
1
Industrial AI Technologies for

Next-Generation Autonomous Operations
with Sustainable Performance

Ovidiu Vermesan1, Frédéric Pétrot2, Marcello Coppola3,
Mathias Schneider4, Alfred Höß4

1SINTEF AS, Norway
2University Grenoble Alpes, CNRS, Grenoble INP, TIMA, France
3STMicroelectronics, France
4Ostbayerische Technische Hochschule Amberg-Weiden, Germany

Abstract

This book lays down the technological foundation for and introduces key arti-
ficial intelligence (AI) concepts and technologies for the digitising industry.
While this chapter does not exhaustively cover all types of AI, it com-
prehensively prioritises the features of AI-based industrial applications and
designs and defines the reference terminology used in the other chapters
of the book.

AI integrates several interrelated technologies to solve problems and per-
form tasks to achieve defined objectives; hence, AI can be approached from
many viewpoints, such as mathematics and computer science, linguistics,
psychology, neurology, and philosophy. The approach in this chapter is from
a technological and industrial perspective, and concepts and functions are
presented intuitively and visually, focusing on AI, as it is applied to embedded
systems, with industrial automation, interactivity, and sustainability in mind.

This already reflects the next-generation deployment of AI into edge
devices (called edge AI) and the emergence of different edge layers (i.e.,
micro-, deep- and meta-edge), which contrasts existing solutions that are
currently deployed in the cloud. The edge processing continuum includes

1

2 Industrial AI Technologies for Next-Generation Autonomous Operations

sensing, processing and communication devices (micro-edge) close to the
physical industrial assets under monitoring, gateways and intelligent con-
troller processing devices (deep-edge) and on-premise multi-use computing
devices (meta-edge).

Furthermore, instead of attempting to present a definition of AI that
is common to all industries, the chapter relies on a framework of classifi-
cations and continuums along various dimensions, including the industrial
intelligence spectrum, the intelligent capabilities spectrum, the edge-cloud
continuum, the symbolic reasoning – pattern recognition continuum and,
not the least, the problem-solving spectrum. The chapter introduces some
of the main pillars of problem solving, such as expert systems, genetic and
evolutionary computation, intelligent agents, machine learning (ML) and
more.

This chapter, in particular, will detail ML approaches and neural net-
works. During the past decades, the trends and developments in AI have
followed a recurring pattern, where the focus has moved back and forth
between logic (symbolic reasoning) and pattern recognition (neural net-
works), driven by the varying abilities of technologies to acquire data, learn,
derive new information and reason to reach decisions. In the last years,
machine learning and neural network models have been the primary focus due
to advances in hardware development and processing capabilities. Further-
more, embedded machine learning has been increasingly gaining popularity
in industrial applications.

This chapter introduces several contributions. First, it gives a high-level
overview of how AI works. Second, it shows how AI methods and techniques
can be incorporated into an industrial design workflow. Finally, it provides
a valuable intuitive understanding of how AI methods and techniques work
when deployed in edge devices and how they operate in industrial settings.

Keywords: artificial intelligence, industrial AI, sustainable AI, intelligent
embedded systems, symbolic AI, logic-based technologies, machine learning,
AI-based problem-solving, AI technology stack, neural network architec-
tures, embedded ML development.

1.1 Industrial AI

A recent report [1] predicted that the smart manufacturing market is expected
to reach $446.24 billion by 2029, growing at a compound annual growth rate
(CAGR) of 21.5% from 2022 to 2029. The smart manufacturing market is

1.1 Industrial AI 3

segmented into industrial Internet of Things (IIoT), cloud computing and
storage, robotics and automation, industrial cybersecurity, additive manufac-
turing, augmented reality (AR), virtual reality (VR), digital twin, artificial
intelligence (AI) and blockchain-based technology. In 2022, the industrial
IoT segment is expected to account for the largest share of the smart manufac-
turing market. The large market share of this segment is attributed to factors
such as the consistent declining cost of industrial IoT sensors, the significant
rise in overall equipment effectiveness (OEE) through industrial IoT usage
and increasing government initiatives to promote digital transformation.
According to another market research report [2], the industrial AI market
is expected to grow from $1,482.50 million in 2021 to 17,925.50 million by
2028 at a CAGR of 51.50% during the forecast period of 2022–2028.

