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Abstract

Climbing plants exhibit specialized shoots, called “searchers”, to cross
spaces and alternate between spatially discontinuous supports in their
natural habitats. To achieve this task, searcher shoots combine both pri-
mary and secondary growth processes of their stems in order to support,
orientate and explore their extensional growth into the environment. Cur-
rently, there is an increasing interest in developing models to describe
plant growth and posture. However, the interactions between the sens-
ing activity (e.g. photo-, gravi-, proprioceptive sensing) and the elastic
responses are not yet fully understood. Here, we aim to model the exten-
sion and rigidification of searcher shoots. Our model defines variations
in the radius (and consequently in mass distribution) along the shoot
based on experimental data collected in natural habitats of two climbing
species: Trachelospermum jasminöıdes (Lindl.) Lem. and Condylocarpon
guianense Desf.. Using this framework, we predicted the sensory aspect
of plant, that is, the plant’s response to external stimuli, and the plant’s
proprioception, that is, the plant’s “self-awareness”. The results suggest
that the inclusion of the secondary growth in a model is fundamental
to predict the postural development and self-supporting growth phase of
shoots in climbing plants.
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Author Summary

Plant growth is influenced by many external and internal factors, such as light,
gravity, structural flexibility of the stem or hormone fluxes. In recent years,
plant movements and modelization have received an increasing attention, lead-
ing to a better understanding of plant development. In this work, we introduce
a 2D model for self-supporting structures developed by climbing plants. This
model is in the direction of filling the gap that currently exists between models
for plant sensing activity and models focused on the mechanical aspect of plant
growth. Indeed, we consider the response of the plant to external cues together
with the capability of the plant to perceive itself (proprioception) and the radial
expansion process (secondary growth). We then see how to retrieve the model
parameters from a minimal set of experimental data and finally test the model
by comparing its numerical simulations with real plant shapes. Our result shows
that a better consideration of mass distribution along the shoot is important to
understand the shape of self-supporting structures.
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1 Introduction

The seminal work of Charles Darwin (1865) on the support-searching move-
ments of climbing plants opened up new paths of thinking on plant life histories.
Known to be the longest plants on land, climbing plants exhibit a wide diversity
of mechanical architectures and ecological strategies [1] across many different
phylogenetic groups [2]. Unlike trees that remain self-supporting throughout
their entire life cycle, climbing plants are well-known for relying on physical sup-
port to grow vertically and towards light. To exploit supports, climbing plants
rely on a developmental phase, known as “searcher shoot”, which is specialized
in crossing gaps, and searching and attaching to supports [3, 4]. To achieve these
tasks, searcher shoots combine primary and secondary growth processes and ac-
tively modulate their development according to internal and external stimuli [5].
For example, it is well known how the contact with a support induces specific
growth responses (i.e. thigmomorphogenesis), but it remains poorly understood
how searcher shoot respond and interact with gravity during different kinds of
exploratory tasks, such as growing in a specific direction or exploring volumes
by circumnutational movements.

1.1 Plant shape and movement as a stimuli-response phe-
nomenon

The responses that led to a turning movement and alignment of growth of a
plant organ with respect to external vectorial cues have been known for many
years as tropisms [6, 7]. A plant organ may tend to orient or grow towards a

2



stimulus (positive tropism), or away from it (negative tropism) [8]. For exam-
ple, many aerial shoots of plants grow upwards against gravity whereas most
roots tend to grow downwards [7] to locate the ground. Both organs perceive
gravity via modified plastids (statholits) within specialised cells (statocytes),
but the growth responses are induced by different biochemical signalling and
auxin flux carriers [9, 10]. Supported by mathematical analysis and models, the
gravitational responses have been linked with the statholits sedimentation, as
well as the diffusion of auxin, and they are considered in terms of differential
growth within the plant body [11, 12, 13, 14]. Given the complexity of inter-
action between the growing activity of plants and external and internal cues,
growth movements can be viewed as an integrative response to diverse specific
stimuli-response processes.

1.2 Brief review of mathematical models

One of the earliest studies investigating the stimuli-response behaviour in plants
was carried out by Julius Sachs in 1882 [15]. As a result of his observations, the
formation of curvatures along the plant body against gravity had first only been
linked to gravity perception during primary growth. The upward bending move-
ment of the shoot being stronger in the horizontal position then the vertical one
has been described according to the “sine law” because it can be reformulated
with the relation ∂tκ ∝ sin θ. Here ∂tκ is the curvature change rate and θ is
the inclination of the stem. This fundamental relation between curvature and
inclination has remained in the biological cultural framework for over a century.
Only in 2013 the mathematical studies of Bastien et al. [16] demonstrated that
if the phenomenon of the response to gravity is described only on the base of
the sine law, the plant can never reach a vertical steady state. This is due to
infinite lateral oscillations that would arise during the upward growth of the
shoot. To stabilise the self-supporting system, the sine law was modified with
a positive proprioceptive term, becoming ∂tκ ≈ sin θ − κ. This additional term
tends to regulate high curvature κ towards 0 in time.

In parallel with the sensing activity of the plants, a wide literature has been
developed on the physical and mechanical properties of shoot growth [17, 18, 19,
20, 21, 22, 23]. Knowledge of developmental changes and physical parameters,
such as diameter, length and stiffness have been considered as the main de-
scriptors of the stem shape. Founded on the Euler-Bernoulli beam theory, these
mathematical models assume that a plant shoot behaves as a growing elastic
rod, and they are mainly based on two configurations: (i) the current configu-
ration, which corresponds to the actual shape of the elastic rod when subject
to gravity or any external forces, and (ii) the relaxed or intrinsic configuration,
that is the shape of the rod in the weightless limit case. In particular, in case
(ii), the shape of the rod is described by a purely geometric evolution equation,
which neglects mechanical effects. Further details about these configurations
are given in section 2.1.

