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Abstract
Neurons in the primary sensory regions of neocortex have heterogeneous response properties. The spatial arrangement of
neurons with particular response properties is a key aspect of population representations and can shed light on how local
circuits are wired. Here, we investigated how neurons with sensitivity to different kinematic features of whisker stimuli are
distributed across local circuits in supragranular layers of the barrel cortex. Using 2-photon calcium population imaging in
anesthetized mice, we found that nearby neurons represent diverse kinematic features, providing a rich population
representation at the local scale. Neurons interspersed in space therefore responded differently to a common stimulus
kinematic feature. Conversely, neurons with similar feature selectivity were located no closer to each other than predicted
by a random distribution null hypothesis. This finding relied on defining a null hypothesis that was specific for testing the
spatial distribution of tuning across neurons. We also measured how neurons sensitive to specific features were distributed
relative to barrel boundaries, and found no systematic organization. Our results are compatible with randomly distributed
selectivity to kinematic features, with no systematic ordering superimposed upon the whisker map.
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Introduction
In the primary somatosensory “barrel” cortex, neurons respon-
sive to the same whisker play different roles in representing the
identity and location of objects contacted by the whisker (von
Heimendahl et al. 2007; Jadhav et al. 2009; O’Connor et al. 2010;
Petreanu et al. 2012; Safaai et al. 2013; Chen et al. 2013a; Clancy
et al. 2015; Peron et al. 2015; Sofroniew et al. 2015). Barrel cortex
neurons are tuned to diverse stimulus properties (Hires et al.
2012; Petreanu et al. 2012; Yamashita et al. 2013; Chen et al.
2013a; Sofroniew et al. 2015). Specifically, the dynamical or

temporal stimulus features to which neurons are sensitive vary
from cell to cell, providing a rich representation of stimulus
dynamics at the population level (Estebanez et al. 2012). How are
neurons with heterogeneous response properties distributed in
space? Barrel cortex neurons with different selectivity to spatial
stimulus characteristics (strength of tuning to principal whisker,
tuning to direction of whisker deflection, or correlated motion of
multiple whiskers) are found within each barrel column
(Andermann and Moore 2006; Kerr et al. 2007; Sato et al. 2007;
Kremer et al. 2011; Clancy et al. 2015; Estebanez et al. 2016).
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A recent study of selectivity to different textures found that neu-
rons preferring the same texture tend to cluster together across
rat barrel cortex (Garion et al. 2014). Here, we examined the spa-
tial distribution of neuronal selectivity to kinematic features of
whisker motion using 2-photon calcium population imaging in
mice, seeking to uncover systematic ordering principles.

Materials and Methods
Animal Preparation

All procedures complied with Society for Neuroscience,
European, Spanish, and institutional policies for the care and
use of animals in research. The protocol was approved by the
local (Instituto de Neurociencias) bioethics and biosafety com-
mittee and by the institutional (CSIC) bioethics subcommittee.
All experiments were performed under ketamine–xylazine
anesthesia, and every effort was made to minimize suffering.

Female mice (CD1) at postnatal day ~30 were anesthetized
using ketamine–xylazine (120 and 16mg/kg body weight). The
animal skull was exposed and cleaned and a metal plate
attached with dental acrylic cement. A small craniotomy
(~2mm diameter) was made above barrel cortex. The location
of the craniotomy was determined stereotactically (1.5mm
from Bregma, 3.4mm from midline). Post hoc cytochrome-
oxidase staining of tangential slices (see below) confirmed that
the acquisition fields fell within the area corresponding to the
caudal edge of the whisker pad. The exposed dura was covered
with agarose. Eyelid and hindpaw reflexes were monitored
throughout the experiments, and refresher ketamine–xylazine
doses (20% of initial) added if necessary.

Stimulus Design

Although population calcium imaging permits analysis of tun-
ing properties of neurons in terms of their spatial relationships,
because of limitations in effective temporal resolution it is not
ideal for an unbiased reverse correlation computation of recep-
tive fields (Sharpee 2013). Our strategy was to construct a
stimulus set that would capture features that neurons might
selectively respond to (Jones et al. 2004; Arabzadeh et al. 2005;
Petersen et al. 2008; Jadhav et al. 2009; Estebanez et al. 2012),
while remaining small enough in size to permit adequate sam-
pling during the course of an experiment. The set included
idealized “position,” “velocity,” and “acceleration” filters, con-
structed by convolving the corresponding impulse functions
with a Gaussian filter (Fig. 1B). Each waveform type was pre-
sented with 3 possible amplitudes, in the ratio 1:3:5. Stimuli
were prepared in Matlab (Mathworks).