Industrial AI refers to the application of AI in various industrial sec-
tors and is considered a game changer in the manufacturing industry. The
transition to Industry 5.0 is likely to drive the market’s growth in the next
few years. In manufacturing plants, the information obtained from various
sensors, software and IIoT-driven systems may become too complex for
humans to analyse. The use of AI is an efficient solution that can assist the
manufacturing sector in transforming completely through machine learning
and pattern recognition. The use of AI in manufacturing plants allows users
to analyse and predict user behaviour, to perform predictive maintenance to
prevent unwanted shutdowns, detect abnormalities in the production pro-
cess and much more. AI also facilitates the use of real-time information,
which could improve decision-making time, lead to better fabrication quality
and yield, and boost organisational growth. The increasing volume of data
gathered through various devices together with the widespread availability
of high-speed communication networks and the upcoming implementation
of wireless technologies will contribute to the increased use of AI in
manufacturing in the future.

Although embedded in an increasing variety of products, processes and
services in many industrial sectors, AI remains difficult to define. In scientific
terms, AI is for example defined as “The designing and building of intelligent
agents that receive precepts from the environment and take actions that affect
that environment.” [8]. AI and machine intelligence can also be defined as
follows: “Artificial Intelligence is [...] the study of the computations that make
it possible to perceive, reason, and act.” [4]; “[Intelligence is] the capability of
a system to adapt its behaviour to meet its goals in a range of environments.”
[5]; “Intelligence measures an agent’s ability to achieve goals in a wide range
of environments.” General definition: “A very general and flexible capacity

4 Industrial AI Technologies for Next-Generation Autonomous Operations

to succeed when faced with a wide range of problems and situations.” [6];
“Intelligence is the computational part of the ability to achieve goals in the
world.” [7]. In more general terms AI refers to the ability for machines,
systems, models, computers, to be able to mimic and improve intelligence
in general, and human intelligence in particular.

Currently, neither the industry nor the scientific community has agreed
on a particular definition. The presently available definitions are too vague,
or too broad or too narrow. This is largely because of the growing variety and
specific properties of AI technologies and partly because of the convergence
of multiple technologies in the last years into AI, such as semiconductor tech-
nologies, cyber-physical systems (CPSs), internet of things/industrial internet
of things (IoT/IIoT), supervisory control and data acquisition (SCADA),
programmable logic controllers (PLCs), 5G, distributed ledger technolo-
gies, edge computing, etc. The AI ecosystems are extending to related
fields, such as edge computing, to address the challenges and require-
ments of various industrial sectors, and each field defines AI from its own
perspective [11].

In this chapter, AI is approached from a computer science and infor-
mation technology perspective, encompassing numerous technologies and
frameworks, and focusing largely on embedded hardware/software systems
that use searching algorithms, logic-based procedures or ML methods. ML
represents a paradigm shift in computing - a change from explicitly modelling
solutions to modelling systems that approach such solutions, which drives one
to think in a new framework. ML - both software and hardware - is therefore
addressed in several sections.

1.1.1 Challenges of Industrial AI versus Consumer AI

Although industry stakeholders have different perceptions of AI technolo-
gies and their industrial applications, industrial AI poses unique challenges
that are absent from consumer AI or are present but of less importance or
differ from the challenges related to the latter. Some of these challenges are
described below.

Industrial training data are in short supply. AI-based models require large
amounts of data, and their performance relies strongly on training data
set availability. These data sets exhibit tremendous potential for optimising
industrial processes in cases in which traditional approaches, such as stochas-
tics and analytical or numerical models, can no longer be used. However,
for many industrial sectors, it is not easy to create training data sets that are

1.1 Industrial AI 5

sufficiently large and cover common aspects that would allow them to be used
by different industrial stakeholders to benchmark similar AI models.

Industrial training data are often noisy or inaccurate. While data coming
from consumers are hard to misinterpret, this is not the case with industrial
data, which is frequently captured from sensors and IoT/IIoT that produce
noisy datasets. Sensor data can also be voluminous, and not all data is
relevant. Data can also be inaccurate when generated by “digital twins”
models that are not always created and maintained in tandem with the real
system. Furthermore, the actual deployment of sensors close to production
environments that are generally ungracious of the sensors (higher likelihood
of sensor malfunction) and redundancy to alleviate this problem introduces
additional challenges and costs. Nevertheless, despite the high volume of
noisy, incomplete, or faulty data, industrial AI needs to be highly accurate.