Recent studies have also combined analysis on gravitropism and propriocep-
tion along with studies on the mechanics of growth, including a planar model
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of a growing plant [24]. Here the elastic rod is subject to the effects of gravity
and develops according to the sine law corrected via a proprioceptive term as
proposed in [16]. Some excellent guidelines in the modelisation of the sensing
activity and its interaction with the plant growth mechanics can be found in
[25, 26, 27].

In these models the formation and the growth of tissue layers, resulting from
the secondary growth, together with the development of the intrinsic curvature
in function of the shoot inclination and the proprioception have never been
considered [27]. For example, some models have included a linear density pa-
rameter ρ, which is constant along the stem and doesn’t change over time (for
instance, [11, 24]). This potentially limits two important features characteris-
ing actual shoot growth: first, it assumes that the shape, the size of the stem
cross-section and any internal growth expansion of mechanical tissue (e.g., of
the wood cylinder) remain constant over time. Second, it does not take into
account the build-up of mass along the the shoot due to secondary growth of
the wood cylinder and other tissues. Early development of additive growth,
maturation and stiffening of mechanical tissue via early secondary growth are
key development features in plant shoots in general and especially in young
searcher shoots of climbing plants [28, 29, 30]. Stem stiffness and rigidity can
be significantly modified by even small changes of expansion of the wood cylin-
der within the primary body of the plant stem even before noticeable changes
in external stem diameter [3]. However, this is only one of the possible ways in
which a searcher shoot can adjust its mechanical properties. From its base to
the apex, a shoot can adjust its rigidity by decreasing the radius, modifying the
structure and the chemistry of tissues [31] or modifying the gradient of tissue
stiffness along the stem. The complexity of the interaction between all these
mechanisms likely leads to a very complicated gradient of organisation, which
are arguably difficult to capture or integrate using a single unifying model.

1.3 Purpose of the study

The aim of this study is to display the relevance of the mechanics in the be-
haviour of a climbing plant searcher shoot, considering in particular the radial
expansion of the main stem. To this end, we first develop a mathematical model
able to capture a variety of shapes and orientations observed in climbing plant
searchers; second, we develop an approach to reconstruct extensional growth
against gravity from a static description of the shoot final state. This approach
aims to use a minimal number of parameters, which can be relatively easily
obtained from field observations of different species with variable behaviours.
In particular, we aim to show how the interplay between variable linear den-
sity, proprioception and external stimuli can generate shape and orientations of
searcher shoots in two different climbing plants species in the family of Apocy-
naceae: Trachelospermum jasminöıdes (Lindl.) Lem. and Condylocarpon guia-
nense Desf. These relatively close-related species have been chosen because they
share some fundamental properties during their searching and twining growth
behaviour. Both species (i) attach to support by twining; (ii) are capable of
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reaching similar maximal reach capacities of around 110 cm in length (iii) and
have similar values of structural Young’s modulus at the base of searcher shoots
of around 3000 N m−2 [29, 30].

In order to model a generically directed stimulus we consider the equations
used by Guillon et al. [21] corrected with the proprioceptive term introduced
by Bastien et al. [16]. The resulting growth dynamics is addressed through
numerical simulations. Some recent studies have used numerical tools based on
arbitrary parameters to illustrate generic mechanical behaviours through simu-
lations [11, 24, 12]. Rather than arbitrarily calibrating every parameter, we set
their order of magnitude using measured data from two climbing plant species
T. jasminöıdes and C. guianense growing in natural conditions. This enabled
us to calibrate the morphological parameters as well as the measurements of in-
ternode length at different times, which were crucial for estimating the growth
parameters.

1.4 Glossary

In this study, we use some technical terms that might not be familiar or that
need clarification for a diverse scientific community. To avoid confusion, we
present a short glossary here.
Searcher shoot: The developmental phase of a climbing plant responsible
for spanning gaps, foraging for support and attaching. A searcher shoot al-
ways includes a main axial structure (most often a stem) which is mechanically
self-supporting from the base. According to the species, it may bear differ-
ent structures such as leaves, and branches, as well as structures modified into
attachment systems such as tendrils and stem segments capable of twining.
Searcher stems can often undergo growth-induced movements specialized in ex-
ploring its vicinity and support attachment.
Reach: The effective length observed between the apical tip of a searcher shoot
and the basal point from which it is attached or fixed (see figure 1a). Maximal
reach can be viewed as a functional descriptor of searcher-shoot gap-spanning
capacity in a functional and ecological context.
Orientation: The slope of the line joining the base with the tip of a searcher
stem in a vertical plan. Here, the orientation was measured only at the final
configuration when the searcher shoot was estimated to have attained its max-
imal reach in a self-supporting state (see figure 1a).
Primary Growth: The increase in growth results from cell division in the
apical meristem of axes and subsequent cell elongation and maturation. These
lead to the growth in length of the searcher stem. In this paper we use the term
extension as the morphogenetic additive process leading to the “lengthening” of
a shoot during primary growth. Hence, the term describes a macroscopic phe-
nomenon that implicitly includes smaller-scale growth processes such as: cell
initiation, multiplication, differentiation and maturation.
Secondary Growth: The increase in growth that results from cell division
by the vascular cambium; a ring-like meristematic tissue producing wood (sec-
ondary xylem and ray tissue) and secondary phloem. Subsequent expansion and
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(a) (b)

Figure 1: (1a): Reach and orientation in searcher stems. Measurement of reach and
orientation in a typical searcher shoot of a climbing plant. The reach is measured as
a straight line form the base of the searcher stem at its point of attachment with the
parent bearing stem to the curved hook-like apex. It represents the effective distance
a self-supporting searcher stem often capable of movement towards the apex. The
orientation is the slope of that joining line with respect to the horizontal line.
(1b): Schematic illustration of the curve elaborated by the mathematical model. At
each time t of searcher shoot growth, the mathematical model represents its position in
the space with a curve r. In the figure, e1 and e2 are the two orthogonal vectors that
span the plane in which the curve is confined. So, these vectors correspond respectively
to the (x, y) coordinates of the curve. For a given time t, any point of the curve is
identified with the vector r(S, t), where S is a parameter which varies in [0, ℓ0]. The
figure shows that the mathematical model leads the point of the curve at time zero
with position r(S, 0) to the point at time t with position r(S, t). Each point r(S, t)
of the curve has a certain inclination to the vertical line, denoted by θ(S, t). ℓg is the
parameter used by the model as length of the extension zone. The sensing equation
and the growth involve only the points of that zone.

maturation of additionally formed cells leads to a radial thickening of the stem.
Rigidification: The phenomenon of stem thickening and stiffening that can be
achieved by radial growth and cell maturation. Here, changes in geometry and
material properties of the stem are implicitly considered.
Proprioception: The capability of the shoot to perceive changes in shape and
orientation in terms of curvature and to respond to these changes in order to
restore local straightness.

