=15, delta=0.01) 

 

Note benin[,-5] it means that we are not using the fifth column (Village) in 
benin table. The used predictors are Week, Elevation and Soil, while the 
grouping variable is the land cover. 

The visual results are shown in the figure below (the crosses are the adaptive 
locations). 

 

http://127.0.0.1:25126/library/MASS/html/glmmPQL.html


              
 
 

 

To view the adaptive location information saved by the asd function, simply 
digit adaptiveSites and press enter: 

 

 

 

‘Fit’ are the values predicted by the glmmPQL model and ‘Uncertainty’ is the 
standard errors around these predictions. 
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