Industrial AI runs mostly on the edge. Consumer data are processed on com-
puters with seemingly infinite capacities, and current AI tools are optimised
for cloud services and therefore do not always fulfil the stringent requirements
of industrial applications, such as real-time processing, low latency, high
reliability, safety, data privacy and guaranteed QoS. To be successfully imple-
mented in industry, AI must be deployed on the edge to support distributed
on-site data processing with state-of-the-art AI components, algorithms,
techniques, and methods.

Industrial AI can be subject to compliance with industry standards and other
regulations. While consumer AI can at most be subject to direct consumer
scrutiny, industrial AI is subject to compliance requirements, including tech-
nical, legal and corporate requirements, as well as local and governmental
regulations, which may impact operations, particularly when large budgets
are at stake.

Industrial AI involves high costs. The development, implementation, deploy-
ment, repair, and maintenance of AI-based solutions necessitate vast invest-
ments. AI-based systems require frequent upgrades to meet the needs of
changing environments and to make machines more intelligent day by day. In
severe breakdowns, the recovery of lost codes and the restoration of AI-based
systems may require considerable amounts of time and costs. Maintenance of
the sensor part of the AI solution also contributes to overall costs.

Industrial AI must be explainable. Industrial AI applications must be able
to explain and justify their predictions and decisions, especially when the
consequences of wrong decisions can be disastrous.

6 Industrial AI Technologies for Next-Generation Autonomous Operations

Industrial AI systems are difficult to validate and test due to the costs and
complexity involved. The complexity of AI tasks has increased steadily
to address new paradigms for automating, conceptualising, designing, and
implementing AI-based systems that include sensors, hardware, software,
models, and algorithms. In many cases, industrial AI systems are trained and
tested using simulations and virtual validations.

1.1.2 Sustainable AI

The search for improved accuracy on large-scale problems is driving the
use of new AI techniques and increasingly deeper neural networks, thereby
increasing energy consumption and climate-changing carbon emissions.

Advances in scientific computing have demonstrated the advantages of
modelling and simulation across industrial and scientific domains. However,
energy consumption is a feasibility constraint for computational modelling,
and AI must reduce the energy computation costs associated with high-
performance computing in front of trends such as declining Moore’s Law.

The evolution and expansion of AI-based technologies require moving
towards sustainable AI and using AI for sustainability in various industrial
sectors. To build and strengthen sustainable AI technologies and applica-
tions, new solutions need to be developed to move AI processing from the
cloud to the edge, optimise and reduce the need for datasets and amount
of data for training and learning and address the analytics close to the
data sources.

Sustainable AI (or AI sustainability) requires stimulating change in the
entire lifecycle of AI technologies and applications (e.g., AI function gener-
ation, AI technology stack, HW/SW platforms, training/learning, re-tuning,
re-training/learning implementation, governance) towards more efficient eco-
logical integrity and economic efficiency. Sustainable AI technologies are
compatible with sustainable environmental resources for current and future
generations, and new digital economic models are aligned with industrial and
societal values.

Research and developments in industrial edge AI incorporate two essen-
tial elements: sustainable edge AI (e.g., edge AI technologies development
for optimised resource processing consumption, resource consumption for AI
models, reduction of carbon emissions, computing power, etc.) and edge AI
for sustainability (e.g., the use of edge AI to address sustainability goals in
different applications and industrial sectors). These elements can be viewed
from the perspective of the different pillars of sustainability (e.g., social,
economic, and environmental).

1.1 Industrial AI 7

Sustainable industrial edge AI focuses on developing AI HW/SW/
algorithms and resource-efficient edge AI technologies to reduce carbon
emissions and computing power consumption of AI models.

Industrial edge AI for sustainability and sustainable computing leverages
intelligent processing technologies to address environmental and climate
problems and ameliorate the accelerating trend towards high-performance
computing in modelling and simulation.