2 Materials and Methods

2.1 Formulation of the model

The searcher stem is modeled as an unshearable and elastically inextensible rod.
We consider the curve r identifying the centreline of the rod to be confined in a
plane spanned by two orthonormal vectors {e1, e2}. We assume that the curve
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r is parametrized with respect to its arc length s ∈ [0, ℓ(t)], where ℓ(t) is the
length of the curve at time t ∈ [0, T ]. We call ℓ0 = ℓ(0) the initial length of the
curve r. The change over time of the total length is due to the extension process
that takes place in a region of finite length ℓg located at the apex of the plant
(see Figure 1b). The points of the plane {e1, e2} that at time t belongs to r are
uniquely identified by s and we indicate them with r(s, t). In the terminology
used in the introduction, r(s, t) can be regarded as the position of the current
configuration of the curve. Since we assume that the curve evolution is confined
in the plane spanned by {e1, e2}, it is convenient to describe the position of
the curve using the angle θ(s, t) between the tangent vector at the point r(s, t)
and the vertical line e2 (see Figure 1b). In particular, the curvature of the
curve at the point r(s, t) is provided by ∂sθ(s, t), where ∂s denotes the partial
derivative with respect to s. To describe the elongation process, we consider
another parametrization of the curve which is independent of time t. By calling
S ∈ [0, ℓ0] the arc length parameter of the curve at the initial time, the parameter
s can be considered as a function of S and t. Indeed, as long as s(S, t) is inside
the extension zone, the infinitesimal ratio ∂s

∂S (S, t) increases uniformly at rate
G0 according to the following equation:

G(s, t) =

{
G0 if s(S, t) ∈ [ℓ(t)− ℓg, ℓ(t)]

0 otherwise,

∂t∂Ss(S, t) = G(S, t) · ∂Ss(S, t),
(1)

where ∂t denotes the partial derivative with respect to t. This law describes the
primary extension process and we refer to G0 as the extension parameter.

We now introduce the equations which characterize the sensing activity of
the plant. The equation that we use is strongly related to the one described in
[21] for growing trees. For modelling growing trees, the fundamental assumption
is that the new layer of material formed during the secondary growth process
do not affect the balance of the total forces and momenta which were previously
applied to the stem [32]. Using a formal mathematical description, this means
that the infinitesimal mass accretion due to secondary growth affects the intrin-
sic curvature κ, but not the current curvature ∂sθ. Here, we have used the term
“intrinsic curvature” to denote the curvature of the intrinsic configuration and
we have used the term “current curvature” to denote the curvature of the cur-
rent configuration. The mathematical relation capturing how new layers affect
the tree shape is provided by the equation [21]

∂tκ = −∂tB

B
(κ− ∂sθ), (2)

where B(s, t) is the flexural rigidity of the rod at r(S, t).
By also taking into account the effect of the tropisms and of the propriocep-

tion [21, 16], we obtain the following equation for the development in time of
κ:

∂tκ =
GvR
R2

(α cos θ − β sin θ)−Gγ∂sθ − δ
∂tB

B
(κ− ∂sθ). (3)
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Here, the parameters α and β represent the response to a directional stimulus,
while γ represents the sensitivity with respect to the proprioception. We will
refer to them as sensing parameters. δ is the parameter regulating the intensity
of the radial expansion effect on the shoot development. R is the radius of the
circular cross section and vR is the radial expansion rate. Similarly to what was
done in the work by Bastien et al. [33], the dependence on the radius (and in
our case, also on the radius expansion rate) is only on the term α sin θ−β sin θ.

We now consider the effect of the elasticity on the climbing plant shoot
development. The usual fundamental assumption is the following: the elastic
equilibrium time scale is much shorter than the growth time scale [19]. In other
words, the interval of time that the climbing plant shoot takes to reach the elastic
equilibrium is not sufficiently long to observe any change in the climbing plant
shoot total length or in the secondary growth. Such a modelling assumption
justifies the use of elastic equilibrium theory for filaments shapes (see S1 for
further details). To compute the total force at a point of an elastic rod under
the sole effect of gravity, one needs to know the total weight applied at that
point. We refer to the term linear density ρ as the amount of mass per unit
of length, while we refer to volume density ρ3 as the amount of mass per unit
of volume. So, the total weight of a shoot can be obtained by integrating the
linear density of the main stem on [0, ℓ(t)] and by adding the leaves mass ml,
which vary both in time and in space along the stem. These considerations lead
to the following relation:[∫ ℓ(t)

s

ρ(σ, t)dσ +ml(s, t)

]
g sin θ(s, t) = ∂s[B(s, t)(κ(s, t)− ∂sθ(s, t))], (4)

where ml(s, t) is the leaves mass from the apex to the point s ∈ [0, ℓ(t)] and g
is the gravitational acceleration constant. One can observe that in equation (3)
the current curvature ∂sθ(s, t) affects the intrinsic curvature κ(s, t) through the
proprioceptive term, but the latter is different from the former. In the weightless
case (that is, when the left hand side of equation (4) is constantly vanishing),
the climbing plant weight no longer influences the climbing plant development,
which is then fully described by the sensing equation (3), with κ = ∂sθ.