Whisker Stimulation

We inserted 10–15 contralateral vibrissae into a glass capillary tube
glued to a piezoelectric bender (Physik Instrumente), placed 2–
3mm from the skin. This form of stimulation selected for neurons
sensitive to correlated whisker motion, which are readily found in
the barrel cortex and, in layer 2/3, are more numerous than those
sensitive to uncorrelated motion (Estebanez et al. 2012, 2016).
Since our aim was to examine whether different neurons have
similar or diverse feature selectivity when interrogated with a
common stimulus, motion of the piezoelectric actuator in the
main set of experiments was always in the rostro-caudal
direction.

Maximum deflection amplitude was 400 μm. Each deflection
achieved a maximum speed of approximately 400mm/s; speed

only briefly remained close to maximum (median speed
~40mm/s; for other parameters, see Pitas et al. 2016). These
values are at the higher end of those used for passive stimula-
tion in previous studies or recorded during free whisking in air
(Kwegyir-Afful et al. 2008; Khatri et al. 2009), but in the range
reached during natural whisker motion (Bagdasarian et al.
2013).

In a recording, each stimulus was presented 10 times; 4
recordings were done for each field of view, for a total of 40 repe-
titions per field. Consecutive deflections were separated by 1 s, an
interval long enough to distinguish calcium transients (checked
using electrophysiology; data not shown). Mechanical stimulation
artifacts (resonances) were possible given the frequency range
necessary to reproduce the deflection waveforms (~100Hz). To
rule them out, we used a custom-built optoelectronic device to
check that the mechanical waveform described by the piezoelec-
tric bender reliably followed the electrical input (Fig. 1B).

2-Photon Calcium Imaging

Calcium indicator in acetoxymethyl ester form (OGB1-AM, Life
Technologies) was prepared by dissolving 50 μg of dye in 4 μL of
20% pluronic acid in DMSO (Life Technologies) and diluting
(1:11) in artificial cerebrospinal fluid containing 100 μM Alexa
Fluor 594 (for visualization; Life Technologies). Patch pipettes
(tip diameter 2–4 μm) were pulled (Narishige), filled with dye
solution and introduced into the cortex. The pipette tip was

Figure 1. (A) Top, average projection of a movie showing cell bodies loaded with

OGB. Bottom, same projection with regions of interest (blue) and neuropil halos

(purple). Scale bar, 25 μm. (B) Waveforms of stimuli constructed as ideal pos-

ition, velocity, and acceleration filters. Left, electrical input delivered to the

piezoelectric actuator. Center, mechanical waveform recorded with an optical

sensor. Right, superposition of input and mechanical output. (C) OGB fluores-

cence (blue) from 2 example neurons with corresponding perisomatic neuropil

signal (halo, in purple) and corrected trace (black). Bottom trace, stimulus times.

(D) Five examples of single-sweep calcium responses to different kinematic fea-

tures in an example neuron. Each feature (P: position, V: velocity, A: acceleration)

was presented in 3 different amplitudes (P1, P2, and P3 for position, for example).

Different waveforms and amplitudes were in randomly interspersed order.
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visualized under 2-photon scanning mode and gradually
advanced to 100–150 μm below the cortical surface. Dye was
pressure injected at 2–10 psi (Picospritzer) over 5–10min. After
injection, the pipette was withdrawn and the craniotomy cov-
ered with warm agarose (Sigma) and coverslipped. Imaging of
whisker-evoked Ca2+ transients was performed using a 2-
photon microscope (Leica TCS SP5 MP) with a Spectra Physics
Mai Tai HP laser. Excitation wavelength was 830 nm. Cells were
imaged using a 25× water-immersion objective (NA 0.95, Leica)
at depths of 100–350 μm from the cortical surface. Full-frame
images of 512 by 128 pixels were acquired at a spatial reso-
lution of 1.48 pixel/μm; frame sampling rate was 8.8 Hz.

