On the zeros of Riemann’s Xi Function

Akhila Raman

Email: akhila.raman@berkeley.edu.

Abstract

We consider Riemann’s Xi function &(s) which is evaluated at s = 1+0+iw, given by £(3+0+iw) =
E,.(w), where o,w are real and compute its inverse Fourier transform given by E,(t). We study the
properties of E,(t) and a promising new method is presented which could be used to show that the
Fourier Transform of E,(t) given by Ej,(w) = £(3 + 0 +iw) does not have zeros for finite and real w
when 0 < |o] < 1, corresponding to the critical strip excluding the critical line.
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1. Introduction

o

It is well known that Riemann’s Zeta function given by ((s) = >_
m=1

where the real part of s is greater than 1. Riemann proved that ((s) has an analytic continuation to
the whole s-plane apart from a simple pole at s = 1 and that ((s) satisfies a symmetric functional
equation given by £(s) = £(1—s) = 2s(s—1)m2['(£)((s) where I'(s) = [~ e "u*"'du is the Gamma
function.[4] [5] We can see that if Riemann’s Xi function has a zero in the critical strip, then Rie-
mann’s Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859
paper, that all of the non-trivial zeros of {(s) lie on the critical line with real part of s = %, which is

called the Riemann Hypothesis.[1]
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ms

converges in the half-plane

Hardy and Littlewood later proved that infinitely many of the zeros of ((s) are on the critical line
with real part of s = 1.[2] It is well known that ((s) does not have non-trivial zeros when real part
of s = %+ o + iw, given by £ + ¢ > 1 and 3 4+ o < 0. In this paper, critical strip 0 < Rels| < 1
corresponds to 0 < |o| < 1.

In this paper, a new method is discussed and a specific solution is presented to prove Riemann’s
Hypothesis. If the specific solution presented in this paper is incorrect, it is hoped that the new
method discussed in this paper will lead to a correct solution by other researchers.

In Section [2] to Section [ we prove Riemann’s hypothesis by taking the analytic continuation of
Riemann’s Zeta Function derived from Riemann’s Xi function £(3 + 0 + iw) = Ej,(w) and compute
inverse Fourier transform of E,,(w) given by E,(t) and show that its Fourier transform E,,(w) does
not have zeros for finite and real w when 0 < |o] < %, corresponding to the critical strip excluding
the critical line.

Preprint submitted to Zenodo June 5, 2023



In Section [7] it is shown that the new method is not applicable to Hurwitz zeta function and
related functions and does not contradict the existence of their non-trivial zeros away from the
critical line with real part of s = %

We present an outline of the new method below.

1.1. Step 1: Inverse Fourier Transform of f( + w)

Let us start with Riemann’s Xi Function &(s) evaluated at s = 3 +iw given by £(3 +iw) = E(w) =
Eo,(w), where w is real. Its inverse Fourier Transform is given by Ey(t) = 5= [ Eou(w)e™!dw, where
w, t are real, as follows (link).[3] (Titchmarsh pp254-255) This is re-derived in |[Appendix D| We take
the term ez out of the bracket and rearrange the terms as follows.

Eo(t) = - 22 2n'n? e? — 3n? 7Te2 = Z [Am*ntet — 6mn?e*]e ™ n?e? o3 (1)

We see that Ey(t) = Ey(—t) is a real and even function of ¢, given that Ep,(w) = Egu(—w)
because £(s) = £(1 — s) (link) and hence £(3 +iw) = £(3 — iw) when evaluated at s = 1 + iw.(Details
in [Appendix B.9)

The inverse Fourier Transform of &(3 —|— o +iw) = E,,(w) is given by the real function E,(t). We
can write E,(t) as follows for 0 < |o| < 1 and this is shown in detail in [Appendix Al

E,(t) = Ep(t)e " = [An’n'e" — 6rne™]e ™ ez " (2)
n=1
We can see that E,(t) is an analytic function for real ¢, given that the sum and product of
exponential functions are analytic for real ¢ and hence infinitely differentiable for real .

1.2. Step 2: On the zeros of a related function G(w,ts,ty)

Statement 1: Let us assume that Riemann’s X1 function £(1 + o + iw) = E,,(w) has a zero at
w = wy where wy is real and finite and 0 < |o| < 3, correspondmg to the critical strip excluding the
critical line. We will prove that this assumption leads to a contradiction.

Let us consider 0 < o < 1 at first. Let us consider a new function g(t, ts, to) = f(¢, t2, to)e " u(—t)+
f(t, tg, t())eUtU(t), where f(t, tg, to) = 6_20t0f1 (t, tQ, to) + €20tof2(t, tQ, to) and f1 (t, t2, to) = GUtOE;@ +
to,t2) and fo(t, ta,tg) = e WE,(t — to,t2) and E,(t, 1) = e "2E,(t — t5) — e”E,(t + t2) and to,t
are real and g(¢, to, o) is a real function of variable ¢ and u(t) is Heaviside unit step function. We can
see that g(t,ta, to)h(t) = f(t,t2,to) where h(t) = [eTu(—t) + e "u(t)] .

In Section , we will show that the Fourier transform of the even function ge,e,(t,t2,ty) =
lg(t, ta, to) + g(—t, t2, )] given by Gr(w, t2,ty) must have at least one zero at w = w,(ts,to) # 0,
for every value of ty, for each nonzero value of ¢y, where Gr(w,ts,1y) crosses the zero line to the
opposite sign, to satisfy Statement 1, where w, (2, %) is real and finite.
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1.3. Step 3: On the zeros of the function Gg(w,ts,to)

In Section we compute the Fourier transform of the function g(¢, ¢, %) and compute its real
part given by Gg(w, ts,t) and we can write as follows.

0
Grlw, ty, tg) = e 27" / [Eo(T + to, t2)e™ 2T + Ey, (T — to, t2)] cos (wr)dr

—0o0

0
+e20to / [E[;(T — to, t2)672‘” + E(/)n(T + to, to)] cos (wT)dT

(3)
We require Gg(w, ta,ty) = 0 for w = w,(ts,ty) for every value of ¢y, for each non-zero value

of ty, to satisfy Statement 1. In general w,(ts,tg) # wo. Hence we can see that P(ty,ty) =
Gr(w:(t2, ), t2,to) = 0.

1.4. Step 4: Zero Crossing function w,(ts, 1)) is an even function of variable i
In Section [2.4] we show the result in Eq. 4 and that w,(f2,%9) = w.(t2, —to). It is shown that

P(t27t0) = GR(wz(tQ,to),tQ,to) = odd(t%to) + Podd(tg,—to) = 0 and that Podd(tg,to) is an odd
function of ¢y, for each non-zero value of £, as follows.

to
P,aq(ta,to) = [cos (wz(tg,to)to)/ E(I)(T, ty)e 7 cos (w.(ta, to)T)dT
o
4 sin (w2 (fa, fo)to) / (7. £2)e=2" sin (w. (ta, t0)7)d7]
to , - to ,
€210 cos (w, (ta, to)to) / E, (7. 5) cos (w2 (ta, fo)7)dr + sin (w. (fa, fo)to) / E, (7, 12) sin (w. (ta, to)7)d7]

(4)

1.5. Step 5: Final Step

In Section , it is shown that w,(ts,%p) is a continuous function of variable ¢, and to, for all
0 <o < oo and 0 <t < co. In Section [} it is shown that Ey(¢) is strictly decreasing for ¢ > 0.

In Section |3} we set ty = to. and ty = to. = 2to., such that w,(ta,to.)to. = 5 and substitute

in the equation for P,y4(ts,to) in Eq. 4 and show that this leads to the result in Eq. 5. We use
E(/)(t,tg) = Eo(t — tg) — E()(t + tg) and E{)n(t,tg) = E(/)(—t,tg)

/0 OC(EO(T — tae) — Eo(T + tac))(cosh (20ty.) — cosh (207)) sin (w, (tac, toe)T)dT = 0
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(5)
We show that the each of the terms in the integrand in Eq. 5 are greater than zero, in the
interval 0 < 7 < ty. and the integrand is zero at 7 = 0 and 7 = t., where ty. > 0.

Hence the result in Eq. 5 leads to a contradiction for 0 < o < %

We show this result for 0 < o < 3 and then use the property £(2 +0 +iw) = (3 — 0 —iw) to show
the result for —% < 0 < 0. Hence we produce a contradiction of Statement 1 that the Fourier

Transform of the function E,(t) = Ey(t)e " has a zero at w = wy for 0 < |o| < 3.

2. An Approach towards Riemann’s Hypothesis

Theorem 1: Riemann’s Xi function £(5 + o + iw) = E,,(w) does not have zeros for any real

value of —0o < w < o0, for 0 < |o| < %, corresponding to the critical strip excluding the critical

line, given that Ey(t) = Ey(—t) is an even function of variable ¢, where E,(t) = 5= [7 Ep(w)e™!dw,
2.2t 1

E,(t) = Eg(t)e 7" and Eo(t) = > o0 [An*nte* — 6mn?e*]e ™ ¢ e2.

Proof: We assume that Riemann Hypothesis is false and prove its truth using proof by contra-
diction.

Statement 1: Let us assume that Riemann’s Xi function £(5 + o + iw) = E,,(w) has a zero at
w = wp where wy is real and finite and 0 < |o| < %, corresponding to the critical strip excluding the
critical line. We will prove that this assumption leads to a contradiction.

We will prove it for 0 < o < % first and then use the property f(% +o0+iw) = 6(% — 0 —1iw) to
show the result for —1 < o < 0 and hence show the result for 0 < |o| < 1.

We know that wy # 0, because ((s) has no zeros on the real axis between 0 and 1, when s =
s +o0+iwisreal, w=0and 0 < |o| < 3. [3] (Titchmarsh pp30-31). This is shown in detail in first
two paragraphs in [Appendix B.1}

2.1. New function g(t,ts,t0)

Let us consider the function E,(t,t2) = e "2 E,(t — t2) — e"2E,(t + t2) = (Eo(t — t2) — Eo(t +
ty))e~" = Ey(t,ty)e !, where ty is non-zero and real, and Ey(t,ty) = Eo(t—ty)—Eo(t-+t,) (Definition
1). Its Fourier transform is given by E, (w,t2) = Ep,(w)(e 72e7!2 — ¢7'2¢™!2) which has a zero at
the same w = wy, using Statement 1 and linearity and time shift properties of the Fourier transform
(link). (Result 2.1.1).

Let us consider the function f(t,t,tg) = e 270 f1(t,ta, tg) + €270 fo(t, ta, to) where fi(t,ta,ty) =
e E (t + to,t2) and fo(t, 12, t0) = fi(t,ta, —to) = e TWE (t — to,ts) where t, is finite and real and
we can see that the Fourier Transform of this function F(w,t2,t0) = E,,(w, t)(e"70e™t0 4 ¢otoe=iwto)


https://www.ocf.berkeley.edu/~araman/files/math_z/Titchmarsh_pp30_31.pdf
https://lpsa.swarthmore.edu/Fourier/Xforms/FXProps.html

also has a zero at the same w = wy, using Result 2.1.1. (Result 2.1.2)

Let us consider a new function g(t,te,tg) = g_(t, ta, to)u(—1t) + g4 (t, to, to)u(t) where g(t,ts,1g) is
a real function of variable ¢ and u(t) is Heaviside unit step function and g_(¢, 2, tg) = f(¢,t2,tg)e "
and gy (¢, t2,t0) = f(t,t2,t0)e’" . We can see that g(t,ts,to)h(t) = f(t,ta, to) where h(t) = [e” u(—t) +
e 7tu(t)].

We can write the above equations as follows.

Ey(t,t) = e P E,(t —ts) — e Ey(t +ta) = (Eo(t — ta) — Eo(t + t2))e " = Ey(t, t2)e "
filt ta, to) = " E (4 to, )

folt ta, to) = fi(t,ta, —to) = e TE, (t — to, o)

Ftta,to) = €721 fi(t o, to) + €271 fo(t, o, to) = e OE (t + to, o) + €7 E, (t — to, o)
g(t,ta, to) = [f(, ta, to)e _Ut]u(— )+ [f(t, ta, to)e” Ju(t)

gt ta, to)h(t) = f(t,ta,t0),  h(t) = [e” u(—t) + e u(t)]

(6)
We can show that Ep<t>,E;)(t7t2),h(t> are absolutely integrable functions and go to zero as
t — Foo. Hence their respective Fourier transforms given by E,,(w), E,,(w,t2), H(w) are finite

for real w and go to zero as |w| — oo, as per Riemann Lebesgue Lemma (link). We can show that
Ey(t) and Ey(t)e~ 7" are absolutely integrable functions. These results are shown in [Appendix B.1}

In Section and Section , it is shown that g(t,ts,to) is a Fourier transformable function and
its Fourier transform given by G(w, ta,tg) = ¢ 270G (w, ta, ty) + €27 G (w, to, —to) converges. (Eq. 14
and Eq. 17)

If we take the Fourier transform of the equation g(t, ta, to)h(t) = f(t,t2,to) where h(t) = [e”'u(—t)+
e~7"u(t)], using Result 2.1.2, we get 5-[G(w, ta,ty) ¥ H(w)] = F(w,ta,to) = E;Dw(w,tz)(e_gtoei“’to +
e7loe i) = Fp(w, ty, ty) + i Fr(w, tg,to) as per convolution theorem (link), where % denotes con-
volution operation given by F(w,ts,t0) = 5= [*. G(w/, 2, t0) H(w — w')dw’.

We see that H(w) = Hr(w) = [ + = J:Zw] = (022fw2) is real and is the Fourier transform of
the function A(t) (link). G(w,ta,t9) = Gr(w,ts, to) + iG(w,ts, o) is the Fourier transform of the
function g(t,ts,t9). We can write g(t,t2,%0) = geven(t, 2, t0) + Goda(t, t2, to) Where Geyen(t,t2,10) is an

even function and geqq(t, t2, to) is an odd function of variable t.

If Statement 1 is true, then we require the Fourier transform of the function f(¢,t,t) given
by F(w,ts,1y) to have a zero at w = wy for every value of t;, for each non-zero value of ¢y, us-
ing Result 2.1.2. This implies that the real part of the Fourier transform of the even function
Geven(t, T2, t0) = 3[g(t, ta, to) + g(—t, b2, t9)] given by Gr(w, t2, o) ([Appendix C.2) must have at least
one zero at w = w,(tq,%y) # 0 where w,(t2, o) is real and finite, where Gr(w, t9,to) crosses the zero
line to the opposite sign, explained below. We note that w,(ts,to) can be different from wy in general.

Because H(w) = (UQQJF—UMZ) is real and does not have zeros for any finite value of w, if Gr(w, 2, o)
does not have at least one zero for some w = w,(tq,ty) # 0, where Gr(w, t2,to) crosses the zero line to

the opposite sign, then the real part of F(w,ts,ty) given by Fr(w,ts, tg) = %[GR(w, to, to) * H(w)],


https://en.wikipedia.org/wiki/Riemann-Lebesgue_lemma
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obtained by the convolution of H(w) and Gr(w, ts, %), cannot possibly have zeros for any non-zero fi-
nite value of w, which goes against Result 2.1.2 and Statement 1. This is shown in detail in Lemma 1.

Lemma 1: If Riemann’s Xi function £(3 + 0 + iw) = Ep,(w) has a zero at w = wy # 0
where wq is real and finite, then the real part of the Fourier transform of the even function
Geven (L, ta, tg) = %[g(t,tz,to) + g(—t,ta,19)] given by Gr(w,ts,ty) must have at least one zero at
w = w,(ta,to) # 0 for every value of ¢y, for each non-zero value of t, where Gr(w,ta, ) crosses
the zero line to the opposite sign and hence BG}{%& # 0 at w = w,(t2,tp) and w,(t2, o) is real
and finite, where g(t, ta, to)h(t) = f(t,ta, o) = e727% fl(t ta, to) + €270 fo(t, to, to) where fi(t,to, to) =
e E (t +to, t2) and fo(t, ta, to) = e WE (t — to, ta), E,(t,t2) = e 2E,(t — t3) — e"2E,(t + t5), and
h(t) = e”'u(—t) + e “'u(t) and 0 < o < 3.

Proof: If E,,(w) has a zero at finite w = wy # 0 to satisfy Statement 1, then F(w,ts,ty) =
B (w,ta)(e77eh 4 e ) = F (w)(e 7e ™ — e72ei2)(em e  e7femh0) also has a
zero at w = wyp, using Result 2.1.2 and its real part given by Fr(w,ts, %) also has a zero at the same
location w = wy # 0(Result 2.1.3).