Leveraging hardware modules and platform characteristics to generate
compact and accurate models that require less computational resources is
essential for sustainable edge AI. Combining different techniques, including
knowledge distillation, AI HW/SW co-optimisation for power efficiency and
energy-aware model compression, can result in models with negligible loss
of accuracy.

Sustainable edge AI implies less data for model training to achieve high-
accuracy model performance, thereby reducing the expensive data collection
and annotations, accelerating model training when faced with a new problem
and reducing the resource-intensive process of training a new model from
scratch.

The development of semi-supervised methods [16] by incorporating
external knowledge, active learning, transfer learning and short learning
approaches, such as meta-learning and unsupervised representation learning,
are elements of the AI technology stack that supports sustainable edge AI
developments. These methods facilitate domain adaptation across problems,
including natural language processing and predictive maintenance in different
industrial sectors.

Sustainable edge AI requires enabling more accurate modelling tech-
niques, reducing computing costs by reducing time-to-solution, decreas-
ing the need for high-resolution models where possible and leveraging
resource/data-efficient AI developments to ensure that the application of AI
is not energy/resource-consuming.

Sustainable edge AI requirements advance the development of new
embedded hardware modules, platforms, and accelerator architectures (e.g.,
system on module (SoM), system on chip (SoC), a system in package (SiP),
neuromorphic, hybrid, tensor-based, etc.).

This chapter relies on a framework of classifications and continuums
along various dimensions, including the industrial intelligence spectrum, the
intelligent capabilities spectrum, the edge granularity, the edge continuum,
the symbolic reasoning-pattern recognition continuum and not the least, the
problem-solving spectrum.

8 Industrial AI Technologies for Next-Generation Autonomous Operations

The foundation supports the ongoing projects and stakeholders across the
industrial sectors with a common methodology and roadmap. Meanwhile, it
prioritizes the right features for AI-based applications and designing them
in the right way in different use cases across various industrial sectors using
synergies among different solutions, methods, or techniques.

The foundation assists in choosing state-of-the-art AI technologies and
having a clear overview over the existing state of play in the field for optimal
selection and trade-off of these technologies, methods, and techniques for use
cases in different industrial sectors.

AI empowers computers to mimic human intelligence, such as decision-
making, text processing and visual perception. In this context, AI is a broad
field, encompassed by multiple contributing branches, such as ML, robotics,
and computer vision.

1.2 Capabilities Spectrum of Industrial AI

This chapter relies on a framework of classifications and continuums along
various dimensions, including the industrial intelligence spectrum, the intel-
ligent capabilities spectrum, the edge granularity, the edge continuum, the
symbolic reasoning-pattern recognition continuum and not the least, the
problem-solving spectrum.

The foundation supports the ongoing projects and stakeholders across the
industrial sectors with a common methodology and roadmap. Meanwhile, it
prioritizes the right features for AI-based applications and designing them
in the right way in different use cases across various industrial sectors using
synergies among different solutions, methods, or techniques.

The foundation assists in choosing state-of-the-art AI technologies and
having a clear overview over the existing state of play in the field for optimal
selection and trade-off of these technologies, methods, and techniques for use
cases in different industrial sectors.

AI empowers computers to mimic human intelligence, such as decision-
making, text processing and visual perception. In this context, AI is a broad
field, encompassed by multiple contributing branches, such as ML, robotics
and computer vision.

AI can be understood in the context of the tasks that we expect an
intelligent machine, IoT/IIoT device to be capable of performing.

An intelligent machine, IoT/IIoT device is any system whose behaviour
could be interpreted as reflecting human intelligence, which may be demon-
strated in basic capabilities, such as perceiving, comprehending, acting, and

1.2 Capabilities Spectrum of Industrial AI 9

8

AI empowers computers to mimic human intelligence, such as decision-making,
text processing and visual perception. In this context, AI is a broad field,
encompassed by multiple contributing branches, such as ML, robotics and
computer vision.

AI can be understood in the context of the tasks that we expect an intelligent
machine, IoT/IIoT device to be capable of performing.

An intelligent machine, IoT/IIoT device is any system whose behaviour could be
interpreted as reflecting human intelligence, which may be demonstrated in basic
capabilities, such as perceiving, comprehending, acting, and learning.For example,
the three-dimensional classification scheme for evaluating an AI-based systems in
[37]differentiates four capabilities: perception, understanding, action and
communication.