2-Photon Image Analysis

Images were registered with a modified StackReg ImageJ (NIH)
plugin. For each movie, rigid transformation was performed
using the first frame as reference. Experiments with excessive
x-, y-, or z-axis fluctuations were discarded. Calcium responses
were extracted using Caltracer 2.5, a Matlab (Mathworks) soft-
ware package (Rafael Yuste Lab, Columbia University). Briefly,
cells were visualized using the mean image of all frames and
cell contours outlined automatically to define neuronal regions
of interest (ROIs). Detected ROIs were supervised and adjusted
manually if necessary. The mean raw fluorescence of each cell
was estimated for all frames and background from unstained
blood vessels subtracted (Greenberg et al. 2008). A perisomatic
halo was drawn automatically in order to correct for neuropil
contamination: halo fluorescence was scaled (optimal factor =
0.7) and subtracted from the background-subtracted mean
fluorescence (Fig. 1A,C) (Kerlin et al. 2010; Chen et al. 2013b;
Feinberg and Meister 2015). Finally, corrected fluorescence
values were converted into ΔF/F0. Typically, responsive neu-
rons had a skewed raw fluorescence distribution. F0 was set to
the eighth percentile of corrected fluorescence within a sym-
metric 6 s sliding window. Response amplitude was calculated
as the difference between the mean ΔF/F0 value of the first 5
frames after a stimulus and the mean value of the last 3 frames
before the stimulus.

Measurements of Response Properties

To assess whether to score neurons as tuned to kinematic
features, we first computed the linear regression between mag-
nitude of all calcium responses and amplitude of the corre-
sponding stimulus waveforms for all neurons in a field of view.
To correct for false discoveries of significantly tuned neurons in
the simultaneously recorded population, we then applied the
Benjamini–Hochberg–Yekutieli procedure for controlling the
false discovery rate (corrected significance level: P < 0.05; fdr_bh
Matlab function written by David Groppe) (Benjamini and
Hochberg 1995; Benjamini and Yekutieli 2001). For neurons
scored as tuned according to this procedure, and whose
responses thus changed as a function of one or more stimulus
parameters, we then defined tuning strengths for position,
velocity, and acceleration as the respective coefficients of
regression between response magnitude and stimulus wave-
form amplitude. Coefficients that did not reach the significance
limit were set to zero. Where a neuron was significantly tuned
to several features, we scored it as having mixed selectivity.
Linear correlation and regression do not take into account the
nonlinearities inherent to neuronal tuning and the conversion
of a sensory stimulus into a change in calcium-dependent
fluorescence (Peron et al. 2015). However, our approach

provided a principled way to compare between the strength of
responsiveness to different stimulus parameters defined over a
similar time course. We also assessed tuning significance via
direct shuffling of responses with respect to stimulus magni-
tude for each neuron (1000 repeats), with no qualitative change
in results. Finally, we tested neurons for consistency of tuning
properties across stimulus repetitions. Each ROI was recorded
over 4 repeats of the stimulus set (see above), and the results
given in the figures correspond to data collected over the entire
set of 4 repeats. To check for consistency, data were split into 2
subsets consisting of the first and last pairs of recordings. 95%
of neurons displayed identical tuning to at least one feature
over the 2 subsets, and 81% displayed identical tuning to all 3
features, with no qualitative change in overall conclusions aris-
ing from splitting the data into subsets.

To measure the extent to which pairs of neurons in a field of
view were similarly tuned we calculated the similarity index (SI).
First, for each neuron in the field of view we constructed a tuning
vector whose components were the cell’s tuning strength
(regression coefficient) for position, velocity, and acceleration
(with tuning strengths not statistically significant entered as
zero). Next, we computed the SI for each pair of neurons by
taking the dot product of the 2 neurons’ tuning vectors.

The slope of the linear fit between SI and the distance separ-
ating each pair of neurons was compared against that for
shuffled values. Shuffled data were generated by randomly
reassigning feature selectivity (regression coefficients) across
neurons in the field of view, calculating the slope of the linear
fit and then obtaining a mean slope for the field of view; shuf-
fling was repeated 100 times. Pairwise correlations were calcu-
lated using the Spearman correlation coefficient computed for
the entire corrected calcium fluorescence time series of the 2
cells, over the duration of the concatenated 4 recordings. We
analyzed the dependence of neuronal correlations on distance
by computing the slope of the linear fit between the 2 variables.
Shuffled data for each experiment were constructed by ran-
domly permuting the temporal order of responses to different
stimulus presentations for each neuron in the field of view.