We consider the case where Gr(w, t2, ty) does not have at least one zero for finite w = w, (t2, ty) #
0 , where Gg(w, to,tg) crosses the zero line to the opposite sign and will show that Fgr(w,ts,ty) does
not have at least one zero at finite w # 0 for this case, which contradicts Result 2.1.3 and Statement
1. Given that H(w) is real, we can write the convolution theorem only for the real parts as follows.

1 > / / /
FR(w7t27t0) - % / GR<W ,t27t0)H(W —w )dw (7)

—o0
We can show that the above integral converges for real w, given that the integrand is absolutely

integrable because G(w, ta,to) and H(w) have fall-off rate of 2 as |w| — oo because the first deriva-
tives of g(t,ts,ty) and h(t) are discontinuous at ¢ = 0. (|Append1x B.2)

We substitute H(w) = ﬁ in Eq. |7l and we get

g > !/ 1 /
FR(W7 lo, to) = ;/ GR(("} , Lo, tO) (0_2 + ((U — (JJ/)2)dw (8)

We can split the integral in Eq. using ffooo = ff)oo + fooo, as follows.

4 0 / 1 / OO / 1 /
FR(w,tg,to) = ;[/_oo GR((JJ,tQ,to) <02+(w_w/)2)dw —|-/0 GR(w,tQ,t()) o Y d(JJ]

We see that Gr(—w,ts,ty) = Gr(w,ts,ty) because g(t,ts,ty) is a real function of variable t¢.
([Appendix C.1)) We can substitute w’ = —w” in the first integral in Eq. 9 and substituting w” = &’
in the result, we can write as follows.

1 1 /
Fr (w t2,t0 / GR uJ tz,to)[< 2+(w—w’)2) + (02+<w+w/)2>]dw




In [Appendix B.2| it is shown that G(W', t,t) is finite for real w’ and goes to zero as || — 0.
We can see that for w" — oo, the integrand in Eq. 10 is zero. For finite w > 0, and 0 < W’ < 00, we
can see that the term (02+(¢3—w')2) + (02+(‘j+w, 5 > 0,for0 <o < % We see that Gr(w', ta, 1) is not
an all zero function of variable w’ (Section . (Result 2.1.4)

e Case 1: Gg(W',ta,ty) > 0 for all finite w’ >0

We see that Fr(w,ts,tg) > 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =
Fr(w,ts,tg) because f(t,tq,t0) is a real function ( [Appendix C.1)) and link ). Hence Fr(w,ts,tg) > 0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts, %) to have at least one
zero at finite w # 0. Therefore Gg(w', ta,ty) must have at least one zero at w' = w,(ts,tg) > 0
where it crosses the zero line and becomes negative, where w, (o, o) is real and finite.

e Case 2: Gr(W', ta,ty) <0 for all finite w' >0
We see that Fr(w,ts,ty) < 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =

Fr(w, ta,t9) because f(t,ts,t0) is a real function ( [Appendix C.1)) and link ). Hence Fg(w, ta,tg) <0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts, %) to have at least one
zero at finite w # 0. Therefore Gg(w', ta,tp) must have at least one zero at w' = w,(t2,%) > 0,
where it crosses the zero line and becomes positive, where w, (t2, %) is real and finite.

We have shown that, Gr(w, ta, ty) must have at least one zero at finite w = w,(t2,ty) # 0 where
it crosses the zero line to the opposite sign, to satisfy Statement 1. It is shown in Section that
Gr(w, ta, 1) is partially differentiable as a function of w and hence a continuous function of w, for a
given value of ty and t5. Hence W # 0 at w = w,(ta,ty). We call this Result 2.1.5.

In the rest of the sections, we consider only the first zero crossing away from origin, where
Gr(w, ta, 1) crosses the zero line to the opposite sign. Hence 0 < w,(t2,t) < oo, for all |ty| < oo, for
each non-zero value of 5, to satisfy Statement 1.

2.2. Ggr(w',ts,ty) is not an all zero function of variable W'

If Gr(W', ts,tg) is an all zero function of variable w’, for each given value of ty,t; (Statement
2), then Fgr(w,ts,ty) in Eq. [7] is an all zero function of w, for real w. Hence 2feen(t,ta,to) =
f(t, ta,to) + f(—t, 1, to) is an all-zero function of ¢, given that the Fourier transform of feyen (%, t2, to)
is given by Fgr(w, ts,ty), using symmetry properties of Fourier transform( |[Appendix C.2) and link
). Hence f(t,tq,19) is an odd function of variable t.(Result 2.2).

From Eq. 6 we see that E,(t,t5) = e "2 E,(t — ty) — e"2E,(t + to) = [Eo(t — ta) — Eo(t +ta)]e 7",
Hence fi(t, by, to) = €70 E,(t + to, t2) = [Eo(t + to — t2) — Eo(t + to + t2)]e ™" and
fa(t, ta, o) = e‘”tOE];(t — to,ta) = [Eo(t — to — t2) — Eo(t — to + t2)]e™ 7" . Hence we can write


https://lpsa.swarthmore.edu/Fourier/Xforms/FXProps.html
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t,ta,to) = e 200 f1(t, g, to) + €270 fy(t, ta, ty) in Eq. 6, as follows.
f( )
f(t, o, tg) = e 27 0[Ey(t+tg—to) — Eo(t +to+ta)]e 7 + e [Ey(t —tg—to) — Eo(t —to+1t2)]e 7" (11)

Case 1: For tg # 0 and t5 # 0, it is shown that Result 2.2 is false. We will compute f(¢,ts,t0) in
Eq. |11} at ¢t = 0 and show that it does not equal zero.

We see that f((), tg, to) = 6_2gt0 [Eo(tg — tz) — Eo(to + tg)] -+ 620t0 [Eo(—to — tg) — Eo(—to + tQ)]
= —2sinh (20’t0)[E0(t0 — t2> - Eo(to + tz)] We use the fact that Eo(to) = Eo(—to) (|Append1x B9D
and hence Ey(tog — t2) = Eo(—to + t2) and Ey(to + t2) = Eo(—to — t2).

If Result 2.2 is true, then we require f(0,tq,t9) = 0 in Eq. . For our choice of 0 < 0 < % and
to # 0, this implies that Ey(to — t2) = FEo(to + t2). Given that ¢y # 0 and t5 # 0, we set ty = Kt
for real K # 0 and we get Ey((1 — K)tg) = Eo((1 + K)ty). This is not possible for ¢y # 0 because
Eo(to) is strictly decreasing for ¢y > 0 (Section[f)) and 1 — K #1+ K or 1 — K # —(1+ K) for
K # 0. Hence Result 2.2 is false and Statement 2 is false and Gg(w', t2, ) is not an all zero function
of variable '

Case 2: For tg = 0 and ty # 0, we have f(t,tq,t0) = 2[Fo(t — t2) — Eo(t + t2)]e™ 7" = 2D(t)e™ "
in Eq. where D(t) = Ey(t — t3) — Eo(t + t2). We see that D(t) + D(—t) = Ey(t — t3) —
Eo(t + tg) + E()(—t - tg) — Eo(—t + tQ) Given that Eo(t) = Eo(—t), we have D(t) + D(—t) =
Eo(t - tg) - Eo(t + tg) + Eo(t + t2> - Eo(t - tg) = 0 and hence D(t) = E()(t - t2) - Eo(t + tg) is an
odd function of variable ¢ (Result 2.2.1).

If Result 2.2 is true, then we require f(t,t2,t9) = 2D(t)e " to be an odd function of variable
t. Using Result 2.2.1, we require D(t) to be an odd function of variable ¢. This is possible only for
o = 0. This is not possible for our choice of 0 < 0 < % Hence Result 2.2 is false and Statement 2 is
false and Gr(w', ta, 1) is not an all zero function of variable w’.

Case 3: For t; = 0 and [to| < oo, we have E,(t,t5) = e “2E,(t — t5) — e E,(t + t) = 0 and
f(t ta,tg) = g(t, ta,to) = 0 for all ¢ in Eq. 6 and Lemma 1 is not applicable for this case.

2.3.  On the zeros of a related function G(w,ty, 1)

In this section, we compute the Fourier transform of the function geyen(t, ta, %) = %[g(t, to, to) +
g(—t,ta,t0)] given by Gr(w, ta, to)([Appendix C.2). We require Gr(w, ta,ty) = 0 for w = w,(ts, ty) for
every value of t(, for each non-zero value of t5, to satisfy Statement 1, using Lemma 1 in Section|2.1]

We define gl(t7 Lo, to) - fl (t) Lo, to)e_atu<_t) + fl (ta t27 t(])eatu(t) = egtOEle(t + th t2>6_atu(_t) +
e E,(t + to, t2)e”"u(t), using Eq. 6 (Definition 3). First we compute the Fourier transform of the
function %1 (t, tg, to) given by G1 (Cd, tg, to) = GlR(w, tg, to) + z'G'H(w, t2, to)

00 0

G1 (W, t2, to) = / g1 (t, tQ, to)e_iwtdt = /

—0o0 —00

0

g1 (t, tQ, to)e_iwtdt + / g1 (t, tg, t0>€_iwtdt
0

G1<W, t27 tO) = /

—0o0

o)
€atOEI/,<t + t07 t2)e—ote—z‘wtdt + / eato E;(t + t07 t2)€at€—iwtdt
0



(12)
We use E(t,ty) = Ey(t,ty)e " from Eq. 6, where Ey(t,ty) = Eo(t — t3) — Eo(t + to), using

Definition 1 in Section and we get E(t + to,ts) = Ey(t + to, t2)e 7' " and write Eq. 12 as
follows. Then we substitute t = —t in the second integral in first line of Eq. 13.

0

Gl(W, t27 tO) - /

—00

0

o0
E(')(t + o, ta)e 2ttt 4 / E('](t + Lo, to)e " tdt
0

0
Gl(w,tz,to):/ Eg(t+t0,t2)e—2”te—wtdt+/ Ey(—t + to, ta)e™"dt
(13)

We define Ey,(t,ty) = Ey(—t,ty) (Definition 2) and get Ey(—t + to,ts) = E,(t — to,t2) and
write Eq. 13 as follows. The integral in Eq. 14 converges, given that FEy(t)e 2" is an absolutely
integrable function ([Appendix B.1|) and its ¢y, t5 shifted versions are absolutely integrable, using
Ej(t,ty) = Eo(t — ty) — Eo(t + t3) in Definition 1 in Section [2.1] and Definition 2.

0 0

G1 (CL), tQ, tO) = / E(l)(t + to, t2)€72at€7iw’tdt —+ / Eé)n(t — to, tz)ethdt = GlR(w, tg, to) -+ iGH(w, tQ, to)
(14)
The above equations can be expanded as follows using the identity ™! = cos(wt) + isin(wt).

Comparing the real parts of G;(w, to, ), we have

0 0

GlR(w,tQ,to):/ E(l)(t—l—to,tg)e_?”tcos(wt)dt—l—/ By, (t — to, ) cos (wt)dt

— 50 —00

(15)

2.4. Zero crossing function w,(t2,ty) is an even function of variable t,, for a given t,

Now we consider Eq. 6 and the function f(t,ta, to) = e727% fi(t, t2, to) +€27 fo(t, b2, tg) = e " E (t+
to,tz) + €Ut0E;(t — to,tg) where f]_(t,tQ,tQ) = €Ut0EII)<t + tO,tQ) and fg(t,tg,to) = fl(t,tg, —to) =
e~ (t—to, t2) and g(t, ta, to)h(t) = f(t,t2, to) where g(t, ta,t0) = f(t,t2,to)e™ " u(—t)+f(t, ta, to)e” u(t)
and h(t) = [e”u(—t) + e "u(t)]. We can write the above equations and ¢ (¢, ta, t) from Definition 3
in Section [2.3] as follows. We define go(t, t2, t9) below and write g(¢, t2, ) as follows.

g1 (ta t27 t()) = fl (t7 t27 to)eigtu(_t> + fl (tv t27 to)egtu(t)J g1 (ta t27 to)h(t) = fl (ta t27 t())
ga(t, ta,t0) = fa(t, ta, to)e " u(—t) + falt, ta, to)e” u(t),  ga(t,ta, to)h(t) = folt,ta, to)
gt ta, tg) = e 270g (¢, ta, to) + €70 go(t, ta, o)

(16)

We compute the Fourier transform of the function g¢(t,t2,%p) in Eq. 16 and compute its real
part Gr(w, ta,tp) using the procedure in Section , similar to Eq. 15 and we can write as follows in

9



Eq 17. We use GQR(CL), tQ, to) = GIR(w, t27 —to) given that fQ(t, tQ, to) = fl(t, tQ, —to) and gg(t, tQ, to) =
g1(t, ta, —to) and Gao(w, ta, tg) = Gi(w,ts, —tg). We substitute t = 7 in the equation for Gig(w, ts, to)
below, copied from Eq. 15.

Gr(w,ta, tg) = e 270G 1 g(w, ta, tg) + ¥ Gar(w, ta, tg) = e 27 Gg(w, ta, o) + €*7° G g(w, ta, —to)

0
G, ta, o) — / B (T + to, £2)e=2" + Bl (7 — to, £2)] cos (wr)dr
_()Oo ! /
Grlw, ty, ty) = e 27" / [Eq(T + to, t2)e 27T + E,, (T — to,t2)] cos (wr)dr

0
+e2oto / [E(;(T — to, t2)6_20T + E(’)n(T + to, t2)] cos (wT)dT

(17)

We require Gr(w, to, tg) = 0 for w = w,(ta,ty) for every value of ¢y, for each non-zero value of ¢,
to satisfy Statement 1, using Lemma 1 in Section . In general w,(ts,ty) # wo. Hence we can see
that P(te,tg) = Gr(w.(ts,to),t2,to) = 0 and we can rearrange the terms in Eq. 17 as follows. We
take the first and fourth terms in Gg(w, ts,to) in Eq. 17 and include them in the first line in Eq. 18.
We take the second and third terms in Eq. 17 and include them in the second line in Eq. 18.

0
P(tz, to) = GR(wz(tQ, to), tg, to) = / [6_2UtOE[I)(T + to, tg)e_z‘” + €2at0E6n(T + to, tz)] COS (wz(tg, to)T)dT

—0o0

0
+ / (€270 By (T — to, ty)e 2T + e 270 E (T —tg, t3)] cos (w.(te, to)T)dr = 0

(18)

We use the fact that f(¢, s, t0) = e_"tOE;,(t + to, t2) + e"tOE;D(t — to,ta) = f(t,ta, —to) in Eq. 6, is
unchanged by the substitution ty = —to. If f(t,t2,t0) = f(t,t2, —1p) is unchanged by the substi-
tution tog = —to, then g(¢,ts,t0) = g(t,t2, —to) is unchanged by the substitution tq = —t, using the
fact that g(t,ta, to)h(t) = f(t,t2,t0) and h(t) = [ u(—t) + e 7 u(t)].

Hence the Fourier transform of g(t, s, %) given by G(w,ta,ty) = G(w,ta, —tp) and its real part
given by Gg(w,ta,t9) = Gr(w,ts, —tg) is unchanged by the substitution t, = —t; and the zero
crossing in Gr(w, ta, —to) given by w,(t2, —to) is the same as the zero crossing in Gr(w, ta, 1) given
by w,(ts, o) and we get w,(t2,tg) = w,(t2, —to) and hence w,(t2, t) is an even function of variable ¢y,
for each non-zero value of t,.

We can write Eq. 18 as follows, where P,y(t2,%p) is an odd function of variable ¢y, for each
non-zero value of t5. We use w,(ta,to) = w,(t2, —to).

P(t2,t0) = Poaa(ta, to) + Poga(tz, —to) = 0
0
Podd(tg, to) = / [6_20t0E{) (T —+ t(), t2)e—2o"r + €2Ut0E6n<T + tg, tg)] COS (wz (tz, to)T)dT

—0o0

(19)
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3. Final Step

We expand P,gq(ts, o) in Eq. 19 as follows, using the substitution 7+, = 7. We get 7 = 7' — ¢
and dr = d7r’ and substitute back 7 = 7 in the second line below. We use e 27%¢27% = 1 below.

to ! ’ ’ ’
Podd(tg, to) = / [G_QJtOE(; (7'/, t2)€_207— €2oto + GQUtOEOn(T ,tQ)] COS (wz(tQ, to)(T — to)dT’
N .
P,aq(ta,to) = [cos (wz(tg,to)to)/ Ey(T, tg)e’Q‘” cos (w,(ta, to)T)dT
e ,
4 sin (w2 (fa, f0)to) / (7. £2)e=2" sin (w. (ta, t0)7)d7]
to , - to ,
62710 (cos (w. (t, o)to) / E, (7. 5) c0s (w2 (ta, fo)7)dr + sin (w. (fa, fo)to) / E, (r,12) sin (w. (ta, to)7)d7]

(20)

In Section it is shown that 0 < w,(ta,t9) < oo, for all |ty| < oo, for each non-zero value of t,.
In this section, we consider ¢y > 0 and ¢, > 0 only.