We now introduce a further equation connected with the variability of the
linear density ρ, which is related with the flexural rigidity B. Naming E the
Young’s modulus, by definition of flexural rigidity we have B(s, t) = EI(s, t),
where I(s, t) is the second moment of area at s ∈ [0, ℓ(t)] and at time t. Notice
that, if we assume that the climbing plant shoot has a circular cross section of
radius R(s, t), the second moment of area is I = π

4 (R(s, t))4 and the volume
density ρ3(s, t) is related with the linear density ρ(s, t) via the equality ρ(s, t) =
ρ3(s, t)π(R(s, t))2. This leads to the following formula, which expresses the
proportionality between flexural rigidity and the square of the linear density:

B(s, t) =
E

4ρ3(s, t)2π
(ρ(s, t))2. (5)
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2.2 Preliminary Simulations

As a preliminary step, we study the effects of variable density induced by the
secondary growth on the model (1)-(5). For reasons of comparison with the
models in the current literature, the development of the intrinsic curvature κ and
the flexural rigidity B have the expressions displayed in equations (2.3) and (2.7)
of [24]. The simulations that we run are set in different gravitropic sensitivity
conditions and consider cases with constant density as well as cases with variable
density. Since we want to compare the effect of the change in weight distribution,
the total mass M is the same in each case. With the exception of the linear
density distribution, all the remaining sensing and morphological parameters
are arbitrarly chosen as displayed in table 1. The values for the linear density in
the constant and in the variable cases were instead determined as follows. The
variable density at each point of the stem is given according to (5) as ρ =

√
B/a,

where a is a proportionality coefficient. On the other hand, we denote with ρc
the linear density for the constant case. Since we want the plants to have the
same total massM at a certain time T (which is the same in all the simulations),
we determine the values of a and ρc so that

M =

∫ ℓ(T )

0

√
B(σ, T )

a
dσ = ℓ(T )ρc, (6)

where ℓ(T ) is the length of a plant stem at time T which grows following the
equations (1) with the parameters in table 1. To improve the comparison be-
tween the constant density case and the variable one, in addition to ρc we chose
further values for the the constant density between ρ0 =

√
B0/a and ρc. Com-

paring the shapes and comparing the evolution of height over time (see figure
2) it appears that a density distributed accordingly along the stem allows the
plant to sustain a greater weight without sagging.

Parameter Meaning Value Unit of Measure
G0 Extension parameter 0.01 s−1

ℓ0 Initial length 0.1 m
ℓg Extension zone 0.2 m
τ Rigidification parameter 100 s
E Young’s modulus 107 N ·m−2

r Radius 1 · 10−3 m

I Second moment of inertia π·r4
4 m4

B0 Initial flexural rigidity E · I N ·m2

Bmax Maximal flexural rigidity 10 ·B0 N ·m2

g Gravitation acceleration 9.81 m · s−2

γ Proprioception 1 Scalar

Table 1: Parameters used for the preliminary simulations. The reference model is the
one developed in [24], from which some of these parameters are taken.
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(a) β = 1 (b) β = 5

(c) β = 1 (d) β = 5

(e) (f)

Figure 2: Comparisons between constant and variable density in an artificial environ-
ment. Figures 2a, 2b represent the simulations of the searcher shoot with different
distributions of the linear density for two graviceptive parameters: β = 1 and β = 5.
The green lines and the violet line stand for the final stage of the simulations for
searcher shoots with constant linear density, whose values correspond to the green
lines and the violet line in figure 2e. In that figure, the abscissas are the distance
from the base (in m), while the ordinates are the linear density (in kg · m−1). The
orange line in figures 2a, 2b is the final stage of a simulation with a variable linear
density. The distribution of the linear density along the shoot is displayed by the
orange line of figure 2e. Figures 2d, 2c represents the height reached by the simulated
stems respectively of figures 2a and 2b in function of time. Figure 2f represents the
mass of the portion of the shoot whose points are at least s meters from the base. So,
for s = 0 we have the mass of the whole shoot. As we can observe, the shoot with
the variable linear density is bearing the highest amount of mass; nevertheless, it is
able to bear its own weight, unlike most stems with the constant linear density which
droops under the effect of gravity.
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2.3 Application to Real Plants and Simulations

The above arguments encouraged the use of a variable linear density term, and
consequently a model which takes the secondary growth into account, to attempt
simulations based on experimental data from climbing plants. In the following
sections we show the application of our model to two climbing plant species,
T. jasminöıdes and C. guianense. The analysis includes experimental data on
representative characteristics of each searcher shoot including geometry, me-
chanics and growth. These data were then used to calibrate the morphological
parameters of the model (see table 2).

Parameter Value Value Unit of Measure
T. jasminöıdes C. guianense

G0 0.15 0.12 day−1

ℓg 0.14 0.17 m
afr 0.016 0.28 Kgm3day−1

bfr 4.18 4.11 m−1

cfr 0.69 1.58 m
al 5.7 · 10−5 0.006 kg
bl 10 5.67 m−1

cl 0.1 1.15 m

Table 2: Parameters for extension, flexural rigidity, volume density and linear density
of leaves for T. jasminöıdes and C. guianense. These parameters refer to the equations
of the model described in section 2.1. The extension parameters G0 and ℓg have been
retrieved by averaging the measurements on the elongation of the internodes in various
samples of the two species. Instead, the other parameters are the result of a fitting
operation with the experimental data.

Parameters involved in sensing, i.e. α, β and γ, were estimated by using the
quantitative information about the reach and the orientation of the plant at the
final stage (see figure 1a and section 2.3.4 for further details about the method
used to estimate them).