Histology and Barrel Field Reconstruction

In some experiments, brains were removed and fixed in 4% par-
aformaldehyde after imaging. The cortex was cut tangentially
in 150 μm vibratome sections and stained for cytochrome oxi-
dase. The barrel field was reconstructed and the acquired field
localized in the reconstructed tissue. To place acquired fields in
their original position, the pial vasculature of a fixed bright-
field image was aligned using Photoshop (Adobe) with that
from an in vivo bright-field picture of the same cortical surface.
Then, using a single image of the cortical surface taken before
starting the 2-photon acquisition, the fluorescent somata of
layer 2/3 neurons in the field were aligned with the bright-field
images. Distances to the closest barrel border were measured
manually in Canvas (ACD Systems).

Results
To measure tuning to kinematic stimulus features, we imaged
the activity of layer 2/3 neurons in ketamine–xylazine anesthe-
tized mice (n = 10) while stimulating whiskers with controlled
patterns (Fig. 1). To generate the stimulus set, we exploited the
fact that neurons in the whisker pathway are tuned to kine-
matic stimulus features such as velocity or acceleration (Jones
et al. 2004; Arabzadeh et al. 2005; Petersen et al. 2008; Jadhav
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et al. 2009; Estebanez et al. 2012). We created a set of whisker
deflection waveforms consisting of idealized “position,” “vel-
ocity,” and “acceleration” filters (Fig. 1B), each with 3 possible
amplitudes. We reasoned that a neuron selectively sensitive to
one of these features would exhibit responses whose size
would covary preferentially with the amplitude of the corre-
sponding waveform type. Different deflection waveforms and
amplitudes were randomly interleaved in time. This stimula-
tion produced clear calcium responses that allowed us to deter-
mine differential tuning of individual neurons to particular
stimulus features (Fig. 1C,D).

In general, we considered that a neuron was tuned to a spe-
cific feature (position, velocity, acceleration) when the size of
the calcium response displayed a significant relationship with
the amplitude of the corresponding stimulus waveform (see
Materials and Methods). Traces from an example neuron can
be seen in Fig. 2A. For this neuron, calcium responses clearly
grew with the amplitude of the velocity waveform, with
increases in acceleration or position waveforms having a

smaller effect (Fig. 2A,B). Reflecting this, the value of the regres-
sion coefficient between stimulus amplitude and neuronal
response was greatest for velocity [rp = 0.0069 for position
(5–95% CI 0.0032–0.011); rv = 0.0169 for velocity (CI 0.0132–0.021);
ra = 0.0106 for acceleration (CI 0.0073–0.0151); Fig. 2B].

Where a neuron was significantly tuned to several features,
we labeled it as having mixed selectivity (see Materials and
Methods). Neurons throughout the whisker pathway, particu-
larly in the barrel cortex, do not act as pure encoders of a single
stimulus physical parameter or dimension; rather, their pre-
ferred features tile a space defined by multiple dimensions
(Maravall et al. 2007; Petersen et al. 2008; Estebanez et al. 2012;
Bale et al. 2013; Chagas et al. 2013; Maravall et al. 2013;
Campagner et al. 2016). Thus, a characterization that allows for
mixed selectivity better captures biological diversity. To display
the tuning of each neuron visually, we used an RGB color map
(Fig. 2C). We translated significant tuning strengths to color
intensity levels by representing tuning to position as a red color
intensity value, to velocity as green intensity, and to acceler-
ation as blue intensity. The outcome for each neuron was a
tone that mixed the appropriate intensities of red, green, and
blue, reflecting tuning strength to position, velocity, and accel-
eration, respectively. Neurons with no significant tuning were
depicted as outlines; neurons with significant tuning to a single
feature were pure red, green, or blue (Fig. 2C,F; Supplementary
Figs. 1 and 2 show identical data depicted in separate panels
for the red, green, and blue channels). As the example neuron
was tuned to velocity and (more weakly) to acceleration, it
appears as bluish green in this representation (Fig. 2C, black
arrow). Overall, 50.2% of neurons in the data set responded to
whisker stimulation. The analysis evidenced both tuned and
non-tuned neurons, with an overall majority of non-tuned cells
(71.8% of all neurons were non-tuned; n = 10 mice, 49 fields of
view, 1054 neurons; Fig. 2D,E). Within tuned neurons, all
categories of selectivity were represented (Fig. 2E).