In Section , it is shown that w,(ts,1%y) is a continuous function of variable ¢, and 5, for all
0<tyg<ooand 0 <ty < o0.

In Section 6] it is shown that Eq(¢) is strictly decreasing for ¢ > 0.

Given that w,(t2,19) is a continuous function of both ¢y and ¢, we can find a suitable value of
to = toc and ty = ty. = 2t such that w, (tac, toc)to. = 5. Given that w.(t2,10) is a continuous function
of ty and t5 and given that ¢y is a continuous function, we see that the product of two continuous
functions w, (2, t)ty is a continuous function and is positive for ty > 0 because 0 < w,(t2, ) < 0.

We see that w,(ts,t9) > 0 and is a continuous function of variable ¢y and t,, as ty and ¢, increase
to a larger and larger finite value without bounds and that the order of w,(ts,%9)to is greater than 1
(Section . As ty and t5 increase from zero to a larger and larger finite value without bounds, the
continuous function w, (ts, ty)to starts from zero and increases with order greater than O[1] and will
pass through 7.

We set tg = to. > 0 and ty = ty. = 2to. such that w,(ta, toc)toc = 5 in Eq. 20 as follows. We use
the fact that cos (w,(tac, toc)toc) = 0, sin (w,(tac, toe)toc) = 1 and w,(tae, —toe) = w,(tac, toe) shown in
Section 2.41

toc toc
Podd(t2c> toc) = / Eé)(T, t20)672m— sin (U)Z (tgc, tOC)T)dT + GQUtOC / Eén<7', tQC) sin (Cdz (tgc, toc)T)dT

(21)
We compute Pygq(te, —to) in Eq. 20 as follows. We use w, (ta, —tg) = w.(t2,ty) (Section .
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_tO

Podd(tg, —t0> = [COS (wz(t27 to)to) / E(/J(T, t2)6_20T COS (wz(tg, to)T)dT

—to
— sin (w, (t2, to)to) / E(,)(T, t2)6_2‘" sin (w, (t, to)T)dT]
—to ’ N —to ’
e 20t [cos (wz(tg,to)t())/ E,, (T, t2) cos (w.(te, to)T)dT — sin (wz(tg,to)t0>/ Eq, (7, t2) sin (w, (t2, to)T)dT]

(22)

We set ty = to. > 0 and ty = ty. = 2t such that w,(tac, toc)loc = 5 in Eq. 22 as follows. We use
08 (W, (tae, toc)toe) = 0, sin (w, (tac, toe)toe) = 1.

—toc

E(I)(T, tQC)e_Q‘” sin (w, (tae, toe)T)dT — ¢~ 20t0c / E(;n(T, toc) sin (w (tac, toe)T)dT

[e.e]

—toc

Prga(toc, —toc) = —/

(23)

We compute P,yq(ta, to) + Poaaltz, —to) = 0 in Eq. 19, at ¢ty = to. and ty = t5. using Eq. 21 and
Eq. 23.

toc
/ E(l) (7—7 t2c>€7207 Sin (wz (t2(:7 tOc dT + 620t06 / E t2c SlIl (wz (t207 tOc) )dT

—0o0 o
—toc —toc

— E(/] (T, t20)67207— Sln (wz(t207 tOC)T)dT —e —20toc /

—00

Eén(T toe) sin (w, (tae, toe)T)dT = 0

(24)
We split the first two integrals in the left hand side of Eq. 24 using f = foe 4 I foe _ as follows.

—toc toc
[/ E(/) (T, t26>€7207 sin (w, (tae, toe)T)dT + / E(l) (T, tzc)efz‘” sin (w, (t2e, toe)T)dT]

o _tOC
—toc toc
| e2otoc [/ E(']n(r, toe) sin (w, (tac, toe)T)dT +/ E(l)n(T, to.) sin (w, (tac, toe)T)dT]
—00 —toc
—toc , —t0c (j
— / Eqy(T, tQC)B_ZJT sin (w, (tae, toe)T)dT — e~ 2otoc / Eq,, (T, tae) sin (w, (tac, toe)T)dT = 0

(25)
~297 sin (w, (tae, toe)T)dT in Eq. 25 and rearrange
—20tgc

We cancel the common integral f:;?c By (1, tac)e

20toc

the terms as follows, using 2sinh (20t.) = e —e

toc toc
/ (7, tae)e=27 sin (w. (tes too) 7)dr + €271 / E, (7o) sin (w. (fe, foo) 7)dr

—toc
—toc

= —2sinh (ZUtOC)/ E(l)n(T, toe) sin (w, (tae, toe)T)dT

— 00
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We can combine the integrals in the left hand side of Eq. 26 as follows.

tOc
/ [E(/)(T, t26)6_2UT + E(l)n(’]', tgc)e%toc] sin (w, (tae, toe)T)dT

—toc
—toc

— _9sinh (201p,) / Bl (7, t2e) sin (. (fae, toe) ) dr

(27)

We denote the right hand side of Eq. 27 as RHS. We can split the integral in the left hand side

of Eq. 27 using ff‘;% = ff)top + JOC as follows.

0
/ B (7 t20) 62 + Bl (7, £22)€210°] sin (s (fae, foc)7)dr

—toc

toc
+ / [E(,J (7'7 tQC)e_QJT + E(;n(ﬂ t2c)620t06] sin (wz (t207 tOC)T)dT = RHS
0

(28)

We substitute 7 = —7 in the first integral in Eq. 28 as follows. We use Ej(—7,t2.) = Ej, (7, ta.)
and Ey, (—7,ts.) = Fy(T, ta.) using Definition 2 in Section .

0
/ [E(/)n(T, t28)6207 + E(/) (T, tgc)e%toc] sin (w, (tae, toe)T)dT

toc

toc
+/ By tac)e ™™ + Egy (7, 1) sin (ws (tae, to)7)dr = RHS
0

(29)
Given that ft?) =— JOC, we can simplify Eq. 29 as follows.
tOC / /
/ [E0<7-7 t2C) (67207 - e2<7t0c) + EOn(T7 tQC)(_e2UT + QQUtOC)] sin (wz(t2cy tOC)T)dT = RHS
0
(30)

We substitute 7 = —7 in the right hand side of Eq. 27 as follows. We use Ey,,(—7, t2.) = Eo(7, tac)
using Definition 2 in Section [2.3]

RHS = 2sinh (20toc)/ Eé(T, toc) sin (w (tac, toe)T)dT

toc
(31)
We split the integral on the right hand side in Eq. 31 using [~ = [~ — 7, as follows.

13



[ee) tOc
RHS = 2sinh (20t0.)] / (7, £22) sin (. (fae, too) 7)dT — / (7, tae) sin (ws (oo, foo)7)dr
0 0
(32)

We consolidate the integrals of the form fotoc E(/)(T, toe) sin (w, (tac, to.)T)dT in Eq. 30 and Eq. 32 as
follows. We use 2sinh (20tg,) = 27t — ¢=27%0c,

toc
/ [E(/](T, toe) (€277 — ¥toe 4 2toe _ om20loc) 4 E(;n(T, toe)(—e7T 4 e27'0¢)] sin (w, (tae, toe)T)dT
0

:2sinh(20toc)/ E(l)(T, tae) sin (w; (tae, toe)T)dT
0

(33)
We cancel the common term e27%¢ in the first integral in Eq. 33 as follows.
tOC / /
/ [Ey (7, tae) (67277 — e727%0¢) - B (7, tae)(—€*7T + €27%°)] sin (w, (tae, toe)T)dT
0
— 2sinh (200.) / By (7, tae) sin (ws (2, o))
0

(34)

We substitute Fy(7,to) = Eo(T — toe) — Eo(T + ta.) (using Definition 1 in Section ) and
B, (T,t) = Ey(—7,ts.) = Eo(—T — ty.) — Eo(—T + ta.) (using Definition 2 in Section [2.3). We see
that Eo(—7 —ta.) = Eo(T+t2.) and Eo(—7+t2.) = Eo(T —ta.) given that Ey(7) = Eo(—7)(
. Hence we see that Ey, (7,to.) = Eo(T +ta.) — Eo(T — tae) = —Ey(7,t2.) (Result 3.1) and write
Eq. 34 as follows.

tOc
/ (Eo(T — tae) — Eo(T +tg.))(e7 27 — e727%e 1 277 — e29%0c) gin (w, (tae, to)T)dT
0
=2 Sil’lh (20t00> / (E[)(T — tgc) — EQ(T + tgc)) sin (U)Z (tgc, tOC)T)dT
0
(35)

We substitute 2cosh (207) = €27 + ¢72°7 and 2cosh (20t(.) = e* 4 ¢727%: and cancel the
common factor of 2 in Eq. 35 as follows.

toc
/ (Eo(T — tae) — Eo(T + tae))(cosh (207) — cosh (20ty.) sin (w, (tac, toe)T)dT
0

= sinh (20t¢,) / (Eo(T — tae) — Eo(T + tac)) sin (w, (tae, toe)T)dT
0

14



Next Step:

We denote the right hand side of Eq. 36 as RHS . We substitute 7 — ty. = 7/ and 7 + to. = 7" in
the right hand side of Eq. 36 and then substitute 7/ = 7 and 7" = 7 in the second line below.

o0

RHS' = sinh (201506)[/ Eo(7") sin (w, (tae, toe) (7" + toe))dT" — / Eo(7") sin (w, (tae, toe) (T — tac))dT"]

—tac tac
RHS' = sinh (20t0c)[cos (w, (tae, toc) )t2e) / Eo(7) sin (w, (tac, toe)T)dT
—t2¢
i (00 (s oo e / Eo(7) cos (ws (fae, tor)7)dT
—t2c
— cos (s (faes for) e / Eo(r) sin (@ (tae foo) 7 + sin (s (f20s foo)iae) / Eo(r) cos (w. (fae, toe)7)d7]
toc tac
(37)
In Eq. 37, given that w.(fa, toc)toc = 5 and ty, = 2ty and hence w,(tac, toc)loe = 25 = m and
sin (w, (tae, toe)tae) = 0 and cos (w,(tac, toe)ta.) = —1. Hence we cancel common terms and write
Eq. 37 and Eq. 36 as follows.
toc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t.) sin (w, (tac, toe)T)dT
0
= —sinh (QO'tOC)[/ Eo(7) sin (w, (tae, toe)T)dT — / Eo(7) sin (w, (tac, toe)T)dT]
—tac tac
(38)

We use f_oi;c Eo(7) sin (w,(tae, toe)T)dT = ffi;c Eo(7) sin (w, (tac, tOC)T)d7'+fth Eo(7) sin (w, (tac, toe)T)dT
and cancel the common term ftzo Eo(7) sin (w,(tae, toe)7)dT in Eq. 38 as follows. Given that Ey(7) is
an even function of variable 7 ( |[Appendix B.9) and FEy(7)sin (w, (o, toc)7) is an odd function of
variable 7, we get ffi; Eo(7) sin (w, (tae, toe)T)dT = 0.

We see that I= ftQC Eo(7) sin (w, (tae, toe)T)dT = fEtQC Eo(7) sin (w; (tae, toe)T)dT
f e g ) sin (w, (tae, toe)T)dT. We substitute 7 = —7 in the first integral and get
I= ft EO ) sin (W (tac, toe)T)dT + [17 Eo(7) sin (w, (tae, toe)T)dT
t2° Eo(7) sin (w, (tae, to.)T)dT + fot"’c Eo(7) sin (w, (tae, toe)7)dT = 0. We write Eq. 38 as follows.

tOc
/ (Eo(T — tae) — Eo(T + tae))(cosh (207) — cosh (20t¢.) sin (w, (tac, toe)T)dT = 0
0

(39)
We can multiply Eq. 39 by a factor of —1 as follows.

/0 - [Eo(T — tae) — Eo(T + tac)](cosh (20ty.) — cosh (207)) sin (w. (tac, toe)T)dT = 0

15



(40)

T
2toc

In Eq. 40, given that w.(tac, toc)toc = 5, as 7 varies over the interval (0,to.), w.(toc, toe)T =
varies from (0, 5

, 5) and the sinusoidal function is > 0, in the interval 0 < 7 < tq.., for to. > 0.

In Eq. 40, we see that the integral on the left hand side is > 0 for ;. > 0, because each of the
terms in the integrand are > 0, in the interval 0 < 7 < t(. as follows. Given that Ey(¢) is a strictly
decreasing function for ¢ > 0(Section [f), we see that Ey(T — ta.) — Eo(T + ta.) is > 0 (Section [6.3)
in the interval 0 < 7 < to.. The term (cosh (20ty.) — cosh (207)) is > 0 in the interval 0 < 7 < #o..

The integrand is zero at 7 = 0 due to the term sin (w, (2., toc)7) and the integrand is zero at 7 = ¢,
due to the term cosh (20ty.) — cosh (207) and hence the integral cannot equal zero, as required by
the right hand side of Eq. 40. Hence this leads to a contradiction, for 0 < o < %

For o = 0, both sides of Eq. 40 is zero, given the term (cosh (20t,.) — cosh (207)) = 0 and does
not lead to a contradiction.

We have shown this result for 0 < o < 1. If the Fourier transform of E,(t) = Ey(t)e” " given by
Epo(w) = Eppy(w) + 1By, (w) has a zero at w = wy, then the real part E,g,(w) and imaginary part
E,1,(w) also have a zero at w = wy, to satisfy Statement 1.

Given that E,(t) = Eo(t)e?" is real, its Fourier transform E,,(w) = &(3 4+ 0 + iw) has symme-
try properties and hence E,p,(—w) = E,p,(w) and Ep,(—w) = —Ep,(w) (Symmetry property of
Fourier Tranform) and hence E,,(—w) = £(3+0—iw) also has a zero at w = wy to satisfy Statement 1.

Using the property £(s) = £(1 — s), we get f(% +o0—iw) = 5(% — 0 +iw) at s = % + 0 —iw and
Eg(w) = &(3 — 0 4 iw) also has a zero at w = wy to satisfy Statement 1. We see that Eg,(w) is
obtained by replacing o in E,,(w) by —o. Hence the results in above sections hold for —% <o<0

and for 0 < |o| < 3.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Eo(t)e " has a zero at w = w for 0 < |o| < 3.

Therefore, the assumption in Statement 1 that Riemann’s Xi Function given by & (% +o+iw) =
E,.(w) has a zero at w = wy, where wy is real and finite, leads to a contradiction for the region
0 < |o| < 1 which corresponds to the critical strip excluding the critical line. This means ((s) does
not have non-trivial zeros in the critical strip excluding the critical line and we have proved Riemann’s
Hypothesis.

4. w,(ta,tp) is a continuous function of ¢y, and ¢,

We see from Section [2.1| that w,(t2,to) is shown to be finite and non-zero for all |ty| < co and
for each non-zero value of ¢t and that w,(t2,%) is an even function of variable t,, for a given value
of to(Section . For a given ty and ty, w,(t2, %) can have more than one value, corresponding to
multiple zero crossings in Gg(w, ta, to), but we consider only the first zero crossing away from origin in
the section below, where G r(w, ta, to) crosses the zero line to the opposite sign, as detailed in Lemma
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1 in Section and W # 0 at w = w,(t2,1). (example plot)

We consider the Fourier transform of the even part of ¢(t,ta,1%9) given by Gr(w,ts,tg) in the
section below and show that, under this Fourier transformation, as we change ty, the zero cross-
ing in Gr(w,ts,ty) given by w,(t2, %) is a continuous function of ty, for all 0 < ty < oo, for each
value of t5 in the interval 0 < t5 < co. This is shown in the steps below. For a given finite value
of ty, Gr(w, ta, tg) is a function of two variables w and ty, and we use Implicit Function Theorem in R?.

e It is shown in Section that Gr(w, o, ty) is partially differentiable at least twice with respect
to w, as shown in Eq. 43.

e It is shown in Section 4.2] that Gr(w, ta, to) is partially differentiable at least twice with respect
to tg, as shown in Eq. 44 and Eq. 49.

e It is shown in Section that the zero crossing in Gr(w, ta,to) given by w, (s, 1), is a contin-
uous function of ty, for a given t,, using Implicit Function Theorem in R2.

e It is shown in Section [4.4] that w, (2, t0) is a continuous function of t5 and t,, for 0 < 5 < co
and 0 <t < 0o, using Implicit Function Theorem in R3.