2.3.1 Geometry and Biomechanical Properties

In a first experiment, we collected morphological and biomechanical data from
five searcher shoots for each species. For each individual, we selected, as far as
possible, the longest searcher shoots in a self-supporting state. In their natural
position, we measured the reach (cm) and orientation (degrees from the hori-
zontal) defined as a straight line from the base to the apex of the searcher shoot.
The geometry of the shoot was described from internodes of the main stem. For
each successive internode, we measured its length and its median diameter ob-
tained from the mean of two orthogonal measurements. Bending properties of
the base of the searcher stem were measured using four-point bending tests on
a stem segment constituted of several internodes [34]. Flexural rigidity EI and
structural Young’s modulus Estr were calculated from applied bending forces
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plotted against maximum deflections. Up to five weights were applied manually
and each deflection was measured by observation with a dissecting microscope
on the apparatus. Weight increments were chosen according to the bending
resistance of each sample. Weights were constituted of stainless-steel or brass
ranging from 8 g (C. guianense) to 50 g (T. jasminöıdes). Span distances were
defined as proportional to the mean elliptical diameter of the stem segment.
The span support was 40 times greater than the diameter and was ranging from
107mm to 218mm for the longest. The load span was comprised between one
half and two thirds of the span support and ranged from 67mm to 120mm.
In four-point bending, the flexural rigidity EI (N mm2) was calculated via the
following formula:

a =
L - l

2
,

EI4pt = b · L
3

48
· 3a
L

− 4 ·
( a

L

)3

,

where l is the load support (i.e. the distance between two internal supports),
L is the span support (i.e.the distance between the two outside panniers) and
b is again the slope of the force-deflection curve (N/mm). For three positions
along the measured segment (basal, medial, apical), the vertical diameter dv
was measured and the means then used to calculate the second moment of area
I of the axis. Since measured shoots generally exhibited a slightly ellipsoidal
cross-section, we used the following formula:

Iellipse =
π

4
·
(
dv
2

)3

· dh
2
.

However, the experimental measurements show that the difference between dv
and dh is small, so it is reasonable to assume a circular cross section. The
structural Young’s modulus of the stem (Estr) (MN/m2) was estimated with
the following formula [35] :

Estr = EI/I.

2.3.2 Extension Parameters: rate and zone

Primary growth, is generally viewed as axial stem extension, resulting from the
coordinated activities of three meristematic regions at the shoot apex [36, 37].
The first region, known as shoot apical meristem, is the position of intense cell
division initiating the differentiation between nodes and internodes that consti-
tute the stem. The second one, known as rib meristem, leads to the formation
and differentiation of primary tissues such as the pith. Meanwhile the third
region, named intercalary meristems, is located at the bases of one or several
apical internodes and their elongation also result in the axial extension of the
stem. During stem extension, several successive internodes may elongate simul-
taneously up to their final length. To describe these processes in the simplest
form, we considered two parameters (see figure 3):
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Figure 3: Extension of the internodes. The figure represents the main stem of a
searcher shoot divided into internodes and the apical-most segment (red). After one
of time ∆t, the combined length of the green internodes and the total length has
changed, whereas the length the brown ones has not. After a second period ∆t,
the longest green internode (In2) has reached its maximal length and has stopped
elongating. This latest green segment can now be considered mature and outside of
the extension zone and is thus depicted as brown in the second ∆t time frame. The sum
of the green internode lengths gives an approximation of the length of the extension
zone of the shoot at a given time interval.

• the extension rate ℓ̇(t), which corresponds to the speed of extension at the
stem level;

• the extension zone, that is the apical elongation portion of the stem (also
called growth zone [27]). The length of the extension zone is connected
with the parameter ℓg displayed in equation (1).

To calibrate these parameters, we monitored the extensional growth of young,
self-supporting, searcher shoots over one week for 11 shoots of T. jasminöıdes
and one month for 19 shoots of C. guianense (see section Materials and Methods
in [29] for further information on the environmental conditions). Three dates
at three days interval have been recorded for T. jasminöıdes and five dates at 7
days of interval for C. guianense. For both species, we applied the same protocol
starting by defining a reference mark on the most basal node of each main stem.
From this mark, we measured at each date:

• the total length of the shoot (cm);

• the length of each successive internode up to and including the apex (cm).

Between each time interval, the difference in total length of the stem allowed
us to estimate an extension rate ℓ̇(t), expressed in cm/day. The natural organ-
isation of the shoot into separate internodes allowed us to identify and measure
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which internodes elongated between two dates. The sum of the internodes length
was used to estimate the length of the extension zone in cm for each time in-
terval.
Successively, we used these estimates to compute the parameters ℓg and G0 of
the model. According to the model, the parameter ℓg for a shoot represents
the maximal length value of its the extension zone. At the beginning of its
development, the whole shoot is elongating, so at this moment the length of
the extension zone actually represents the length of the whole stem. Hence, we
could estimate the value of ℓg only for the shoots whose length of the estimated
extension zone was lower than the length of the whole stem. For these cases, ℓg
coincides exactly with the length of the extension zone.
Since many random effects that may have influenced the shoot extension over
these periods (e.g. local light, temperature, herbivores, support finding, etc.),
we decided to compute a single value of ℓg for all the shoots of the same species.
To do so, we took the average over all the estimated ℓg. We proceeded in a sim-
ilar way for the estimate of G0. For the shoots whose extension zone is shorter
than the whole stem, the model predicts a linear growth regime. This means
that for these cases, the extension rate is constantly ℓ̇(t) = ℓgG0. So, G0 has

been estimated as the average of the ratio ℓ̇(t)/ℓg.

2.3.3 Experimental Data Fitting

The data provided by the first experiment explained in section 2.3.1 were used
for the fitting procedure of volume density ρ3, radius R, radial expansion speed
vR, flexural rigidity B and leaves mass ml. This fitting procedure was specific
for each shoot, that is, for each shoot we retrieved the parameters of the above-
mentioned functions. To obtain a spatio-temporal information from a static
description of the shoot, we assume that at a given distance from the tip, all
the properties of the shoot do not change in time. This seems to be reasonable,
since the primary growth takes place at the shoot apex and the further a stem
portion is positioned away from the tip, the more it has matured. So, consider
for instance the volume density ρ3 for a given shoot. The experimental data has
been taken at a fixed time of the evolution of that shoot and, for this reason,
they are a static description of it. However, we know the total length of the
shoot and the positions at which the volume density was measured, so we can
put ρ3 in function of the distance from the tip. By our assumption, now we
can compute the volume density at each time t and at each position r(s, t) by
considering the quantity