Neighboring neurons in primary sensory cortices share syn-
aptic input (Harris and Mrsic-Flogel 2013). To assess whether
this is reflected in similarities in the behavior of neurons at the
population level, for each acquired field of view we computed
pairwise correlations across all neuron pairs over the full dur-
ation of the recorded calcium time series (i.e. including whisker
stimulation). An example raster plot capturing the activity of
neurons in a field of view suggests that correlations across neu-
rons in that region were higher than expected by chance
(Fig. 3A). This is borne out by the distribution of correlation
coefficients for that field of view (Fig. 3B); mean correlation
coefficient was 0.14 ± 0.0062 compared with 0.0022 ± 0.0013
obtained by shuffling responses of different neurons across
stimulus presentations (n = 31 neurons; see Materials and
Methods). Taking all experiments into account, the correlation
coefficient for the data set was 0.1004 ± 0.008 (mean ± SEM
across fields of view), compared with 0.011 ± 0.0024 for shuffled
data (n = 49 fields of view including n = 1054 neurons; P = 1.11 ×
10−9; Wilcoxon signed-rank test; Fig. 3C). We also compared
neuronal and neuropil response correlations by choosing ROIs
within the neuropil in each field of view (10 ROIs per field) and
repeating the analysis above. Neuropil responses were more
correlated with each other than neuronal responses (for neuro-
pil, mean ± SEM coefficient was 0.1792 ± 0.0097; n = 49 fields
including n = 490 ROIs; vs. neurons, P = 2.13 × 10−7; Wilcoxon
signed-rank test).

Previous publications in barrel cortex have shown correlated
spontaneous and evoked activity between neurons, falling-off
over distances ~160–200 μm (Kerr et al. 2007; Sato et al. 2007;

Figure 2. (A) All (gray) and average (colored thick trace) calcium responses to

position (top), velocity (middle), and acceleration (bottom) stimuli in an

example neuron. Arrowheads mark stimulus onset. (B) Plot of the median cal-

cium responses and filter amplitudes for position (red circles), velocity (green

triangles), and acceleration (blue squares) stimuli, for the same neuron.

Stimulus amplitude is normalized to the smallest value. Tuning is strongest to

velocity, as reflected in the steepest slope. (C) Mask of cell bodies used to quan-

tify calcium changes from movies in an example field of view. Cell bodies are

color-coded according to feature tuning (mixed selectivity allowed). The neuron

in A–B is marked with a black arrow and its color depicted as a sum of red,

green, and blue intensities proportional to the strength of its tuning to position,

velocity, and acceleration, respectively. Outlined cell bodies do not respond or

have no significant tuning. Scale bar, 25 μm. (D) Number of neurons with and

without significant tuning to stimulus features in each field acquired. Thick

black line, average. (E) Mean percentage of neurons with significant tuning to a

single feature (Pos, Vel, Acc), mixed features or none. (F) Two further examples

of the local distribution of kinematic feature selectivity within fields of view.

Scale bars, 25 μm.
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Clancy et al. 2015). We examined the effect of distance on cor-
relations over up to 300 μm. For the neurons in the raster plot
of Fig. 3A, correlations decreased with distance, with a mean
spatial gradient of −0.15mm−1 (0.0025mm−1 for shuffled data;
Fig. 3D). Most of the fall-off in correlation occurred within the
first 100 μm of distance between neurons. For the complete
data set, the spatial gradient was −0.29 ± 0.062mm−1 (median ±
standard error of median [SEM]), significantly different than for

shuffled data, −0.0062 ± 0.014mm−1 (n = 49 fields of view;
P = 1.31 × 10−8; Wilcoxon signed-rank test; Fig. 3E). Yet for
experiments with pairs of neurons separated by over 200 μm,
the spatial gradient decreased to −0.13 ± 0.17mm−1, compared
with −0.109 ± 0.085mm−1 for shuffled data (median, SEM;
n = 30 fields of view with >4 pairs extending >200 μm; P = 0.106;
Wilcoxon signed-rank test). Therefore, while nearby neurons
showed correlated activity during stimulation, this correlation
decreased with distance over a range ~200 μm, comparable to
the diameter of a barrel column.