4.1.  Gpr(w,ts, tyg) is partially differentiable twice as a function of w

Gr(w,ta, 1) in Eq. 17 is copied below.

0
Grlw, ty, tg) = e 27" / [Ey(T + to, 12)e™ 2T 4+ Ey, (1 — to, ty)] cos (wr)dr
0
+€20t0 / [E(/](T — t(), t2)€_2m— + E(/)n(T + to, tg)] COS (WT)dT = Glm(“: tz, t()) + G;R(w, tQ, —t0>
0
G p(w, ta, tg) = et / [Eo(T + to, t2)e” 2T + Ey, (T — to, t3)] cos (wr)dr

(41)

We can expand G ,(w, ta, to) in Eq. 41 by substituting 7+ ¢, = 7’ in the first term in the integral
and 7 —ty = 7" in the second term in the integral and expanding it, similar to Eq. 20 and substituting
back 7 = 7 and 7" = 7 in the second line below. We use e~27%¢2°% = 1 in the first integral below.

to —to
Gp(w, ta, tg) = et / Ey (7' t5)e” 27 €27 cos (w(t! — to))dr + e 2t / Ey (7", t3) cos (w(T" + to))dr”
/ N to ’ - to ’
Gip(w, ta, ty) = [cos (wto)/ Ey(7,t3)e 27" cos (wT)dr + sin (wto)/ Ey(7,t2)e” " sin (w7)d7]
N 7t0 / N 7t0 /
te20cos (wto) / E, (r.15) cos (wr)dr — sin (wt) / E, (v, 1) sin (wr)dr]

(42)
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We could then use Ej(r, tg) (Eo(T — t2) — Eo(T + t2) (using Definition 1 in Section [2.1| ) and
B, (1,ty) = Ey(—T,t3) = —Ey(7,t,) (using Definition 2 in Section and Result 3.1 in Sect1on '
and substitute 7 +t, =t and 7 —t, = t' and expanding it using the procedure used in Eq. 42. The in-
tegrands are absolutely integrable and we could then use theorem of dominated convergence as follows.

In Eq. 41, Gr(w, t9, to) is partially differentiable at least twice with respect to w and the integrals
converge in Eq 41 and Eq. 43 for 0 < o < %, because the terms 7" Eo (7 = to, t2)e 2" and 7" Eg, (1 +
to,ts) = —7"Ey(T £ to, 1) have exponentlal asymptotic fall-off rate as |7| — oo, for r = 0,1,2
(|Appendix B.6|). The integrands in Eq. 41 and Eq. 43 are absolutely integrable and are analytic
functions of variables w and ¢y, for a given ¢,. We can interchange the order of partial differentiation
and integration in Eq. 43 using theorem of dominated convergence, recursively as follows.(link)) (
Theorem 3 in link and link.)

G R(w, ta, o) 0 /

R(;a 2, to) _ —20t0/ T[Eo(T + to, t2)e 27T + Ep, (T — to, t2)] sin (w7)dr
W 00

0 ) )
+e2oto / T[Eo(T — to, ta)e 7" 4 Ey,, (T + to, ts)] sin (wr)d7]

82G g (w, ta, to) ‘ /
Rg::; 2 0 _ —2o't0 / 7_ 7_ + to, tg) —2071 + EOn(T — to, t2)] CcOs (WT)dT

o ,
QUtO / 72 — 1o, tg) —2o7 + EOn(T + to, t?)] cos (WT)dT]

4.2.  Gr(w,ts, ty) is partially differentiable twice as a function of t,

In Eq. 41, Gg(w, t2, to) is partially differentiable at least twice as a function of ¢, and the integrals
converge in Eq. 44 and Eq. 49 shown as follows. The integrands in the equation for Gg(w,ts,tg) in
Eq. 44 are absolutely integrable because the terms Ey(7 £ to, t2)e 27 and Ey, (7 + to, ts) = —Ey(T +
to, t2) have exponential asymptotic fall-off rate as |7| — oo( [Appendix B.6| ). The integrands are
analytic functions of variables w and ¢y, for a given t5 and we can expand Gg(w, ta, ) in Eq. 44 by
substituting 7 + ty = t and expanding it, similar to Eq. 42. We can interchange the order of partial
differentiation and integration in Eq. 44 using theorem of dominated convergence as follows. (link)
(We could also use theorem 3 in link and link)
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0
Grlw, ty, tg) = e 27" / [Ey(T + to, t2)e™ 2T + Ey, (T — to, t5)] cos (wr)dr
0
+e27to / [E(/)(T — to,ta)e 2T + E(l)n(T + to, t2)] cos (wT)dT
OGR(w, to,t o ,
—R(;; 2, o) = —20e 2t / [Ey(T + to, t2)e 27T + E,, (T — to,t2)] cos (wT)dr
0 —00

0 ’ _9 ’
OE to, t T+ F —to, t
+€—20to/ (Eo(T +to,ta2)e + By, (T — to,12)) cos (wr)dr

. Oty

0
420?710 / [Ey(T — to, t2)e” 2T + E, (T + to, t3)] cos (wr)dr

—00

|20t /0 3(E(/)(7' —to, ta)e 27T + E(/)n(T +to, t2))
e ot

cos (wr)dr

(44)

We show that the integrals in Eq. 44 converge, as follows. We see that E,(7 4 to,t2) = Eo(T +
t() — tQ) — Eo(T + t() + tg) and E(l)n(T - to,tg) = —E(l)(T — to,tg) = E(](T - t() + tQ) - E()(T - to — tQ)
(using Definition 1 in Section and Result 3.1 in Section 3| ).We see that the first and third in-

tegrals in the equation for 9Grwlato) ) Eq. 44 converge because the terms Ey(7 + tg,t2)e 2" and

Oto
B, (T+tg, ty) = —Ey(T=+ty, ) have exponential asymptotic fall-off rate as |7| — oo(|Appendix B.6|).

We consider the integrand in the second integral in the equation for %{f’to) in Eq. 44 first and
use the results in the above paragraph.

8(E(l)(7' + to, t2)€72m— —|— E(l)n(T — to, tQ)) o a(Eo(T + to — tg)eizm— — E()(T + to —|— t2)672m—)
Oto B Oty
+8<E0(T — to + tg) — E()(T — to — tg))

oty

(45)

We consider the term Ey(7 + tg + to) first in Eq. 45 and can show that the integrals converge in
Eq. 44, as follows. We take the factor of 2 out of the summation in Ey(7) in Eq. 1| copied below.

oo
_ 2. 27 T
— 2§ 27_[_2 4 47’ 37Tn2€27]€ ™ e e2
1
o0
72 d AT oAt o) _ 2 27 2(ta+tg)], —mn2e?Te2(tatto) T (tatto)
Eo(T+ta+ty) = g Tn'e’e 3mne e le eze 2

(46)

We can show that 8%EO(T + ity +ty) = %EO(T + ty + to) as follows, given that the equation for

Eo(T +ta + o) in Eq. 46 has terms of the form e™ " and the equation is invariant if we interchange
the variables 7 and ;. (Result A)
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0 > 02,27 2(tg+tg) T (tattg)
——Eo(7 4+t + 1) =2 E e T oh e [RrptedT et tio)  grp2e?Te2(tzto)

dty —
+(% _ 27Tn2627'62(t2+t0))(27T2n464T€4(t2+t0) o 37rn262T62(t2+t0))]
0 " —mntetreinto) z U2HO) (5 4 ar ittt 2 27 2(ta2+t
6—E0(7'+t2+t0) :226 e e eze 7 [8rintetmetllztio) _ grp2elT 2t
T
n=1
+(% o 27Tn2627'62(t2+t0))(27T2n464T€4(t2+t0) o 37rn2€2T62(t2+t0))]

(47)
We can replace to by t, = —t, in Eq. 46 and see that %EO(T"‘tQ +1y) = ZEo(T+t2+ty) (Result
0

. . .o . . . ! : 0 _ O9.dg _ O
E) given that the equation is invariant if we interchange 7 and ¢,. Given that of = Poal — ot

we substitute it in Result E and get %E@(T + by — tg) = =2 Eo(7 + t2 — ty).(Result B)

We can write the term Ey(T + tg + t2)e 27 in Eq. 45, corresponding to the term in the second

integral in the equation for %Af’to) in Eq. 44, using Result A, as follows. We use the fact that

fi) dA(T)B(T)dT = ffoo —d(A(;)TB(T))dT — ffoo A(T)—diy) dr.

oo dr

0 0
/ O(Eo(T + t2 + o)) =27 cos (wr)dr = / O(Eo(7 + 12 + to)) e 27 cos (wT)dT
—00 8150 —00 87'
0 —20T 0 —20T
_ / O(Eo(T + t2 + g))e cos (wT)) g / Eolr +ts +10)) J(e acos (wT) ir
o T o T

0
= [Eo(T 4ty +to)e 27" cos (wr)]° . + w/ Eo(7 4ty +tg))e 27 sin (wr)dr

—00

0
—|—20’/ Eo(T +t2 +t9))e 277 cos (wr)dr

—0o0

(48)

We see that the integrals in Eq. 48 converge because the integrands are absolutely integrable
because the terms Eo(7 + to + tg))e 277 sin (wr) and Ey(7 + ta + ty))e 27 cos (w) have exponential
asymptotic fall-off rate as 7| — oo( |[Appendix B.6|). The term [Eo(T + to + to)e 27 cos (w7)]°
is finite, given that Ey(7)e™2°" and its shifted versions go to zero as t — —oo( |[Appendix B.5[ ).

Hence the integral ffoo B(EO(”%XO)C?ZM) cos (wr)dr in Eq. 48 and in Eq. 44 corresponding to the

term Fo(T + ta + to)e 27" in Eq. 45, converges.

We set ¢ = 0 and ¢y = —t in the term Eo(7 + ty + to)e 2°" and see that the integral

ffoo %ﬁrto)) cos (wr)dr in Eq. 44 corresponding to the term Eo(7T + t5 — to) in Eq. 45 also con-

verges, using Result B and the procedure used in Eq. 46 to Eq. 48.

We set to = —to in the term Ey(T + ty + to)e 2°7 in Eq. 46 to Eq. 48 and see that the integral

fi)oo mEO(T_t;ZJtO)f%U cos (wr)dr in Eq. 44 corresponding to the term Fy(7 — to + tg)e 27 in Eq. 45
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also converges.

We set ty = —ty, 0 = 0 and ty = —t( in the term Fo(7 + t2 + to)e 2°" and see that the integral
fi)oo %ﬁ_to)) cos (wr)dr in Eq. 44 corresponding to the term Ey(7 — t5 — to) in Eq. 45 also con-
verges, using Result B and the procedure used in Eq. 46 to Eq. 48. Hence the second integral in the

. BGR(w,tQ,tO) .
equation for — - in Eq. 44, also converges.
We can see that the last integral in Eq. 44 converges, by setting t, = —t; in Eq. 45 and using

Result B and using the procedure in Eq. 46 to Eq. 48. Hence all the integrals in Eq. 44 converge.

4.2.1. Second Partial Derivative of Gr(w,ts,ty) with respect to t,

?Gr(wita,to) 8 9GR(w,ta,to)
ot? Bt dto
as follows. We use the result in Eq. 44 and the fact that the integrands are absolutely integrable using

the results in Section and we can interchange the order of partial differentiation and integration
in Eq. 49 using theorem of dominated convergence as follows.

The second partial derivative of Gg(w, ta, ty) with respect to tg is given by

82Gp(w, ta, R /
R(w’ 2 O> g 40’2672010 / [Eo(T + t[), t2)€7207 + EO’I’L<T - t[)? t2)] COoSs (WT)dT

ot .
0 / —20T !
J(FE, to, t E —to,t
_406—20150/ (Eo(T +to, ta)e 77 + By, (7 — to, t2)) cos (wr)dr
e Oty
0 2 / ) /
0°(E to, T+ E —to,t
+€—20t0/ ( o(T—i— 05 2)6 2 + on(T 05 2)) oS (w7')d7'
—00 0

0
+40%e2t / [Ey(T — to, t2)e 2T + Ey, (T + to, t2)] cos (wT)dr

—0o0

O OENT —tg,t9)e 2" + E| to.
+4O_e2ato/ (Eo(T — to,t2)e™" + Eq, (T + to, 12)) cos (wr)dr
oo Oty
O 92ENT —tg, t9)e 2" + E| to, t
+62(7t0/ ( o(T 05 2)6 2 + 0n(7—+ 05 2)) cos(wT)dT
—00 0

(49)

The first two integrals and fourth and fifth integrals in Eq. 49 are the same as the integrals in the
equation for %Af’to) in Eq. 44 and have been shown to converge in Section H We will show that
the third and sixth integrals in Eq. 49 converge, as follows.

We consider the integrand in the third integral in Eq. 49 first. We see that E,(1 + to,t2) =
E()(T +t0 — tg) - Eo(T +t0 +t2) and E(l)n(T - to, tg) = —E(l)(T - to, tg) = Eo(T — t() —f-tg) - Eo(T — t() — tQ)
(using Definition 1 in Section and Result 3.1 in Section |3| ). We write an equation similar to
Eq. 45.

82(E(l)(7' + to, t2)672m— + E(l)n(T — to, tQ)) o 62(E0(7' + to — t2)67207— — E()(T -+ to + t2)67207>
ot B ot
+82(E0(7' - to + tg) — Eo(T — to — tg))

ot
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(50)
We consider the term Ey(7 + tg + t2) first in Eq. 50 and copy Eq. 46 below.

_ 227 T
—9 § 27_(_2 4 47' 371'712627]6 e e2
oo
2,27 2(ta+tg) T (t2+tg)
E (7_ + t2 + t[) E 2n4647'€4 (ta+to) __ 37Tn2 2T 2(t2+t0)]6 ™m2e?Te eze 2

(51)
We can see that 2 o2 S Eo(T 4ty + 1) = 7_22 Eo(T +t2 + o), given that the equation has terms of the
form e™*" and the equation is invariant if we interchange the variables 7 and ¢,.(Result A”)

We can replace tg by tg = —tp in Eq. 51 and see that —S— Eo(7 + t2 + to) = 8—22E0(7' 4ty + ty)

8( )
(Result E’) given that the equation has terms of the form ™0 and the equation is invariant if we
interchange the variables 7 and t,.

o _ o 2 _ 9 (0\_ _0(0\_ 8 (0y_ & -
Given that z- = o0 By = o We et (%2 = 20 (o) = 8to((%) = atg(at’o) = qu Ve substi-

tute it in Result E’ and get atQ S Eo(T 4ty — tg) = 7_22 Eo(T +ty — to) .(Result B’)

We can write the term Fo(7+to+t2)e” 27 in Eq. 50, Corresponding to the term in the third integral
in Eq. 49, using Result A’ as follows. We use the fact that f dA( T)B( Ydr = fi) wd
ffoo A %dT

0 2 E 0 2 E
/ 0 ( O(T +2t2 + tO)) 6—20’7’ COoS (C«)T)dT — / 9 ( O(T + tz - to)) 6_2UT COS (WT)dT
— 00 ato —00 87—2
0 a(we—%ﬂ cos (wr)) O OEy(T 4ty +to) O(e™27 cos (wT))
— & dr — dr
o or —00 or or
E ty +t O OF ty +t
_ [(9 0(7'—(; 2+ 0)6—20'7' cos (wr)]°. —|—w/ 0 O(Tg 2+ 0)6_2‘” sin (wT)dr
T —o0 T
0
_|_20—/ OEy( —g t2 + to) e 27 cos (wT)dT

(52)

We see that the integral fi)oo W@‘QW cos (wr)dr in Eq. 52 converges, using Eq. 48 in

an(T—‘rtQ-i-to) 2

the previous subsection. We See that the term [0 20e277 cos (wr)]” , also converges, given

that the Fourier transform of ) given by iwFy,(w) (link) is finite for real w and has exponential

asymptotic fall-off rate as |w| — oo( |Append1x B. 4[) and hence absolutely integrable and hence dE(g( 7)
goes to zero as |T| — oo as per Riemann-Lebesgue Lemma. (Result 4.2.1.1)

It is shown below that the remaining term ff W ~297 sin (wT)dT also converges.
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0
/ IEo(7 + 12+ o)) e 27 sin (wT)dT
oo or
0 —20T 0 —20T &}
_ / O(Eo(T 4+t + go)e sin (wT))dT B / Eolr + 1t + to))ﬁ(e aSln (wT)dT

0
= [Eo(T 4ty +to)e 27" sin (wr)]°, — w / Eo(T 4ty +t))e 2 cos (wT)dr

—00

0
+20/ Eo(T + ty + t))e 27 sin (w7)dr

(53)

We see that the integrals in Eq. 53 converge because the integrands are absolutely integrable
because the terms Eo(7 + to + tg))e 277 sin (wr) and Ey(7 + 3 + ty))e 27 cos (w) have exponential
asymptotic fall-off rate as |7| — oo( [Appendix B.6|). The term [Eo(T + to + to)e 27 sin (w7)]°

is finite, given that Ey(7)e™2°" and its shifted versions go to zero as t — —oo( [Appendix B.5[ ).