ρ3(ℓ(t)− s)

because the difference ℓ(t)− s provides exactly the distance of the point r(s, t)
from the shoot tip.
We fitted the data ρ3, R and vR with a second degree polynomial in function of
the distance from the tip. On the other hand, we assumed the biomass accretion
of a single leaf m̂l behaves according to the following equation

m̂l(s, t) =
al

1 + exp(bl · (cl − (ℓ(t)− s)))
, (7)
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where al, bl, cl are fitting parameters to be tuned in accordance to the leaves
mass measurements. The function ml(s, t) introduced in equation (4) is the
total mass of the leaves which affect the point r(s, t). To retrieve ml from m̂l, it
is sufficient to sum the single leaf masses at the internode basis whose arc length
is grater than s. If, for each time t, we use si(t) to denote the arc length of
all the internode basis, and nl

i(t) to denote the corresponding number of leaves
(here i varies form 1 to the total number of internodes), then we can write

ml(s, t) =
∑

{i : si(t)≥s}

nl
i(t) · m̂l(si(t), t).

The choice of a sigmoid for fitting the mass distribution of a leaf is due to the
fact that leaf life cycle is much shorter than the climbing plant shoot life cycle.
Consequently, at the base of the shoot we can find the oldest leaves, which
are close to a final mature state, while at the shoot apex there are very few
leaves. Leaf behaviour during the life cycle can be interpreted well as a sigmoid
function, which can be close to zero ate the apex, is monotonically increasing as
a function of the distance from the apex and, finally, approaches a saturation
value at the base.

Since the estimates of the flexural rigidity B(s, t) at the internode basis for
different shoot samples show a monotonically increasing behaviour with respect
to the distance from the the apex, we also used a sigmoid to obtain an approx-
imation of B at every point s ∈ [0, ℓ(t)] and every time t:

B(s, t) =
afr

1 + exp(bfr · (cfr − (ℓ(t)− s)))
,

where afr, bfr, cfr are fitting parameters to be tuned.
As for the computation of the volume density from the experimental data,

we considered the fresh cylindrical volume and the fresh mass of each internode,
obtained from the measured length and orthogonal diameters. The experimental
data indicated that the horizontal and the vertical diameters have approximately
the same values, justifying the modelling of the shoot with a circular cross-
section. To compute the radial expansion speed vR, we included the increase in
the radius for each internode and divided it by the extension rate ℓgG0. More
precisely, if si and si+1 are the basis arch length of two consecutive internodes
with si+1 > si, then

vR(si) =
R(si)−R(si+1)

ℓgG0
.

In this way, we obtain an estimate of the radial expansion speed for each intern-
ode. For the computation of the flexural rigidity B, we extrapolated the second
moment of area I at the base of each internode. For the Young’s modulus E, in
this investigation, as a first approximation, we assumed it as a constant along
the whole searcher stem, with constant value based on the measurement at
the base of the shoot. Previous studies and tissue organisations along searcher
shoots indicate that E diminishes towards the apex of searcher shoots [3, 38]
so the values used in this study are an approximation. Finally, for the second
moment of area, we used again the orthogonal diameters of the cross-section.
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2.3.4 Simulations

In the previous sections we have explained how we retrieved the average ex-
tension parameters, G0 and ℓg, and the shoot-specific parameters for equations
(3)-(7), from measurements based on living T. jasminöıdes and C. guianense
plants. Simulations for these cases (see figure 4) were set up with an initial
length equal to ℓg. In this way, the growth regime is linear and the time interval
[0, T ] for a simulation can easily be retrieved from the final length of the shoot

ℓf with the ratio T =
ℓf−ℓg
ℓgG0

. Using the information about the reach and the

orientation, we were able to estimate the sensing parameters α, β and γ. To this
aim, we used the numerical function minimize of the library SciPy in Python

to choose the set (α, β, γ) which minimised the squared difference between the
simulated and the experimental reach and orientation.

In a first set of simulations, we set the parameter δ equal to 0. Succesively,
to study the effects of the radial expansion term on the shoot development, we
set different values as described in Figure 6.

Given the lack of variety of data and considering that the plant samples were
taken in an uncontrolled environment, these estimates can certainly be improved
by further measurements and experiments. However, we think that these es-
timated values are sufficiently accurate to realistically simulate the observed
behaviours and to represent the model.

3 Results

The simulations that we obtained using the radial expansion parameter δ =
0 and the parameters estimated from the experimental data are displayed in
Figure 4. For T. Jasminöıdes, the initial inclination of the stem with respect
to the vertical line is π/4 radians. Initially the stem grows upwards, but it is
clear from the changes in the inclination of the tip that the growth direction is
changing. Soon, the apical part of the shoot starts growing downwards.

The case of C. guianense is different. The simulation displays a strong
horizontal extension of the shoot. The initial inclination of the main stem is
π/2 radians with respect to the vertical line, which means that, at the beginning,
the shoot is directed horizontally. Looking at the time evolution displayed in
Figure 4, we see that the tip is directed upward. Nevertheless, it is clear that
in the simulation the whole C. guianense stem is drooping due to its weight.

Finally, considering again the model described by equation (1)-(3)-(4)-(5), we
fixed different values of δ and calibrated again the sensing parameters (α, β, γ)
as described in section 2.3.4. The parameters G0, ℓg, R and vR are based on
the C. guianense dataset. The resulting simulations for different values of δ are
displayed in Figure 6, in which we can observe an increasing curling behaviour
of the apex as δ increases.
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(a)

(b)

(c) (d)

Figure 4: (4b),(4a): Simulations for T. jasminöıdes and C. guianense, respectively.
The axes represent the (x, y)-coordinates of the simulation in the plane; the different
colours represent the different time steps of the simulation; each line of a single colour
stands for the main stem. Each stem has a fixed origin point at (0,0). The simulation
of T. jasminöıdes has an initial inclination of π/4 with respect to the vertical line,
while that of C. guianense has a horizontal initial inclination. In both cases the
plant develops horizontally. The behaviour of the T. jasminöıdes is due to its sensing
activity, which displays a negative parameter β. In contrast, that of C. guianense
droops because of its weight.
(4c),(4d):Images of T. jasminöıdes and C. guianense, respectively, in their natural
habitat. As one can observe, they resemble the simulations: the T. jasminöıdes curls
around towards itself, growing downwards; the C. guianense is strongly horizontally
directed and points upwards with its tip.
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(a)