Because correlations in neuronal activity during stimulation
were higher in nearby neurons, probably because of partially
shared synaptic input, we wondered whether functional tuning
would evidence spatial organization within comparable dis-
tances (~200 μm). To test this, we analyzed the similarity of
response tuning as a function of distance between cells. We
created an index (SI) to measure the extent to which the tuning
of a pair of neurons was alike (Materials and Methods). We
then plotted SI as a function of distance between the neurons
in the pair (Fig. 3F). In some experiments, there appeared to be
a relationship between SI and distance (for the example in
Fig. 3F, spatial gradient = −1.29mm−1; compared with
shuffled, 0.133mm−1; n = 29 neurons, n = 465 pairs). This was
consistent with a visually apparent tendency for neurons to
cluster in some of the fields of view (e.g. nearby green neu-
rons in Fig. 2F, left panel). However, pooling across experi-
ments indicated no consistent spatial organization of SI
(median slope −0.467 ± 0.000675mm−1; for shuffled data,
−0.0169 ± 0.119mm−1; n = 26 fields of view; P = 0.114; Wilcoxon
signed-rank test; Fig. 3G). These results confirm a visual intu-
ition from Fig. 2F: Functional responses to kinematic features
are heterogeneous on a local scale, with neurons tuned to dif-
ferent features interspersed within the circuit.

Finally, we wondered if tuned neurons were systematically
arranged relative to the barrel structure, for example, by asym-
metric distribution between barrel- and septum-related terri-
tories. Thus, we examined the localization of tuned neurons
relative to the histologically reconstructed barrel field map (n =
3 mice; respectively, n = 167, 102, and 117 imaged neurons, of
which n = 59, 39, and 47 were tuned; imaged at depths ranging
between 150–200, 190–220, and 135–185 µm, respectively;
Fig. 4A,B; Supplementary Fig. 3 shows identical data in separate
panels for the red, green, and blue channels). Tuned neurons
were evenly distributed between barrel- and septum-related
areas (38.8% and 35.8%, respectively were tuned; P = 0.58;
Fisher exact test; Fig. 4C). We also tested whether neurons
tuned to specific features were located preferentially relative to
barrel or septum areas. To this end, we measured the horizon-
tal distance of each significantly tuned neuron to the nearest
barrel border. Neurons tuned to different features were not
located differently relative to barrel borders, that is, relative to
the columnar structure of barrel cortex (position vs. velocity:
P = 0.77; position vs. acceleration: P = 0.70; velocity vs. acceler-
ation: P = 0.68; Kolmogorov–Smirnov 2-sample test; Fig. 4D).
Thus, we did not find evidence for spatial organization of kine-
matic feature tuning with respect to the barrel map in layer 2/3
of mouse barrel cortex.

Discussion
Neurons in the barrel cortex have strikingly heterogeneous
response properties (Maravall and Diamond 2014). In layers 2/3
of the barrel field, neurons represent a wide range of spatial
and temporal properties of whisker motion (Andermann and

Figure 3. (A) Raster plot of calcium response activity for all neurons in an

example field during a 90 s period of whisker stimulation. Feature tuning select-

ivity for each neuron is indicated in color code bar on right. (B) Distribution of

correlation coefficients for pairs of neurons in the example field in A (gray).

Shuffled data are shown in black. Average represented by arrowheads on top.

(C) Mean correlation coefficient for each field acquired and for corresponding

shuffled data; average in black. (D) Correlation coefficients as a function of dis-

tance between neurons for the example field in A. Linear fit for true (black solid

line) and shuffled data (dashed line). (E) Slope of the linear fit between correl-

ation coefficients and interneuronal distance for true and shuffled data for all

fields; average in black. (F) Tuning SI as a function of distance between pairs of

neurons for the field of view in A. Each dot corresponds to one pair of neurons.

Arrows point to values for the color-coded connected pairs in the inset panel.

Linear fit for true (black solid line) and shuffled data (dashed line). (G) Slope of

the linear fits between SI and interneuronal distance for true and shuffled data

for all fields; average in black.
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Moore 2006; Kerr et al. 2007; Sato et al. 2007; Jacob et al. 2008;
Kremer et al. 2011; Estebanez et al. 2012; Garion et al. 2014; Peron
et al. 2015; Estebanez et al. 2016). Here, we explored how neurons
with sensitivity to different kinematic features are arranged. We
found no ordering principle for feature selectivity—no systemat-
ically mapped representation. Instead, tuning follows an inter-
mingled “salt-and-pepper” arrangement, with different neurons
encoding for different features. This is reminiscent of the organ-
ization of orientation selectivity in rodent visual cortex (Ohki
et al. 2005; Mrsic-Flogel et al. 2007). The overall correlation
between responses of neuron pairs did fall-off with distance.
This apparently counterintuitive difference between the ordered
dependence of correlations on distance and the disordered distri-
bution of feature selectivity is again similar to mouse visual cor-
tex (Denman and Contreras 2014; Montijn et al. 2014). Diversity
across differentially tuned subnetworks of neurons appears to be
a common principle governing the local connectivity of primary
sensory cortical areas in rodents (Bandyopadhyay et al. 2010;
Rothschild et al. 2010).