2(Eo(t+ta+to)e2°7)
ot2

term Eo(7 + tg + to)e 27 in Eq. 50, also converges.

Hence the integral ffoo 2 cos (wr)dr in Eq. 52 and in Eq. 49 corresponding to the

We set o = 0 and ty = —t; in the term FEo(7 + to + to)e 2°" and see that the integral

fo 9?2 (Eo(T+ta—t0))
—00 atg

verges, using Result B’ and the procedure used in Eq. 51 to Eq. 53.

cos (wr)dr in Eq. 49 corresponding to the term Ey(7 + to — o) in Eq. 50 also con-

We set ty = —t5 in the term Ey(T + to + to)e 2°" in Eq. 51 to Eq. 53 and see that the integral

fo 32(E0(7'—t2+t0)672°7)
—o0 atg
also converges.

cos (wr)dr in Eq. 49 corresponding to the term Eo(T — t5 + t5)e 2" in Eq. 50

We set ty = —ty, 0 = 0 and ty = —t( in the term Eo(7 + t2 + to)e 2" and see that the integral

fo 92 (Eo(T—tg—to))
—0o0 8t8

verges, using Result B and the procedure used in Eq. 51 to Eq. 53. Hence the third integral in
Eq. 49, also converges.

cos (wr)dr in Eq. 49 corresponding to the term Ey(7 — ty — o) in Eq. 50 also con-

We can see that the sixth integral in Eq. 49 converges, by setting ¢ty = —to in Eq. 50 to Eq. 53
and using Result B and the procedure used in Eq. 51 to Eq. 53. Hence all the integrals in Eq. 49
converge.

4.3.  Zero Crossings in Gr(w,ts,ty) move continuously as a function of ty, for a given t,.

We use Implicit Function Theorem for the two dimensional case ( link and [link). Given that
Gr(w, ta, tp) is partially differentiable with respect to w and ¢, for a given value of ¢y, with continuous

partial derivatives (Section and Section and given that Gr(w,ta,ty) = 0 at w = w,(t2, tp) and
W # 0 at w = w,(tg,tp) (using Lemma 1 in Section , we see that w,(t2,%o) is a differen-

tiable function of gy, for 0 < ty < oo, for each value of t5 in the interval 0 < t5 < o0.
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Hence w, (9, 1) is a continuous function of ¢y for 0 < ¢y < oo, for each value of ¢y in the interval
0 <ty < 0.

e It is shown in Section that Gr(w, o, ty) is partially differentiable at least twice with respect
to to. We can use the procedure in previous subsections and Implicit Function Theorem and show
that w,(ts,%9) is a continuous function of ¢y, for 0 < t3 < oo, for each value of ¢, in the interval
0 <ty < oo.

4.4. Zero Crossings in Gr(w,ts, 1)) move continuously as a function of t, and t,

We can use the procedure in previous subsections and show that w, (s, %) is a continuous func-
tion of ty and ty, for 0 < ty < oo and 0 < t, < oo, using Implicit Function Theorem in R3.

We use Implicit Function Theorem for the three dimensional case (link). Given that Ggr(w,ts, %)

is partially differentiable with respect to w and ¢y and t5, with continuous partial derivatives (Sec-

tion , Section and Section and given that Ggr(w,ts,t)) = 0 at w = w,(ts,tg) and
W # 0 at w = w,(t2,tr) (using Lemma 1 in Section , we see that w,(ts,tg) is a dif-

ferentiable function of to and t,, for 0 < ;5 < 0o and 0 < ty < o0.

Hence w,(ts,t0) is a continuous function of ¢y and ¢, for 0 < ¢ty < oo and 0 < t5 < 00.

4.5.  Gr(w,ty, tg) is partially differentiable twice as a function of t,

In Eq. 41, Gg(w, ta, 1) is partially differentiable at least twice as a function of ¢, and the integrals
converge in Eq. 54 and Eq. 58 shown as follows. The integrands in the equation for Gg(w, t2, o) in
Eq. 54 are absolutely integrable because the terms Ej (7 % to, to)e ™27 and Ey, (1 + to, ts) = —Ey(1 +
to, t2) have exponential asymptotic fall-off rate as |7| — oo( |[Appendix B.6|). The integrands are
analytic functions of variables w and ¢, for a given t, and we can expand Gg(w, ta, ) in Eq. 54 by
substituting 7 + ¢ty = t and expanding it, similar to Eq. 42. We can interchange the order of partial
differentiation and integration in Eq. 54 using theorem of dominated convergence as follows. (link)
(We could also use theorem 3 in link and link)

0
Grlw, b, o) — €210 / B (7 + to, ta)e 27" + Bl (7 — to, ta)] cos (wr)dr

—0o0

0
+e?7t0 / [Ey(T — to, t2)e™ 2T + Ey, (T + to, t2)] cos (wT)dr
—o0

oG to, 1 0 J(E; to, t2)e 2T + B (1 —to, ¢
r(W, b2, to) _6—20750/ (Eo(7 + to, ta)e™™"" + B (7 — to,t2)) (wr)dr
8t2 S 8t2
0 E’ . —20T E’
+620t0/ O(Ey(T — to,ta)e — + B, (T + to, 12)) cos (wr)dr
—00 2

(54)
We use the procedure outlined in Eq. 45 to Eq. 48, with ¢y replaced by ¢ and show that all the
integrals in Eq. 54 converge, as follows.
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We see that E6(7+t0,t2) = Eo(T+to—t2) — Eo(T+to+1t2) and Eén(T—to,tz) = —E(I)(T—to,t2> =

Eo(T — to + t2) — Eo(T — to — t2) (using Definition 1 in Section [2.1| Result 3.1 in Section [3| ). We
0Gr(w

—tQtO) in Eq. 54 first.

consider the integrand in the first integral in the equation for o

a(E(/)(T + o, tg)@iQUT + E(l)n(T — 1o, tg)) o a(E()(T +ty — t2)672m’ — EQ(T + iy + t2)67207-)
Ot N Ot
+8(E0(T — to —l— tg) — E()(T — tg — tz))

Oty

(55)

We consider the term Ey(7 + to + t2) first and can show that the integrals converge in Eq. 54, as
follows. We copy Eq. 46 below.

2. 217 T
_2§ 27T2 4 47— 37Tn2 27’]6 m™moe” o5

2,27 2(tg+tg) T (tattg)
e“Te“\'2 0626 5

Eo(T +ta + 1) =2 Z[2w2n4e4764(t2+t0) — 37rn262762(t2+t0)]e_””
n=1
(56)

We see that - 35 Bo(T + a2+ 1o) = L Eo(7 + t2 + to) given that the equation has terms of the form
e 2 and hence the equation is invariant if we interchange 7 and ¢,.(Result C)

We can replace ¢, by t, = —t, in Eq. 56 and see that %EO(T 1y + 1) = iEO(T 4ty +to) given
2

8dt2_ 0

that the equation is invariant if we interchange 7 and tl2 (Result F). Given that = Ghal — ot

we use it in Result I and we get 5 EO(T —ta+ty) = —ZEy(T —ta+ to).(Result D)

We consider the term Eo(7 + to + t2)e 2" first in Eq. 55, corresponding to the term in the first
integral in the equation for 9Cp(witzto) Eq. 54 as follows, using Result C. We use the fact that

2
fo dA(r B( ydr = [~ Oo—d(A(;)TB(T))dT— ff)oo A(T)—dif)dr

oodT

0 0
[ AR 0 ey = [ ABATE 0 i
0 E —20T 0 —20T
_ / O(Eo(T +to2 + g))e cos (wT)) dr / Eo(r + 5 + to)a(e a(:os (wT) i

0
= [Eo(T +ta +tg)e > cos (wr)]°, +w / Eo(T + ty + to)e " sin (wr)dT

—0o0

0
—|—20/ Eo(T +ty + to)e 7 cos (wT)dr

(57)

We see that the integrals in Eq. 57 converge because the integrands are absolutely integrable
because the terms Eo(7 + to + tg))e 27 sin (w7) and Ey(7 + to + to))e 27 cos (wT) have exponential
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asymptotic fall-off rate as |7| — oco( [Appendix B.6|). The term [Ey(7 + t2 + to)e 277 cos (w7)]”

is finite, given that Fy(7)e™2°" and its shifted versions go to zero as t — —oo( [Appendix B.5| ).

Hence the integral fi)oo a(EO(TJF%j:O)e_%T) cos (wT)dt in Eq. 57 and Eq. 54 corresponding to the term

Eo(T +t2 + to)e_zf” in Eq. 55 also converges.

We set 0 = 0 and ty = —ty in the term Eo(7 + t3 + tg)e 2°" and use the procedure in Eq. 56
to Eq. 57 and see that the integral fi)oo %{jrm) cos (wT)dT in Eq. 54 corresponding to the term
Eo(T + to — tg) in Eq. 55 also converges.

We set ty = —15 in the term Eo(7 + ¢ + tp)e~2°7 and use the procedure in Eq. 56 to Eq. 57 and

see that the integral ff)oo ‘9(E0(T*t;:;to)e‘2”)

to)e~2°T in Eq. 55 also converges, using Result D.

cos (w)dr in Eq. 54 corresponding to the term Eo(7 —to+

We ty = —ty, 0 = 0 and tg = —t; in the term Ey(7 + 5+ to)e 2" and use the procedure in Eq. 56
to Eq. 57 and see that the integral ffoo %ﬁto)) cos (wr)dr in Eq. 54 corresponding to the term
Eo(T —ta — tp) in Eq. 55 also converges, using Result D. Hence the first integral in the equation for

0GR (w,t2,t0) ;
o in Eq. 54 also converges.

We can see that the last integral in Eq. 54 converges, by setting ¢ty = —tp in Eq. 57. Hence all the
integrals in Eq. 54 converge.

4.5.1. Second Partial Derivative of Gr(w,ts,ty) with respect to t,

?GRr(witz,to) _ 8 9GR(wta,to)
ots T Oty Oty

as follows. We use the result in Eq. 54 and the fact that the integrands are absolutely integrable using

the results in Section [4.5| and we can interchange the order of partial differentiation and integration

in Eq. 58 using theorem of dominated convergence as follows.

The second partial derivative of G g(w, ta, tg) with respect to t5 is given by

PGrw,ta,t 0 92(E; to, t2)e 20T + B (1 — to,t
R(w; 2) 0) :e—QUto/ ( 0(T+ 0, 2)6 5 + On(T 0, 2)) COS (WT)CZT
ot; e ot;
0 2 / —20T !
O“(E (T —ty,t E to, t
+e2at0/ (Ey(T — to, ta)e 2 + By, (T + to, 12)) cos (wr)dr
—00 2

(58)
We consider the first integral in Eq. 58 and using Ey(7 + to, ta) = Eo(T +to — to) — Eo(T +to + Lo

and E,, (T —to,t2) = —Ey(T —to, ta) = Eo(T —tg+1t9) — Eo(T —to—to)(using Definition 1 in Section 2.1
and Result 3.1 in Section [3] ), we write an equation similar to Eq. 55.

82(E£)<T + to, tQ)G_ZJT + E[I)n(T - to, tg)) . 82<E0(T + to - tQ)G_QJT — E()(T + t() + t2)€_207)
ot B Ot
+82(E0(T — to —+ tg) — Eo(T — to — tg))

o02

(59)
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We consider the term Ey(7 + to + o) first in Eq. 59 as follows. We copy Eq. 46 below.

_ 2,27 T
_2§ 271'2 4 4T 37T7’L2 27]6 ™m<e e2

Eo(T +t2 + 1) =2 Z[2ﬂ2n464764(t2+t0) 3mn®e*” 2(t2+t°)]e‘”"QGQT@Q(tQHO)e%e@
n=1
(60)
We can see that 7E0(T +ta+tg) =25 2% Eo(7 +ty + o), given that the equation has terms of the
form e™*"2 and the equatlon is invariant if we interchange the variables 7 and ¢,.(Result C’)

We can replace to by tlz = —ty in Eq. 60 and see that a(t ) = Eo(T + t2 +tg) = aTQ EO(T + t2 + o)

(Result F’) given that the equation has terms of the form ™2 and the equation is invariant if we
interchange the variables 7 and .

0 % _ _ o 20 (0N _ _ 0 (d\_ 0 (DY _ _& :
Given that 5~ = alom — a0 VC get at2 = atz(atz) = 6tz(at;) - at;(at;) = Bz Ve substi-

tute it in Result F’ and get (%2 S Bo(T — by + ty) = o ~Eo(T — ta + to) .(Result D?)

We can write the term Fy(7+to+t2)e 2" in Eq. 59, corresponding to the term in the first integral
in Eq. 58, using Result C’, as follows. We use the fact that fi)oo a4 (r)dr = fi)oo WCZT —

f A dB(T d
0 9%(F ty+t 0 9%(E ty+t
/ ( 0(75;2 2+ 0))6_2” cos (wr)dr = / ( 0<T8+2 2+ 0))6_2” cos (wr)dr
—00 2 —0o0 T
- /0 3(@6*2‘” cos ((m'))d B /0 OE(T + to +tg) O(e72°T cos (wT)d
) or T e or or ’
E to+ 1t Y 9F to + 1t
- [8 0(7"(; 2 F O)e’%T cos (wr)]° —l—w/ 0 O(Tg 2+ 0)e’ZWSin (wr)dT
T e T
0
—1—20/ OEo( g f2 + to) e 27 cos (wr)dr
. T

(61)
We see that the integral f 8EO+7W6_2” cos (wt)dr in Eq. 61 converges, using Eq. 57 in the
previous subsection. We see that the term [We”” cos (wr)]" . also converges, using Result

4.2.1.1 in Section 4.2.1| It is shown in Eq. 53 that the remaining term f 9Fo(ritatto) o207 gip (wr)dT

or
also converges.
We see that the integrals in Eq. 61 converge and hence the integral f EO(T+§tJQFt°) =) cos (wT)dT
in Eq. 58 corresponding to the term Ey(7 + to + tg)e 2°7 in Eq. 59 also converges.

We set 0 = 0 and ty = —ty in Eq. 61 and see that the integral f EO(+2“’)) cos (wT)dT in
Eq. 58 corresponding to the term Ey(7 + t3 — tp) in Eq. 59 also converges.
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We set ty = —ty in the term Ey(7 + to + t2)e 27 and use the procedure in Eq. 60 to Eq. 61

and see that the integral ff)oo 82(E°(T+?t;t2)6_2ﬁ)
2

Eyo(T —ty +tg)e 2" in Eq. 59 converges, using Result D',

cos (wr)dr in Eq. 58 corresponding to the term

We set ty = —ty, 0 = 0 and ty = —ty in the term Eo(T + t + to)e 2°" and use the procedure
in Eq. 60 to Eq. 61 and Result D" and see that the integral ffoo W cos (wr)dr in Eq. 58
corresponding to the term Fy(T —ts —to) in Eq. 59 also converges. Hencthhe first integral in Eq. 58,
also converges.

We can see that the second integral in Eq. 58 converge, by setting tg = —ty in Eq. 59 to Eq. 61 .
Hence all the integrals in Eq. 58 converge.

5. Order of w,(t2,t9)to is greater than O[1]

It is noted that we do not use limy, , in this section. Instead we consider real ¢, > 0 which
increases to a larger and larger finite value without bounds. We use 0 < 0 < % below.