(b)

Figure 5: Simulations for T. jasminöıdes and C. guianense respectively. These sim-
ulations are based just on the growth equation (1) and equation (8), that is, they
neglect the mechanics. The sensing parameters (α, β, γ) are optimised to obtain the
best reach and orientation according to the experimental data. We can observe that
the simulation 5a for the T. jasminöıdes is growing downwards. The displayed be-
haviour is due to the sensing activity, in accordance with the result obtained for the
simulation of the T. jasminöıdes in figure 4a.
On the other hand, the C. guianense is just growing upwards, differently from figure
4b. This means that the mass can play a fundamental role in the formation of the
plant shape.
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4 Discussion

4.1 Interpretation and limitaitons of the result

The model developed in this study combines the primary growth of a searcher
shoot (i.e. tip growth inducing stem extension) with the postural responses
incorporating lateral expansion of the stem (i.e. secondary growth of the wood
cylinder and maturation of primary tissues). These processes have been comple-
mented by the variation of stem flexural rigidity EI (expressed by the function
B in equation (4)) and trough the time development of the intrinsic curvature κ.
As displayed in section 2.3.1, the flexural rigidity was calibrated from the values
of the (structural) Young’s modulus E observed at the base of the shoot, and
from the series of diameters measured along the shoot to estimate the second
moment of area I. In this procedure, E is considered to be constant in time
and space. This simplification does not take into account the variations in E
that may exist due to the non-homogeneous tapering of tissues in the stem and
their maturation. Although the variations along the climbing plant shoot of
Young’s Modulus and second moment of area can well be of the same order, the
variation of R plays a major role in the displayed simulations since it appears
at the denominator of the sensing parameters in equation (3). Furthermore, the
choice of δ ≈ 0 in the simulations mitigates the effect of the Young’s Modulus
variation (which affects merely the flexural rigidity appearing in equation (3))
along the climbing plant shoot.

In the simulations displayed in Figure 4b-4a, we observed that the stem is
sagging. However, looking at the sensing parameters obtained in the fitting
procedure (see Table 3), we were able to distinguish whether the behaviour is
due to the sensing activity of the shoot or ot its weight. The negative β for the T.
jasminöıdes expresses a downward stimulus which causes a downward growth.
So, we could conclude that the main driver of the T. jsaminöıdes behaviour
is the sensing activity. On the other hand, applying the same reasoning to
the C. guianense stem, we reached the opposite conclusion. The positive β
denotes a preference for an upward growth, which explains the behaviour of the
tip. However, as a consequence of its own weight, the main stem has a mostly
horizontal development with a steep vertical change of growth in the part of the
stem close to the tip.

Another evidence of the distinct role of the weight distribution along the stem
in T. jasminöıdes and C. guianense behaviours is provided by the outcome of
the simulations of the “weightless model” based just on the growing equation
(1) and on the following evolution equation of the curvature

∂tκ =
GvR
R2

(α cos θ − β sin θ)−Gγκ. (8)

Again, we can extrapolate G0, ℓg, R and vR from the experimental data, cali-
brate the sensing parameters (α, β, γ) from the reach and the orientation of the
shoot in consideration and set all these values as parameters in the equation (1)
and in equation (8). The resulting simulations are displayed in figure 5. A com-
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T. jasminöıdes C. guianense Unit of Measure
α 0.0005 0.001 day
β -0.005 0.004 day
γ 0.008 0.004 scalar
α 0.0068 0.0025 day
β -0.003 0.002 day
γ 0.02 0.02 scalar

Table 3: Sensing parameters used for the numerical simulations. In the upper side of
the table, there are the values used for figures 4, while at the bottom there are the
values for the case without the mechanics displayed in figure 5. All these parameters
have been optimised to best fit the experimental reach and orientation.

parison between the two sets of simulations confirm the results on the role of the
weight distribution along the shoots previously exposed. Indeed, as we can see
in table 3, the sensing parameter β for the weightless T. jasminöıdes is negative
and the sensing activity orients the tip shoot downwards in a way similar (but
not equal) to the case in which the weight affects the plant shoot development.
On the other hand, the weightless C. guianense immediately grows upwards,
without displaying a horizontal structure in the shoot portion before the apex.

4.2 The role of the radial expansion parameter δ

In the study by Guillon et al. [21], it is assumed that the stem radial accretion
does not change the local current curvature (see, e.g., the simulations in Figure
6 and related caption). Such an assumption led Guillon et al. to adding the
term

∂tB

B
(∂sθ − κ) (9)

in the sensing equation. The tendency to maintain the local current curvature
rather than straighten the stem is in contrast with the stem is in contrast with
the stem proprioceptive activity. From a mathematical point of view, we can
observe that the term ∂tB

B ∂sθ appearing in equation (3) has an opposite sign
with respect to the proprioceptive term, acting like a “negative proprioception”
term in the sensing equation. Indeed, the ratio ∂tB

B is non-negative since the
flexural rigidity B is both positive and increasing in time. Hence, if we consider
the equation (3) with δ > 0, it follows that the term δ ∂tB

B ∂sθ has an opposite
sign with respect to the proprioceptive term −Gγ∂θ. In particular, this means
that the term ∂tB

B ∂sθ can mitigate (or destroy) the strightening effect of the
proprioceptive term, introduced in [16] exactly to stabilize the sensing equation.