We chose a simple stimulus set that exploits known feature
selectivity in barrel cortex neurons, to provide adequate sam-
pling of neuronal responses (Fig. 1B). These stimuli covered a
limited region of the possible space to which neurons can be
responsive (Jacob et al. 2008; Estebanez et al. 2012; Maravall and
Diamond 2014). For example, neurons can be selectively driven
by the amount of correlated motion across multiple whiskers;
furthermore, layer 2/3 neurons are systematically arranged in
relation to barrels and septa according to their sensitivity to
correlated motion (Estebanez et al. 2016). Thus, a more exten-
sive stimulation protocol could have identified feature selectiv-
ity in additional neurons. Our aim in using the present design
was to bring out potential differences in selectivity across

neighboring neurons, rather than to identify all possible stimu-
lus features evoking responses.

In the study, around 50% of well-labeled supragranular neu-
rons responded during our simple multi-whisker stimulation,
and around 30% of neurons were selectively tuned to stimulus
features. These figures are compatible with previous estimates
in supragranular neurons of barrel cortex (with a relatively
sparse fraction, ~20–30%, being highly tuned—regardless of
stimulation paradigm) (Kerr et al. 2007; Sato et al. 2007; Jadhav
et al. 2009; O’Connor et al. 2010; Yassin et al. 2010; Crochet et al.
2011; Barth and Poulet 2012; Estebanez et al. 2012; Margolis
et al. 2012; Petersen and Crochet 2013; Chen et al. 2013a; Clancy
et al. 2015; Peron et al. 2015; Sofroniew et al. 2015).

Our findings differ from a recent study that found spatial
clustering of barrel cortex neurons tuned to the same texture
(Garion et al. 2014). Several factors may have contributed to
this difference. Important experimental differences include
species (rat in the earlier study vs. mouse here), anesthesia
(urethane vs. ketamine–xylazine) and form of stimulation
(“electrical whisking” vs. passive). The former study also exam-
ined the build-up of responses during repeated stimulation,
while we focused on tuning of responses temporally locked to a
single, brief stimulus. In addition, two critical differences lie in
the analysis. First, to build maps in the previous study, neurons
preferring a particular texture, but potentially responding to
others as well, were assigned that texture only. Instead, we
chose to allow for mixed selectivity, since sensitivity to diverse,
intermediate kinematic features is a hallmark of neurons in the
whisker pathway (Petersen et al. 2008; Estebanez et al. 2012;
Bale et al. 2013; Maravall et al. 2013). Second, the earlier study
compared the true distribution of distances between neurons
to a null hypothesis constructed by randomly and uniformly
distributing an identical number of neurons across the entire
field of view. This comparison did not provide a specific test
for clustering of feature selectivity: A positive clustering
result could arise simply from the imaged cell bodies being
closer than expected had they been randomly scattered
across the entire field of view. In contrast, our null hypoth-
esis shuffled feature selectivity across neurons sited at their
true locations, an approach designed to test for clustering
specifically.
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Supplementary material is available at Cerebral Cortex online
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Figure 4. (A) Locating an imaged area in the barrel field map. Left column,

cytochrome-oxidase staining in tangential slices to reconstruct the barrel field.

Top right, drawing of superficial vascular plexus (cyan) from the fixed tissue

reconstruction. Scale bar, 2mm. Bottom right, alignment of the surface of the

imaged area to the post hoc barrel field reconstruction by means of blood vessel

registration. Scale bar, 1mm. (B) Imaged neurons from 3 animals, color-coded

according to feature selectivity, superimposed on the registered barrel recon-

struction (black dashed line). Scale bar, 100 μm. (C) Percentage of tuned and

non-tuned neurons over barrels and septa. (D) Cumulative distribution of dis-

tance to closest barrel border for neurons tuned to position (red circles), velocity

(green triangles), and acceleration (blue squares). Barrel border is set to zero.
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