We write Pogq(te,to) in Eq. 20 concisely as follows.

to to

Podd(tg, to) = / E(/)(T, t2)€_2UT COS (CL)Z (tg, to)(T — to))dT + €20t0 / E(/)n(T, tg) COS (CL)Z (tg, to)(T — to))dT

—00 —00

P,aa(ta, to) + Poaa(tz, —to) =0

(62)

We note that Ej(7,ty) = Eo(T — ta) — Eo(T + to) and Ey,(7,t2) = Ey(—7,t2) = —FEy(7,t2) =

Eo(T + t3) — Eo(T — t2) (using Result 3.1 in Section [3). We choose t; = 2t; and we choose ¢; such

that Ey(t) approximates zero for |t| > t; and we choose ty >> t; and hence Ey(7 — t3) = Eo(T — 2ty)

approximates zero in the interval (—oo,to]. Hence in the interval (—oo, ], we see that Fy(7,ts) ~

—FEo(T +t3) and E(/)n(r, to) &~ Eo(T + t2), for sufficiently large 3. We can write Eq. 62 as follows. We
use w,(ta, —to) = w,(t2,to) (Section .

to

Podd(tg, to) ~ — / E(](T + 2t0)€7207 COS (U)Z(tg, to)(T — to))dT

—00

to
+e*7h / Eo(7 + 2to) cos (w (L2, 1o) (T — to))dT

—00
—to

Poga(ta, —to) =~ / E(;(Ta ta)e T cos (ws (t2, to) (T + to) )dT

—00

—to
v [ ) con o ) -+ 1)

(63)

We see that the term P,g4(ta, —to) in Eq. 63 approaches a value very close to zero, as real tg
increases to a larger and larger finite value without bounds, due to the terms e=2°% and the integrals
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f:;g, given 0 < 0 < % and ty > 0 and given that the integrands are absolutely integrable and finite

because the terms E,(7,ty)e 2" and Ej, (1,t2) = —Ey(7, t2) have exponential asymptotic fall-off rate
as |7| — oo( [Appendix B.6| ) Hence we can ignore Pq(ta, —to) for sufficiently large ¢y and write
Eq. 62, using Eq. 63 and £, = 2.

to

Qlto) = Poa(to, to) + Poalts, —to) ~ — / o7 + 2to)e27 cos (w. (ta, to) (7 — to))dr

—0o0

to
+€20t0 / Eo(T + 2t0) COS (U)Z(tg, to)(T — to))dT ~0

(64)
We substitute 7 + 2tg =t, 7 =t — 2ty and d7 = dt in Eq. 64 and write as follows.
3to
Q(to) ~ —64Ut0 / Eo(t)e_Qat COS (wz (tg, to)(t — 3t0))dt
,230
L2t / Eo(t) cos (w, (ta, to) (t — 3to))dt ~ 0
(65)

We multiply Eq. 65 by e™27% and ignore the last integral for sufficiently large t,, given that
e2te=39t0 = ¢~ and |ff’i(; Eo(t) cos (w,(ta, to) (t — 3ty))dt| < ffii |Eo(t)|dt (link) is finite.( |[Ap-

pendix B.1))

3to
S(ty) = Q(tg)e 7" ~ —et / Ey(t)e 27" cos (w. (ta, o) (t — 3ty))dt = —e“ ™ R(ty) =~ 0
3to - 3to
R(to) = COS (wz (tg, t0)3t0) / Eo(t)e_zat COS (wz(tg, to)t)dt + sin (wz (tQ, to)?)to) / E()(t)G_QUt sin (wz(tQ, t())t)dt

(66)
Case 1: Order of w,(ty,1)to less than 1

Let us assume that the order of w.(ts,to)ty is less than 1 and w,(t2, o)ty decreases to a very
small finite value close to zero, as real ¢y increases to a larger and larger finite value without bounds.
(Statement B) We see that ¢y is a real number and as it increases to a larger and larger finite
value without bounds, we can use the approximations cos (w,(t2,)3ty) ~ 1, sin (w,(t2,%0)3ty) =~
3w, (t2,t0)to &= 0. We see that the integrals in the expression for R(ty) in Eq. 66 converge to a finite
value, given that |ffii Eo(t)e 27" cos (w,(t2, to) (t — 3tp))dt] < f_?’ioo |Eo(t)e 27 dt (link) is finite.( |Ap-

pendix B.1))

We choose t3 such that FEy(t)e 2" approximates zero for [t| > t3. As {; increases without
bounds, we see that t3 << t; and in the interval [—ts, 3], we see that the term cos (w,(t2,o)t) =
cos (w,(ta, to)to%) ~ 1 given Statement B and t3 << ty. Hence we can write Eq. 66 as follows.

3to t3
R(ty) ~ / Eo(t)e 27'dt ~ / Ey(t)e *tdt

—0o0 —t3
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(67)

For sufficiently large ¢, the integral R(ty) ~ ffiS Eo(t)e~27!dt remains finite and non-zero and
does not approach zero exponentially, as real ¢, increases to a larger and larger finite value without

bounds, given that [ Ey(t)e >*'dt > 0. (|Appendix B.1|) This is explained in detail in Section .

The term e in S(tg) = —e”™ R(to) in Eq. 66 increases to a larger and larger finite value exponen-
tially and hence the term S(ty) approaches a larger and larger finite value exponentially, given that
R(ty) does not approach zero exponentially and hence S(ty) and Q(to) and Pyyq(ta, to) + Poaa(t2, —to)
in Eq. 62 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement B is false and w,(ts,t0)ty does not decrease towards zero, as finite ¢y in-
creases without bounds. Given that w,(ts,ty) is a continuous function of variable ¢, and ¢, for all
0 <ty < 0o and 0 < t5 < oo (Section []), we see that the the order of w,(ts, %)t is greater than or
equal to 1, as finite ¢y increases without bounds.(Result 5.1)

Case 2: Order of w,(ts, %)ty is 1

Let us assume that the order of w,(ts,%0)ty is 1, as real ¢y increases to a larger and larger finite
value without bounds. (Statement C). In this case, the order of w,(t2, %) is O[%] and we consider
w,(ta, to) = % where 0 < K < 7.(We require w.(t2, o)ty = § in Section . If K> 7%, we do not need
the results in this section.)

We choose t3 such that Ktz << t, and Ey(t)e 2! is vanishingly small and approximates zero for
|t| > t3. Astp increase without bounds, in the interval [—t3, 3], we see that the term cos (w, (2, to)t) =
1 and sin (w,(t2, to)t) = w,(t2,to)t ~ 0, given that w,(ts,to)t = f—ot < Ii—(’:?’ << 1. Hence we can write
Eq. 66 as follows.

3to t3

Eo(t)e ' dt ~ cos (3K) / Eo(t)e 2 dt (68)
—t3

For sufficiently large t¢, the integral R(ty) ~ cos (3K) ff’;g Ey(t)e27'dt remains finite, because the
order of cos (w.(ta,t0)3t) is 1 and [~ Eo(t)e >7"dt > 0 (|Appendix B.1) and does not approach
zero exponentially, as real ¢y increases to a larger and larger finite value without bounds. This is
explained in detail in Section [5.1

R(ty) = cos (Wz(t27t0)3t0)/

—0o0

The term €% in S(ty) = —e”™ R(ty) in Eq. 66 increases to a larger and larger finite value exponen-
tially and hence the term S(tq) approaches a larger and larger finite value exponentially, given that
R(to) does not approach zero exponentially and hence S(ty) and Q(to) and Pogq(ta, to) + Poaa(ta, —to)
in Eq. 62 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement C is false and the order of w,(ts,y)tp is not 1, as finite ¢y increases without
bounds. Given that w,(t2,1) is a continuous function of variable ¢ty and o, for all 0 < t; < 0o and
0 <ty <oo (Section and given Result 5.1, we see that the the order of w, (¢, tg)t is greater than
1, as finite ty increases without bounds.

If we consider the case w,(t2,ty) = w where 0 < K < 7 and D(t, 1) is a function of order

1, whose maximum value is 1, the arguments in the above paragraphs still hold. If K > 7, then
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w:(t2,t0)to = 5 can be reached for suitable ¢y, which is required in Section .

5.1. Aty = fj’ii FEo(t)e 27 cos (w,(t2, to)t)dt does not have exponential fall off rate

We compute the minimum value of the integral A( to f 3to Eo( 29t cos (w, (ta, to)t)dt in
Eq. 66 , for sufficiently large t3 and tg >>t3 and 0 < 0 < 5. We Spht A( ) as follows.

A(ty) = B(ts, to) + C(ts, to) + D(t3, o)

t3

—t3
Blts,to) — / Eo(£)e=27 cos (w.(ta, to) 1)t Clts, to) = / Eo(H)e=27 cos (. (fa, to)t)dt

0 —t3

3to
Dits, ty) = / Eo(t)e=27 cos (w. (s, to)t)dt

(69)

We see that Ey(t)e 2t > 0 for lt! < o0 and Eo(t)e™?" is an absolutely integrable function (
pendix B.1) and hence Cy(t3) = [ Eo(t)e **'dt > 0 (Result 5.1.1).

Given that w.(ts, ) = £ where 0 < K < 5 in Case 2 in previous subsection and ty >> t3, we see
that w, (ta, to)t < %3 ~ 0in the interval |t] < t3 and hence cos (w,(t2,t0)t) & 1 and cos (w. (t2, to)t) > 3
in the interval |t| < t3. The same result holds for Case 1 in previous subsection because w. (s, t)
has a faster falloff rate. Hence we can write C(t3,%y) = fjis Eo(t)e™27" cos (w,(ta, to)t)dt > % > 0,
using Result 5.1.1. (Result 5.1.2).

We see that |B(ts,to)| = | [ Eo(t)e 27 cos (w.(ta, to)t)dt| < [~ |Ey(t)e2"|dt ~ 0 (link) and
|D(ts,to)] = ]ftito Eo(t)e 27 cos (w,(ta, to)t)dt| < f3t° |Eo(t)e27dt =~ 0, for sufficiently large 3 and

to >> 3, given that Ey(t)e~2°* has an asymptotic exponential fall-off rate of at least O[e~%!"]]

(|Appendix B.5) and Ey(t)e™27 > 0 for |[¢t| < oo ([Appendix B.1]).

As we increase t3 to t§ and ty to ), >> t§, we see that C(t5,t)) > C(t3,19) > 0, using Result 5.1.1
and Result 5.1.2, given that Ey(t)e " > 0 for |{| < oo (Result 5.1.3).

As we increase t3 to t; and to to t, >> t4, we see that |B(5, )| < |B(ts,to)| and |D(t},1)] <
|D(t3,t0)| approach zero (Result 5.1.4), given that Fy(t)e 2! has an asymptotic exponential fall-
off rate of at least O[e~°] ([Appendix B.5) and Ey(t)e 2" > 0 for |t| < oo (|Appendix B.1).

Hence we see that A(t) fgto Eo(t)e 2 cos (w. (ta, to)t)dt > 8L | B(ty, t0)| — | D(ts, t0)| ~

% using Result 5.1.2, Result 5.1.3 and Result 5.1.4.
For example, we choose t3 = 10 such that Ey(t)e 2" is vanishingly small and approximates
zero for |t| > t3. Given that Eo(t) > 0 for [t| < oo ( |Appendix B.7) and the term e 2" has

a minimum value of e”!l for 0 < o < 1, we see that the integral Co(ts) ft3 Eo(t)e 2°tdt >

2 f t)e “ltdt > Cyp = 0.42 where Cy is computed by considering the first 5 terms n = 1 2,3,4,5
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in Eo(t) = 3.2 [dn?nte® — 6mn?eX]e ™" e2. Hence Cy(ts) > 0.42.

Hence we see that A(ty) = f3 ° Eo tcos (w,(ta, to)t)dt > Lolts) t3 —|B(ts, to)|—|D(ts,t0)| ~ 0.21.
As ty increases without bounds, we see that A(to) does not have exponent1al fall off rate.

6. Strictly decreasing Ey(t) for t > 0

Let us consider Ey(t) = ®(t) = Zf:1[47r2n4e4t 6rn2e2]e ™" ez in Eq. |1} whose Fourier
Transform is given by the entire function Eq,(w) = £(3 + iw). It is known that ®(t) is positive for
t] < oo and its first derivative is negative for ¢t > 0 and hence ®(t) is a strictly decreasing function

for t > 0. (link). This is shown below. We take the term 27n? out of the brackets.

Ey(t) = 0(t) = Y _[4nn'e" — 6rn’e]e ™" e2 Z 2mne ™ e3[2mn2ett — 3¢
n=1

(70)

We show that X (t) = EOQ(t) is a strictly decreasing function for ¢t > 0 as follows.

e In Section , it is shown that the first derivative of X (t), given b

t, = %logyf and y, = 3.16.
e In Section it is shown that, ( <0for 0 <t<t,.
Hence XU < 0 for all ¢ > 0 and hence X (t) is strictly decreasing for all ¢ > 0 and Ey(t) = 2X (¢)

is strictly decreasmg for all t > 0.

6.1. d‘)ét(t) <0 fort>t,

We consider X(t) = 20 — $°%° ap2e=mc3[9mn2et — 3¢%] in Eq. 70 and take the first
derivative of X (t). We note that Fy(t) and X(t) are analytic functions for real ¢ and infinitely

differentiable in that interval. We compute ()
below.

below and take the term e* out, in the last line

1
Z7m2 —me o3 [8rn2ett — 6% + (2mne — 3€2t)(2 2mn2e?)]

3
—_— ZWTLQ —me o [Rrn2ett — 6% + (mnle’ — 3¢ — 4r*nte% 4 6mne™)]

- : 15
= Z mnle ™ e [—4r?nted 4 15mn2et 5 —e?]
- 15
= E mnle ™ 5 e? H—4n*n*e® + 15mn2e® 5 —]
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(71)
We substitute y = me?* in Eq. 71 and define A(y) such that %}Et) = me? A(y). [8]

15
Zn e Y[—An*y? + 1502y — 7] (72)
We see that A(y) = 0 at y = m which corresponds to t = 0 given y = me* and dX( t) = We%A(y),
given that =8 = 0 at ¢ = 0. Because X (t) = Eo(t) is an even function of variable #( Appendix B.9I)
Xl

and hence is an odd function of variable t.

dt

The quadratic expression B(y,n) = (—4nty?+15n%y— ) in Eq. has roots at y = —13n2Ev225n1-120n"

—8n4
—(1527‘12@). We see that the first derivative of B(y,n) is given by dB(Z ) — _8pd y + 15n? is zero at

y = o%. The second derivative of B(y,n) given by @ B y N — _8nt,

is negative for all y and n>1
and hence B(y,n) is a concave down function for eaeh n, which reaches a maximum at y = =% and

given the dominant term —4n*y? in Eq. , we see that B(y,n) <0, for y > (15+‘/ﬁ) > 3. 16 =1,
for n > 1 and hence A(y) < 0 for y > .. Usmg y = me* and dX 0 — 7e% A(y), we see that & () <0

for ¢ > $log % = t.(Result 1). (concave down function)

We show in the next section that %t(t) < 0for 0 <t <t,. It suffices to show that %;y) < 0 for
7 <y <y, =316 and hence A(y) < 0 for 7 < y <y, = 3.16, given that A(y) =0 at y = . [ We
use y = we?t and %t(t) = me? A(y) and d);t(t) =0att=0.]

6.2.

It is shown in this section that %(yy) < 0 for m < y < 3.16 and hence A(y) < 0 for 7 < y < 3.16

[8] , given that A(y) = 0 at y = 7. We take the derivative of A(y) in Eq.[72 and take the factor n?
out of the brackets in the last line below.

- 15
Z —8nty + 15n% + (—4n*y® + 15n%y — 7)(—n2)]
i [—8n?y + 15 + 4n'y 15ny—|— Zne" 23ny+45]
n=1 2
(73)

We examine the term C(y, n) = nie™""v(4nty? — 23n%y + L) in Eq. 73 in the interval 7 < y < 3.16

and show that dA(y) =C(y,1)+> ", C(y,n) <0, as follows. We want the maximum value of C(y, n)
and we consider the maximum value of positive terms and minimum value of absolute value of nega-
tive terms in the paragraphs below.

For n = 1, we see that C(y,1) = e ¥(4y> — 23y + L) < 0 in the interval 7 < y < 3.16 as
follows. Given that 3.16 < 4 and 3.162 < 10 and 7 > 3, in the interval 7 < y < 3.16, we see that
Cly,1) < e(4%10—23% 3+ 2) < e3(40 — 69 + 23) = —6e > = Cpap(1) where Cpor(1) is the
maximum value of C(y, 1) in the interval 7 < y < 3.16.
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45
C(y,1) = e Y(4y* — 23y + 7) < —6e? 7<y<3.16 (74)

For n > 1, in the interval 7 < y < 3.16, we can write C(y,n) as follows, given that = > 3 and
3.16% < 10 and the term —23n%y + 42—5 < —23 % 3+ 23 < 0 is omitted below, given that we want the
maximum value of C(y, n).