In the context of the European projects contributing to this book, four capabilities
are differentiated as shown in Figure 1.1, but the list is extended with more
capabilities, which are elaborated below from the perspective of their application
to industry.

Figure 1.1. AI systems capabilities.

The perceiving or sensing capability allows industrial machines, IoT/IIoT devices
to scan their environment using various sense organs, either artificial or real, and
to collect and process data streams (images, sounds, speech, text, and other data)
from diverse sources, such as radar, lidar, cameras, ultrasound sensors, etc.

The processing is often complicated, as it involves great numbers of distinct
appearances over multiple occasions, varying by view and angle, as well as scenes
suggesting objects that may be hidden. Mechanisms, such as data, information,
and sensor fusionare employed to assimilate various sources of information, often

Figure 1.1 AI systems capabilities.

learning. For example, the three-dimensional classification scheme for evalu-
ating an AI-based systems in [37] differentiates four capabilities: perception,
understanding, action and communication.

In the context of the European projects contributing to this book, four
capabilities are differentiated as shown in Figure 1.1, but the list is extended
with more capabilities, which are elaborated below from the perspective of
their application to industry.

The perceiving or sensing capability allows industrial machines,
IoT/IIoT devices to scan their environment using various sense organs, either
artificial or real, and to collect and process data streams (images, sounds,
speech, text, and other data) from diverse sources, such as radar, lidar,
cameras, ultrasound sensors, etc.

The processing is often complicated, as it involves great numbers of
distinct appearances over multiple occasions, varying by view and angle,
as well as scenes suggesting objects that may be hidden. Mechanisms, such
as data, information, and sensor fusion are employed to assimilate various
sources of information, often imperfect and uncertain, and deal with multiple
dimensions of remote sensing (spatial, temporal, spectral, and radiometric
resolution).

The comprehending capability enables industrial machines, IoT/IIoT
devices to recognise patterns and context in the information it collects, just
as humans interpret data/information by understanding patterns and context
in their perceptions of the environment, but it is important to note that
comprehending does not have the same meaning for machines as for humans.

10 Industrial AI Technologies for Next-Generation Autonomous Operations

Machines do not actually “comprehend” the world around them; rather, they
are trained to “learn” how to recognise patterns.

An industrial machine’s and IoT/IIoT device’s learning capability
enables it to continually improve its performance by learning from the success
or failure of its actions. Like humans, machines learn in various ways, for
example, by trial and error. A machine tries various solutions to a problem
until it achieves the desired results. It records all the steps actions that
produced those results in its memory for use the next time it is given the
same problem.

The reasoning capability enables industrial machines and IoT/IIoT
devices to draw relevant inferences from the situation at hand. Reasoning has
become an essential component of AI only in the past decades before which
the ability was limited to humans.

Logic employs two broad methods of reasoning: the deductive and induc-
tive approaches. Deductive reasoning works from the “top down”, moving
from a theory to its confirmation (or rejection) by collecting observations to
address the hypotheses and narrowing down the possibilities.

By contrast, inductive reasoning works from the “bottom up”, mov-
ing from specific observations to broader generalisations and theories by
detecting patterns and then formulating testable hypotheses.

The problem-solving capability enables industrial machines and
IoT/IIoT devices to move from a problem’s initial state to the final goal state
through a stepwise gradual reduction of the difference between the current
state and any intermediate goal state.

This involves using several techniques, such as algorithms and heuristics,
to solve a problem. The ability to solve problems, a highly prized skill
in both humans and machines, involves two distinct, possibly conflicting
processes: creativity and decision making. The former, creativity, generates
options and possible solutions, and then the latter, decision making, selects
the optimal one.

The acting capability enables industrial machines and IoT/IIoT devices
to act (inspired by their perception or comprehension) in the physical or
digital environment. It is implicitly assumed that machines will act ratio-
nally and determine the best and safest course of action for achieving their
goals.

The interacting capability enables industrial machines and IoT/IIoT
devices to connect to the environment and to everything and collabo-
rate with humans, other machines, and infrastructure (physical and digital,
edge/cloud, etc).

1.3 The Industrial AI Spectrum 11

This emerges primarily when industrial machines have to interact with
people, which assumes the ability to understand language. For example, when
an AI system explains how it came to its decision, it must adopt the normal
conventions of human interaction to make itself understood.