The occourence of a “negative proprioception” is shown in the simulations in
Figure 6, in which we can observe that the curling behaviour of the tip increases
as the parameter δ increases. In particular, this behaviour affects the elongation
direction of the tip, which grows downwards when it starts curling and then
grows upwards again, resembling the gravitropic “sign reversal” displayed in
[24].
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(a) δ = 0.25 (b) δ = 0.5

(c) δ = 0.75 (d) δ = 1

Figure 6: Simulations of C. guianense for increasing values of δ. Each of these simula-
tions are obtained by following the procedure described in section 2.3, so the sensing
parameters are optimized to meet the experimental reach and orientation and may
change among the simulations. We can observe the effect of the “negative propriocep-
tive” term (∂tB/B)∂sθ which amplifies the curling behaviour of the tip. This curling
effect resembles the gravitropic “sign reversal” displayed in [24].
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4.3 Biological interpretations

The application of the 2D-model with δ ≈ 0 and calibrated with field data
showed that a full description of primary and secondary growth processes as
well as a description of the sensing activity were fundamental to reproduce
self-supporting growth of searcher shoots. Numerical simulations were able to
reproduce similar maximal reach capacities as those observed in the field for
both species. Simulations showed that both species exhibited horizontal trajec-
tories of self-supporting growth to attain their maximal reach capacities. 2D
postures obtained at the end of the simulations were qualitatively equivalent to
the ones observed in the field. Both species expressed a self-weight movement
induced by mass distribution (in space) and accretion (in time). Nevertheless,
they differed in terms of postural dynamics. These differences can be inter-
preted numerically by both sensing and mechanical parameters. From a sensing
point of view, C. guianense exhibited a stronger anti-gravitropic and autotropic
behaviour than T. jasminöıdes. These explain the apical orientation of searcher
shoots leading to an upward growth for C. guianense and a downward growth
for T. jasminöıdes. From a mechanical point of view, C. guianense was more
strongly effected than T. jasminöıdes in maintaining an upward growth in view
of a faster mass accretion along the searcher shoot. However, these biological
interpretations must be interpreted with caution with respect to the size of the
dataset and observations that have been made under natural conditions without
control over external factors.

4.4 Future Improvements

The model developed here provides a theoretical and analytical framework that
can be a useful tool to better understand the strategies of lianas to cross gaps
with their searcher shoots under the effects of gravitational constraints. In par-
ticular, it allows us to see how the mass distribution, the stiffness and the length
of the shoot influence its development and space orientation. To this purpose,
the model parameters are fitted with the experimental data. As displayed in
section 3, for the T. jasminöıdes case this fitting procedure returns a negative
parameter β, which is related to the vertical direction of the stimuli response
activity. Since the climbing plant samples were not raised in a controlled en-
vironment, we cannot immediately interpret the negative value of β and the
related behaviour of the simulation (Figure 4b) with a positive gravitropic be-
haviour. Nevertheless, the relation between the values of the sensing parameters
and the observed behaviour of the climbing plant under unpredictable environ-
mental conditions can be a matter of further studies.

Despite the uncontrolled environment and the basic measurements based on
fully elongated shoots, the 2D-model revealed to be robust enough to reproduce
the self-supporting state of the climbing plant species considered in this work.
Moreover, the model can already take into account the tissue anatomical vari-
ations along the stems in terms of flexural rigidity, mass and radius, and how
such variations affect the final climbing plant shape. Moving in the direction
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of a more in-depth study of the shoot structure, it may be interesting to inves-
tigate how the biomechanical state and biomass allocation changes during the
extension of a searcher shoot form a dynamic point of view. This would imply
working on a large set of searcher shoots, regularly sacrificing some of them
for destructive measurements, and reasoning in terms of chronosequence (i.e.
by extrapolation), trying to work under conditions that are as homogeneous as
possible in order to minimize the uncertainty factors (ontogenetic stage, envi-
ronment, etc.). These measurements associated with the anatomical study of
the tissues could allow a better understanding of the mechanism at the origin of
the rigidification dynamics at all points of the searcher shoots. The anatomical
organizations in the mechanical and postural life-histories of plant is a promising
scientific research to conceal ecology, biomechanics and robotics [39].

Searcher shoots are highly diverse in climbing plants and can have relatively
complex structures depending on types of connected structures such as leaves,
hooks, tendrils, branches, stem segments capable of circumnutatory movements,
as well as intrinsic stem extension and postural dynamics [29]. The movements
associated with these structures and generated by growth differentials within
tissues are of significant importance for exploring and crossing spaces and at-
taching to supports. The model considered here in 2D is relatively simple and
corresponds to an unbranched shoot with differential dynamics between intern-
odes and leaves. The consideration of a more complex shoot structures, involv-
ing variable mass load distributions in space an time and in a 3D volume is a
higher step to properly simulate the self-supporting and searching mobility of
searcher shoots in climbing plants. For instance, a 3D version of the model pre-
sented in this paper could be used to understand the role of circumnutation in
climbing plant searching strategy. Another possible application of a 3D model
could be to study how climbing plants change their mechanical internal prop-
erties when they encounter external obstacles which they attach to. All these
problems cannot be addressed by using a 2D model and will be the subject of
future studies.

4.5 Conclusion

We formulated a model that takes secondary growth and proprioception into
account. Through preliminary simulations, we showed how variability in linear
density induced by the radius expansion can affect the capability of a plant
to sustain its own weight. We then showed how it is possible to estimate the
parameters of the model from the experimental data. Using the information
about the extension of the stem, we computed the extension parameter G0 and
the length of the extension zone ℓg. Then, based on experimental data on the
final reach and orientation of each stem, we calibrated the sensing parameters
α, β and γ. Based on such measurements and on the related simulations in
Figure 4a-4b, we were able to understand the role of the weight in the shapes
observed in Figure 4c-4d.

For the two cases in exam, we were able to say that the mechanical effect
of the weight plays an important role in the shape of the C. guianense, while
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the downward growth of the T. jasminoides is mainly the consequence of its
sensing activity. These conclusions are supported by the simulations based on
a simplified model which considers just the plant sensing activity (see figure
5). Such results confirm that the mechanical aspects in climbing plant searcher
shoots, and, in particular the variable linear density and the secondary growth
are not negligible in order to obtain realistic climbing plant shapes in experi-
mental data-based simulations.
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