2 45 2 2 2
C(y,n) = n'e ¥ (4n*y? — 23n’y + ?) < ne™™ (4n*(3.16)?) < 40nSe™™ < 40nSe ™"

(75)
We want to show that %;‘y) =C(y, 1)+ >.02,C(y,n) < 0 in the interval 7 < y < 3.16. Using
Eq. [74 and Eq. 75, we write as follows. We multiply both sides by €3 in the second line below.
dA (o] (o] )
# =C(y,1)+ Z C(y,n) < —6e~? + 2407186_3”2
Yy n=2 n=2
dA(y) - 2
3 8_3—3n
er——= < —6+ 40n°e
RS
(76)
We want to show that 63%;3”) < 0 in the interval 7 < y < 3.16. We compute log (n863_3”2) as

follows. We note that f(z) = logz is a concave down function whose second derivative given by
—L <0 for |z| < 0o and we can write f(z) =logz < f(x9) + f (zo)(x — z0) using its tangent line
equation. We see that f'(z) = 1. We set z = n and 2 = 2 and get logn <log2 + 1(n — 2) below.

2 1
log (n%e* ") = 8logn + (3 — 3n?) < 8(log 2 + é(n —2)) + (3 — 3n?
log (n®e*~3"") < 8log 2 + 4n — 5 — 3n?

(77)

We note that g(z) = 4z —5—3z% in Eq. 77 is a concave down function (concave down function)),
whose second derivative given by —6 < 0 for all 2 and we can write g(x) < g(z¢) + ¢ (x0)(x — o)
using its tangent line equation. We see that ¢ (z) = 4 — 62. We set 2 = n and 2o = 2 and get
g(n) < g(2) +[4 — 6x],—2(n — 2) = =9 — 8(n — 2) and write Eq. 77 as follows. We take the exponent
e on both sides in the second line below.

log (n®e* ") < 8log2 — 9 — 8(n — 2) < 8log2 — 1+ 8(1 —n)

—3n2 _ _ _ _
n8€3 3n < 6810g2 1+8(1-n) _ 286 168(1 n)

(78)
We substitute the result in Eq. 78 in Eq. 76 and simplify as follows.
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dA >
63# < —6+40x 287! Z eS1-m)

3dAlY -
d;)< —6 4+ 40 * 2%~ *682 e
dA(y) B 678*2
3 - 4 28 1 8
‘ dy 640 1—e8
dA(y) Sy, e
3 8 -1
dy < —6 440 % 2% g
dA(y) _
3 8 —1
a0 < —6440x% 2% *68—1
(79)
We multiply Eq. 79 by —1 and write as follows.
dA 8 -1 256
¢ d;w (e . ) et 14 d0e 5 o 2352 (80)
We see that el di‘i(y) G Eq. . and hence M < 0, in the interval 7 < y < 3.16, given
y

thate( >O leenthatA( )—Oaty—ﬂ,weseethatA( )<01nEq.,for7r<y§3.16

and d)ét ) — me? A(y) < 0 in the interval 0 < ¢ < t,.(Result 2)
In Sectionﬂ it is shown that <X < 0 for ¢t > ¢, (from Result 1). In this section, we have shown
that dX(t <0for0<t<t,. Hence ) <0 for all t > 0.

Hence Ey(t) = 2X(t) is a strictly decreasing function for ¢ > 0.

6.3. Result Eqo(t — to.) — Eg(t + ta.) > 0

It is shown in Section @ that Ey(t) is strictly decreasing for ¢ > 0. In this section, it is shown
that E()(t — tgc) — E()(t + tgc) > 07 for 0 <t < toe and t, = 2to. In Eq 40 .

Given that Ey(t) is a strictly decreasing function for t > 0 and Ey(t) is an even function of vari-
able t (JAppendix B.9)), and to. = 2t(., we see that, in the interval 0 < t < to., Fo(t+ta.) = Eo(t+2to.)
ranges from Ey(2to.) > Eo(t + ta.) > Fo(3to.)(Result 6.3.1) and Ey(t — ta.) = Eo(t — 2to.) which
ranges from Fy(—2to.) < Eo(t —ta.) < Eo(—to.) respectively. Given that Ey(t) = Ey(—t), we see that
Eo(ZtOC) < Eg(t — tgc) < Eo(t()c> in the interval 0 < t < g, (Result 632)

Using Result 6.3.1 and Result 6.3.2, we see that Ey(t—ta.) > Eo(t+ta), in the interval 0 < t < t.
At t = O, Eo(t — tQC) = Eo(t + tQC). At t = toc, Eo(t - t26> > E()(t + t26> because E()(—toc) > Eo(?)toc).

Hence Eo(t — th) — Eo(t + tQC) > (0 for 0 <t <ty in Eq. 40 , for tg. > 0 and t9. = 2t,.
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7. Hurwitz Zeta Function and related functions

We can show that the new method is not applicable to Hurwitz zeta function and related zeta
functions and does not contradict the existence of their non-trivial zeros away from the critical line
with real part of s = 1. The new method requires the symmetry relation £(s) = 5 (1 —s) and hence

€(3 +iw) = £(3 —iw) when evaluated at the critical line s = § +iw. This means (3 +iw) = Eo,(w)

Eoo(—w) and Ey(t) = Eo(—t) (|Appendix B.9) where Ey(t ) = 3% [4n2ntet — 6rne e ez
and this condition is satlsﬁed for Riemann’s Zeta function.

It is not known that Hurwitz Zeta Function given by ((s,a) = Z T M) satisfies a symmetry

relation similar to £(s) = £(1 — s) where £(s) is an entire function, for @ 7& 1 and hence the condition
Ey(t) = Eo(—t) is not known to be satisfied [6]. Hence the new method is not applicable to Hurwitz
zeta function and does not contradict the existence of their non-trivial zeros away from the critical
line.

Dirichlet L-functions satisfy a symmetry relation £(s,x) = e(x)é(1 — s,x) [7] which does not
translate to Ey(t) = Eo(—t) required by the new method and hence this proof is not applicable to
them. This proof does not need or use Euler product.

o
We know that ((s) = > -1 diverges for real part of s < 1. Hence we derive a convergent and

m=1
1+22

where 2 > 0 is real [4] and then derive Ey(t) = > 7 [4r?nie® 67m2 2] g % ( )
In the case of Hurwitz zeta function and other zeta functions with non-trivial zeros away from
the critical line, it is not known if a corresponding relation similar to F'(x) exists, which enables
derivation of a convergent and entire function £(s) and results in Ey(t) as a Fourier transformable,
real, even and analytic function. Hence the new method presented in this paper is not applicable to
Hurwitz zeta function and related zeta functions.

entire function £(s) using the well known theorem F(z) = 1 + 2 Z

%\

The proof of Riemann Hypothesis presented in this paper is only for the specific case of Rie-
mann’s Zeta function and only for the critical strip 0 < |o| < 3. This proof requires both E,(t)
and E,,(w) to be Fourier transformable where E,(t) = Ey(t)e™7" is a real analytic function and uses
the fact that Ey(t) is an even function of variable ¢ and Ey(¢) > 0 for |[t| < oo ([Appendix B.7)) and
Ey(t) is strictly decreasing function for ¢ > 0 (Section [6)). These conditions may not be satisfied
for many other functions including those which have non-trivial zeros away from the critical line and
hence the new method may not be applicable to such functions.
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Appendix A. Derivation of E,(t)

Let us start with Riemann’s Xi Function £(s) evaluated at s = 5 + iw given by & (% )
Eo,(w). Tts inverse Fourier Transform is given by Eo(t) = 5= [*° Eo,(w)e™'dw = Y7 | [An?nte®

6mn2e?)e™"" ¢z using Eq.

We will show in this section that the inverse Fourler Transform of the function ¢ ( + 0 +iw) =
By, (w), is given by E,(t) = Ey(t)e " where 0 < |o] < 1 is real. We use Ep,(w) = Eg,(w —i0) below.

1 1
5(5 +o+iw) = 5(2 +i(w —i0)) = Ep,(w) = Eo,(w — i0)
1 &0 ) )

E,(t) = 5 /_Oo By (w)etdw = 5 /_OO FEoo(w —io)e™ dw

(A.1)
We substitute w’ = w — io in Eq. A.1 as follows. We get w =’ + i0 and dw = dw'.
—ot 1 o N iw't 3,1
E,(t)=e " — Eo,(W)e™ dw (A.2)
27 —00—1i0

We can evaluate the above integral in the complex plane using contour integration, substituting
w' =z =z + 1y and we use a rectangular contour comprised of C; along the line z = [—00, 00|, Cy
along the line z = [00, 00 — i0], C3 along the line z = [co — i0, —00 — io] and then Cy along the line
z = [—00 — i0, —oc]. We can see that Ey,(z) = &(3 + iz) has no singularities in the region bounded
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by the contour because £(1 4 iz) is an entire function in the Z-plane.

We use the fact that Eo,(z) = £(5 +1i2) = £(5 —y+ix) = [*o Eo(t)e #dt = [*7 Ey(t)ev e~ dLt,
goes to zero as r — +oo when —g < y < 0, as per Riemann-Lebesgue Lemma (link), because
Eo(t)e¥" is a absolutely integrable function for real ¢( [Appendix B.8). Hence the integral in Eq.
vanishes along the contours Cy and C. Using Cauchy’s Integral theroem, we can write Eq. as
follows.

1 [ -
E,(t) = e_"t—/ Eo(W)e™ tdw'

2m ) _ o
o
E,(t) = Ey(t)e " = Z[47T2n4e4t 6mne®)e ™ 2!
n=1

(A.3)

Thus we have arrived at the desired result E,(t) = Ey(t)e ?". Alternate derivation of Ey(t) and
E,(t) are in |Appendix D.l|

Appendix B. Properties of Fourier Transforms

Appendiz B.1.  E,(t),h(t) are absolutely integrable functions and their Fourier Trans-
forms are finite.

The inverse Fourier Transform of the function E,,(w) = &(3 4+ 0 + iw) is given by E,(¢

22

Ey(t)e " = o= [7 Ep(w)e™'dw. In Eq. |I|, we see that Ey(t) = > 7 [An?nte! —6mn?e*]e ™ ¢ ez >
0 and finite for all —o0 < t < oo( |[Appendix B.7). Hence E,(t) = Ey(t)e " > 0 and finite for all
—00 <t < 00.

k\Hr‘_\_/

It is shown in [Appendix B.5|that Fy(t) has an asymptotic exponential fall-off rate of at least
O[e~1°] and hence E,(t) has an asymptotic exponentlal fall-off rate of at least O[e~(-5=2)It] >
Ole™], for 0 < |o| < 1. Hence E,(t) = Ey(t)e " goes to zero, at t — oo and we showed that
E,(t) > 0 and finite for all —oo < t < oo in the last paragraph.(Result 21) Hence E,,(w) =
[ Ep(t)e ™ dt, evaluated at w = 0 cannot be zero. Hence E,,(w) does not have a zero at

w = 0 and hence wy # 0.

Given that (3 +0+iw) = E w(w) is an entire function in the whole of s-plane, it is finite for real w
and also for w = 0. Hence E,,(0) = [ E,(t)dt is finite. Using Result 21, we can write [°_|E,()|dt
is finite and E,(t) is an absolutely lntegrable function and its Fourler transform E, ( ) goes to
zero as w — +00, as per Riemann Lebesgue Lemma |(link).

Using the arguments in above paragraph, we replace o in E,(t) by 0 and 20 respectively and see
that Eo(t) and Eo(t)e 27" are absolutely integrable functions and the integrals [*_|Eo(t)|dt < oo

and [*|Eo(t)e "|dt < oco.
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Given that E,(t) = Eo(t)e " is an absolutely integrable function, its shifted versions are abso-
lutely integrable and we see that E, (L, t) = e "2 E,(t—ts) —e"2 E,(t+t2) = (Eo(t—ta) — Eo(t+1t2))e
in Eq. 6 is an absolutely integrable function, for a finite shift of ¢5. ( We substitute ¢t — ¢t = 7 and
dt = dr and get [*°_|E,(t —to)|dt = [*°_|E,(7)|dT and hence E,(t — t5) is an absolutely integrable
function, given that E »(t) is absolutely integrable. Same argument holds for E,(t + t3).)

We can see that h( ) = e7tu(—t) —l—e“’t (t) is an absolutely integrable function because h(t) > 0
for real t and [ _[h(t)|dt = [ h(t)dt = [ h(t)e"™dt]u—o = [F + =]u—o = 2, is finite for
1

0 <o <3 and 1ts Fourler transform H ( ) goes to zero as w — +o00, as per Riemann Lebesgue

Lemma |(link).

Appendiz B.2. Conwvolution integral convergence

Let us consider h(t) = e”'u(—t) + e 7"u(t) whose first derivative given by %it) = oe”lu(—t) —
oe %tu(t) and Ay = | dff)]t 0+ — [d};i)]t o— = —20 and hence %it) is discontinuous at ¢t = 0, for
1

0 < 0 < 5. The second derivative of h(t) given by hy(t) has a Dirac delta function Ayd(t) where
Ay = —20 and its Fourier transform Hs(w) has a constant term Ay, corresponding to the Dirac delta

function.

This means h(t) is obtained by integrating ho(t) twice and its Fourier transform H (w) has a term
Ao |(link) and has a fall off rate of % as |w| — oo and [~ H(w)dw converges.(Result B.2)

Let us consider the function g(¢,ta,t0) = f(¢,ta,to)e " u(—t) + f(t,t2,t0)e” u(t) in Eq. 6 and
its dﬁﬁt tderlvatlve glvendbift % = [—O'G_Utf(t,tg,dtoz t—l—t e“’tdf(Lf’to)c]lugt i) [oe? f(t,ta,t0) +
et dlLizto) ]y (1), We get [LL20)], = —g f(0, o, to)+[LEt20)], o and [2L20)], = 5 f(0, s, to)+
[W] —o+(Result B.2.1).

We note that f(t,ts,t0) is a continuous function in Eq. 6 and get [W]ho = [W]hg_

and get [M]t:0+ - [%]t:o— = 20 f(0, 2, 1) using Result B.2.1. Hence W is discon-
tinuous at t =0, for 0 < o < %, if f(0,t9,t0) # 0.

We can see that the first derivatives of g(t,t2, %), h(t) are discontinuous at t = 0 and hence
G(w, ta, to), H(w) have fall-off rate of 5 as |w| — oo, using Result B.2. Hence the convolution
integral below converges to a finite value for real w, for the case f(0,ts, ) # 0.

F(w,ta, tg) = x /OO G(W' ta, to)H(w — w')dw' = i[G(w,tz,to) * H(w)] (B.1)

2 J_ o 2m
If £(0,t,t0) = 0, and if the N** derivative ofg(t ta, to) is discontinuous at t = 0 where N > 1,
we see that G(w, tQ,t(]) has fall-off rate of —z— as |w| — oo( |[Appendix B.3). G(w,ts,1o) has a

minimum fall-off rate of 12 as |w| — oo for this case. Hence the convolution integral in Eq.
converges to a finite value for real w.
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Appendiz B.3. Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function P(t) = Py (t)u(t) + P_(t)u(—t) whose

(N — 1) derivative is discontinuous at ¢t = 0. The (N)™ derivative of P(t) given by Py(t)

has a Dirac delta function Agd(t) where Ag = [de:V}iﬁ(t) — dNC;f:‘l(t)]t:o and its Fourier transform

Pn,,(w) has a constant term Ag, corresponding to the Dirac delta function.

This means P(t) is obtained by integrating Py (t), N times and its Fourier transform P, (w) has a
ferm ) (link) and has a fall off rate of —y as |w| — oo.

We have shown that if the (N — 1) derivative of the function P(t) is discontinuous at ¢ = 0
then its Fourier transform P, (w) has a fall-off rate of _ as |w| — oo .

Appendiz B.4. FExponential Fall off rate of analytic functions.

We know that the order of Riemann’s Xi function &(3 + iw) = Ep.(w) = Z(w) is given by
O(w? _%) where A is a constant [3] (Titchmarsh pp256-257).

We consider z(t) = Ey(t)e " and its Fourier transform is given by X (w) = [7_ Ey(t)e e dt =

f Eo(t)e iw=20)t gy — E()w(w —i20) = §(§ +i(w —120)) = 5(5 + 20 + Zw) EOw(w — 220). Hence

ot owl(w) an w) = Eg,(w—120) have exponential fall-off rate O(w e~ 1) as lw| = 0o an
both E, d X E 20) h ial fall-off rate O(we™ d

they are absolutely integrable and Fourier transformable, given that they are derived from an entire
function &(s).

Given that £(s) is an entire function in the s-plane, we see that X (w) is an analytic function
which is infinitely differentiable which produces no discontinuities for real w and 0 < o < 1. Hence

its inverse Fourier transform z(t) has fall-off rate faster than limy_, 77, as [t| — oo (|Appendix
B.3)) and hence z(t) = Ey(t)e 27" should have exponential fall-off rate as [t| — oo.

Appendiz B.5. Exponential Fall off rate of x(t) = Ey(t)e 2!

We can write Ey(t) = Y200 [4n°nte! — 6mn®e*]e ™" 2 in Eq. [1] as follows. We take the term

7T’T'L2€ t

2mn2e? out of the brackets below. In the term e , we use Taylor series expansion around ¢ = 0

0 r
for e* = Z ( ' ) , given that e?! is an analytic function for real ¢.
Iy
r=0

2.2t t
E 2mn2e* [2mn2e? — 3le ™ ¢ ez

@en? | (2nd

—mn? —mn? 2 2 t
_ § 27m2 2t 27T7’L 6 3]6 ™ (1+2t)6 mn? (- +T ....)62

(B.2)
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We take the term e~2™ out of the summation, corresponding to n = 1 and then take the term
t 9t .
2mettes = 2mez out and write Eq. B.2 as follows.

(0.9}
- %E ot —an? —om(n2—1)t —mm2( 202 @03
Ey(t) = 2me 2mt G n2[27m2_36 2t]e n? ,—2m(n?—1)t ,—mn? (G- + 55
n=1

(B.3)

For t > 0, we see that the term corresponding to n = 1 in Eq. has an asymptotic fall-off rate
9 .
of at least Ole=>"=2)!] > O[e~!%*]. The terms corresponding to n > 1 have fall-off rates higher
than O[e~"%], due to the term e~ 27"~

Hence we see that Ey(t) has an asymptotic fall-off rate of at least O[e™'*!], for t > 0. Given that
Eo(t) = Eo(—t)( [Appendix B.9)), we see that Ey(t) has an exponential asymptotic fall-off rate of
at least Ofe~12].

Similarly, Eo(t)e~2* has an asymptotic exponential fall-off rate of at least Ofe~(!>~20)ltl] >
Ole=%%M], for 0 < |o] < L.

Using a second method, it is shown that Ey(t)e 2! has an asymptotic exponential fall-off rate
in [Appendix B.4]

Appendiz B.6.  Exponential Fall off rate of B(t) = t"Ey(t + to,t5)e™%°" for r=10,1,2

In this section, it is shown that the term B(t) = t"Ey(t & to,t5)e 2t has exponential asymp-
totic fall-off rate as |t| — oo, for 7 = 0,1,2 where Ey(t,ty) = Eo(t — to) — Eo(t + t5). Hence
B(t) = tr€—2at [E()(t — 19 + to) - E()(t + tg + to)] (Result B.G.l)

We consider C(t) = t"e 2°'Ey(t — t,) for finite and real t,. We see that C(t + t,) = (t +
to)"e 2t 27t Fy(t). We see that Ey(t)e " is an absolutely integrable function, for 0 < |o| < 1
given that it has exponential fall-off rates as |t| — co. ([Appendix B.5)).

Hence C'(t +t,) = (t + t,)"e 2" Ey(t)e~?7" also has exponential fall-off rates as [t| — oo, for
r =0,1,2 and finite ¢, and is an absolutely integrable function.

Hence C(t) = t"e 2" Ey(t — t,) has exponential fall-off rates as [t| — oo, for finite ¢, and is an
absolutely integrable function. We set t, = to +1¢ and t, = —ts 1y and see that B(t) in Result B.6.1,
has exponential fall-off rates as |t| — oo, for finite t5, ¢y and is an absolutely integrable function.

Appendiz B.7.  Ey(t) >0 for —oo <t < o0

For 0 < ¢t < oo, we can show that Ey(t) = > 7, f(t,n) > 0 where f(t,n) = [dn*n'e —
6mn2e?)e ™ ez = 2rn2e[2mn%e2 — 3)e=™ e as follows.

The sum is positive because each summand f(¢,n) is positive for finite n, and each summand

is positive because the term 2mn2e* — 3 > 0 for all ¢ > 0 and n > 1, given that # > 3 and
2mn2e2e ™ ¢35 > 0 for 0 < t < oo and finite n > 1.(Result B.7.1)
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For t = 0 and n = 1, we see that f(0,1) = 27[27 — 3]e”™ > 0.

For t = 0 and for each finite n > 1, we see that f(0,n) = 2rn?[2rn2 — 3]e"™" > 0.

2.2t

For 0 < t < oo and for each finite n > 1, we see that f(t,n) = 2rn2e?[2rn2e? — 3l ™" e2 > (),
using Result B.7.1.

As n — oo, f(t,n) tends to zero, for 0 < t < oo due to the term e~™** 'We do summation over
n and see that the sum of the terms >~ f(t,n) > 0.

Hence Ey(t) => 2, f(t,n) >0 for 0 <t < 0.
Given that ¢ ( +iw) = Ep,(w) is an entire function in the whole of s-plane, it is finite for real w

and also for w = 0. Hence Ey,(0) = f Ey(t)dt is finite. We see that Fy(t) is an analytic function
for real t. Hence Ey(t) => o, f(t,n) > S 0is ﬁmte for 0 <t < o0.

Given that Ey(t) = Ey(—t)(|Appendix B.9)), we see that Ey(t) > 0 and finite for all —oco < t < 0.

Appendiz B.8. E,(t) = Eo(t)e¥" is an absolutely integrable function

We see that Ey(t) > 0 and finite for —oo < t < oo (|Appendix B.7). Hence E,(t) = Eo(t)e’" > 0
and finite for all —co < ¢ < o0, for —o <y <0 and 0 < |o| < ; (Result 11).

Ey(t) has an asymptotic exponential fall-off rate of at least O[e~°] (|Appendix B.5|) and hence
E,(t) = Eo(t)e¥" has an asymptotlc exponential fall-off rate of at least Ole= 1>+l > Ole= 1], for
—0 <y<0and 0 < |o| < 5. Hence E,(t) = Ey(t)e¥" decays exponentially, at ¢ — +oo.(Result 12)

Using Result 11 and 12, we can write [ |E,(t)|dt is finite and E,(t) is an absolutely integrable
function and its Fourier transform Ey(w ) goes to zero as w — =00, as per Riemann Lebesgue
Lemma |(link).

Appendiz B.9. FEy(t) is real and even

We see that f(% +iw) = Foyw(w) = Eo,(—w) (Result 13) because £(s) = £(1 — s) |(link) and hence
5(% +iw) = f(% — iw) when evaluated at s = % +iw.

We take the Inverse Fourier transform of Fy,(w) and use Ey,(w) = Eo,(—w) from Result 13 and

then substitute w = —w’ in the integrand, as follows.
E(t)—l OOE(>iwtd_1 OOE( )iwtd
0 _27'(' . owlw)e w—27r . Ow w)e W
1 o° / —iwl ’
= % . ng(w )6 td(JJ = EO(_t)
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(B.4)

We see that Fy(t) in Eq. [1] is real and Ey(t) in Eq. B.4 is even and hence we have derived the
result that Ey(t) is a real and even function of variable ¢.

Appendix C. Properties of Fourier Transforms Part 1

In this section, some well-known properties of Fourier transforms are re-derived.

Appendiz C.1. Fourier transform of Real g(t)

In this section, we show that the Fourier transform of a real function g¢(¢), given by G(w) =
Gr(w) + iG(w) has the properties given by Gr(—w) = Gr(w) and G;(—w) = —G(w). We use the
fact that g(t) is real and cos (wt) is an even function of w and sin (wt) is an odd function of w below.

G(w) = /_OO g(t)e ™tdt = Gr(w) +iGr(w)

[e.9]

Grlw) = /_ " (1) cos (wh)dt = G(—w)

[e.9]

Grlw) = — / T g(t) sin (wh)dt = —Gy(—w)

—0o0

(C.1)

Appendiz C.2. Ewven part of g(t) corresponds to real part of Fourier transform G(w)

In this section, we take the even part of real function g(t), given by geven(t) = 3[g(t) + g(—1)]
and show that its Fourier transform is given by the real part of G(w).

Gw) = /_OO g(t)e ™'t = Gr(w) + iGr(w)
| sttt = [~ Sigto)+ g-oje i = E w5 [ gpeira

(C.2)

We substitute ¢ = —¢ in the second integral in Eq. C.2. We use the fact that Gr(—w) = Ggr(w)
and G;(—w) = —G(w) for a real function g(t). ([Appendix C.1))

/OO geven(t)eiiwtdt = M + 1 /OO g(t)emdt _ G(w) N G(—w)

2 2 2 2

[e.9] (e 9]

= £ [G(w) +iG1(w) + Cr(—w) +iCr(~w)] = 5[Ga(w) +iCr(w) + Caw) — iG1(w)] = Calw)
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(C.3)

Appendiz C.3. Odd part of g(t) corresponds to imaginary part of Fourier transform
G(w)

In this section, we take the odd part of real function g(t), given by goqi(t) = %[g(t) —g(—t)] and
show that its Fourier transform is given by the imaginary part of G(w).

G(w) = /_00 g(t)e ™t dt = Gr(w) +iGr(w)

[e.9]

| gwattretae= [~ Jigte) = gt-oletar = C - 2 [ g(-pyera

[e.9] —00 —00

(C.4)

We substitute ¢ = —t in the second integral in Eq. C.4. We use the fact that Gr(—w) = Gr(w)
and G;(—w) = —G(w) for a real function g(t). ([Appendix C.1))

[ sty = G L[ gy - G GC)

oo o0

_ %[GR(M) b iG(w) — Ga(—w) — iGy(—w)] = %[GR@) F G (W) — Gr(w) + G (w)] = iGr(w)

(C.5)

Appendiz C.4. Fourier transform of a real and even function ¢(t)

In this section, we show that the Fourier transform of a real and even function g¢(¢), given by
G(w) is also real and even. We use the fact that [*_g(t) sinwtdt = 0 because g(t) is even and the
integrand is an odd function of variable t.

Gw) = /_Oo g(t)e ™dt = /_oo g(t) cos wtdt — z’/oo g(t) sinwtdt

[e.e] [e.e] —0o0
o0

G(w) :/_ g(t) cos wtdt

o

(C.6)

We see that G(w) = [ g(t) coswtdt is real function of w, given that g(¢) and the integrand are
real functions. We see that G(w) is an even function of w because coswt is a even function of w.
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Appendix D. Derivation of entire function £(s)

In this section, we will start with Riemann’s Xi function £(s) and take the inverse Fourier Trans-
2t

form of £(1 + iw) = Eo,(w) and show the result Ey(t) = 300 [dn?nte® — 6mne?]e ™ ez,

We will use the equation for £(s) derived in Ellison’s book ”Prime Numbers” pages 151-152 which
uses the well known theorem 1 + 2w(z) = %(1 + 2w(1)), where w(x) = Ze_m% and x > 0 is

n=1

real.[4] (link).

(D.1)

We see that £(s) is an entire function, for all values of s in the complex plane and hence we get
an analytic continuation of £(s) over the entire complex plane. We see that £(s) = &(1 — s) [4].

Appendiz D.1. Derivation of E,(t) and Ey(t)

gL

Given that w(z) = e‘”"%, we substitute v = e, df = 2dt in Eq. D.1 and evaluate at s =

n=1

% 4+ o + iw as follows.

1 1 1 1 = , ,
§(5 o tiw) = S[1+2(5 +0 +iw)(—5 + o +iw) / D e (ere e +ezem e )] (D.2)
We can substitute ¢ = —t in the first term in above integral and simplify above equation as follows.

1 1 1 0 & Lot — .
fz+o+iw) ==+ (—=+0"—w+ iw(2a))[/ Ze*’m% P

2 2 4
+/ Z —mn2e?t L —(ft —zwtdt]
0

(D.3)
We can write this as follows.
5(1+0+iw) = 1—1—(—14-0 —w? +iw(20)) / Ze”m T u —i—Ze Feru(t))e e dt
2 2 4
(D.4)
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We define A(t) = [Z e e T u(—t) + E e ™ esy(t))e ot and get the inverse Fourier

n=

transform of £ ( +o + zw) in above equation glven by E,(t) as follows. We use dirac delta function
o(t).

By 1) = 2ot + (—1 + o)Ay + 2, P40 FAD

dt dt?
AR = e T u(-1) + Z T edu(t))e
n=1
(D.5)
We compute the derivatives of A(t) as follows.
- = - 1
—mn?e Qt —O’t 2 —2t mn2e?t ot 2 2t
Z [—2—0+27rne Ju( t)+;e eze [5— 2mne”u(t)
d2A t > 2,—2t t
dt2( ) _ Ze”m “Teze M —dmn’e ¥ + (== — o + 2mnle” ) |u(—t)
n=1
+) e s —4n?e + (5 = o = 2mn*e™)*ut) + Aod(t)
n=1
(D.6)
We use Ay = [%Et)]t:% [ﬂ]t 0 = Z e ™ (3 —0—2mn?— (=1 —o+2mn?)) = Z - (] —

47n?). We can simplify above equation as follows.

d>A(t) o - 1
e Z e e T e’”t[4 + 0% + o +4rinte ™ — 6mnle® — domnie M |u(—t)
+ Z e ez [4 + 0% — o +4r*nte" — 6mne* + domn’e®u(t) + 0(t) [Z e (1 — 47n?)]
n=1 n=1

(D.7)
We use the fact that F(z) = 14+2w(z) = \%(1—1—210(%)), where w(z) = 3 ™% and z > 0 is real

n=1

[4], and we take the first derivative of F/(z) and evaluate it at z = 1. We see that > e~™(1—47n?)

n=1

—5 |Append1x D 2[) and hence dirac delta terms cancel each other in Eq. D.5 written as follows
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B,(t) = £6(0) + (1 + 0)AW) + 20700 1 T4

Cor - 1 1
Ze—wrﬂe 2t 7’5 _Jt[—Z—I—O'Q—FQO'(—ﬁ—0+27T7’L26_2t)

1
—1—1 + 0% + o +ar*nte ™ — 6mn*e " — domnie *|u(—t)

1 1 1
+Ze_wn2€2t€%€_at[_1 +0_2 _|_20_(§ o — 27TTL2 Qt) 4+ . +0_ —0+47T2 4 4t 67TTL2 2t—|—40'71'7’LZ Qt]u(t)

_ Zefﬂ'nze—2t o'tD £, n + Z e~ %efatc(t’ n)u(t)
n=1

(D.8)

We cancel the common terms in Eq. D.8 and simplify above equation as follows.

1
C’(t,n)——Z+a + 0 —20% —domn?e® + - + 0% — o + 4n’nte* — 6mn’e® + domnie

C’( n) = dr’ntet — 6rn2e?

1 1
D(t,n) = ~1 + 0% -0 —20° +4domne ? + = 1 + 0+ o +drinte ™ — 6mne ' — domnie

D(t,n) = 4r’n*e ™ — 6rnie

(D.9)
We see that D(t,n) = C(—t,n). Hence we can write as follows.
Ep( ) = [Eo(— ) (—t) + Eo(t)u(t)]e—at
ZC t n —7m e? % Z 2 4 4t 67TTL2 2t]6_7m262t@%
(D.10)

We use the fact that Ey(t) = Eo(—t) (|Appendix B.9) we arrive at the desired result for E,(t) as
follows.

Ey(t) = Z[47r2 Lt _ grn2e)e ™ ez
n=1
E,(t) = Eo(t)e—at ZMW? 404t _ 6rn2e 2t}6—7rn262te%€—crt
n=1

(D.11)
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Appendiz D.2. Derivation of > e ™ (1 —4mn?) = —

n=1

1
2

In this section, we derive 21 e ™ (1 — 4nn?) = —1. We use the fact that F(z) = 1+ 2w(z) =
\/Lf(l +2w(2)), where w(z) = > e~ ™% and z > 0 is real [4], and we take the first derivative of F(x)
and evaluate it at z = 1. -

—=(+2u(7)

x):1+2ie””21:%(1+2iem2i)
i%m _m* 1—1—22 _m* _1 1
n=1

F(z)=1+2w(z) =

[e.9]
— E ’7TTL —’TI'T'L x —

i

x2
(D.12)
We evaluate the above equation at x = 1 and we simplify as follows.
dF —7n? = 2\ —mn? = —7n?
[ 1_22 —mn’ =Y @mn?)e ™ 4 (142 e ™)
n=1 n=1
Z e (1 — 4mn?) = —=
n=1
(D.13)
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