The locating capability enables industrial machines and IoT/IIoT devices
to determine (relative) positions very precisely and accurately on network,
dynamic maps, GPS, GNSS, etc., that help in identifying the context of
actions.

1.3 The Industrial AI Spectrum

In the previous section, a classification of AI was given in the context of
the tasks that we expect an intelligent industrial machine to be capable of
performing.

Additionally, AI can be understood from the perspective of the (theoret-
ical) ability of an intelligent machine situated on a continuum, from specific
to general intelligence or from basic to super intelligence. Some forms of AI
within this continuum can be distinguished by names, such as Narrow AI,
General AI, Weak AI, Strong AI [35].

These various forms of AI differ primarily in their range of abili-
ties/capabilities and the level of training required to implement them. In the
following, they are described in contrasting pairs from the perspective of their
relevance to industrial applications.

1.3.1 Narrow AI vs. General AI

General AI defines an AI system that parallels human intelligence. As such,
it is considered an ultimate vision of AI that can handle a wide variety of
cognitive tasks across multiple domains.

General AI is the basis for future human-like autonomous systems and
robots, which will implement hundreds of systems working in parallel while
communicating with each other in a manner that mimics human reasoning.
While the development of technology pushes the abilities of AI ever closer to
General AI, most AI surrounding us today is Narrow AI.

Broadly speaking, Narrow AI can be thought of as anything that is
not General AI. Narrow AI defines an AI system capable of performing a
particular task that any human would ordinarily perform. Narrow AI systems
are designed to precisely execute a well-defined task. These systems are opti-
mised to excel in controlled environments with a limited set of parameters,

12 Industrial AI Technologies for Next-Generation Autonomous Operations

11

execute a well-defined task. These systems are optimised to excel in controlled
environments with a limited set of parameters, demonstrating capabilities that
match, or even surpass, those of a human. However, their capabilities are narrow
(e.g., e-commerce suggestions based on user search patterns, weather prediction,
predictive maintenance, etc.), and they cannot do anything that is not explicitly
stated in their programming.

A comparison of the features of Narrow AI and General AI is illustrated in Figure
1.2. The primary difference between Narrow and General AI comes down to
adaptability. For AI to be generally intelligent, it must be able to adapt rapidly to
changing surroundings in the same way that humans do. In practice, this would
mean to pass the Turing test repeatably and consistently. Turing defined intelligent
behaviour as the ability to achieve human-level performance in all cognitive tasks
sufficient to fool an interrogator.

Figure 1.2: Narrow AI vs General AI

1.3.2 Weak AIvs. Strong AI

The terms Weak AI and Strong AI are sometimes used in place for Narrow AI and
General AI, respectively. Weak and Strong AI were coined in [9]to differentiate
the performance levels in different kinds of AI machines.

Strong AI systems (e.g., advanced robotics, intelligent robotic things, etc.) behave
intelligently, think as humans do, and have a conscious, subjective mind; they
know who the AI systems are, what they are doing, and why. Strong AI systems
are represented by an AI-based application with a larger scope, using high-level
clustering and association to process data, information, and knowledge.

Figure 1.2 Narrow AI vs General AI.

demonstrating capabilities that match, or even surpass, those of a human.
However, their capabilities are narrow (e.g., e-commerce suggestions based
on user search patterns, weather prediction, predictive maintenance, etc.), and
they cannot do anything that is not explicitly stated in their programming.

A comparison of the features of Narrow AI and General AI is illustrated
in Figure 1.2. The primary difference between Narrow and General AI comes
down to adaptability. For AI to be generally intelligent, it must be able to
adapt rapidly to changing surroundings in the same way that humans do. In
practice, this would mean to pass the Turing test repeatably and consistently.
Turing defined intelligent behaviour as the ability to achieve human-level
performance in all cognitive tasks sufficient to fool an interrogator.

1.3.2 Weak AI vs. Strong AI

The terms Weak AI and Strong AI are sometimes used in place for Narrow
AI and General AI, respectively. Weak and Strong AI were coined in [9] to
differentiate the performance levels in different kinds of AI machines.

Strong AI systems (e.g., advanced robotics, intelligent robotic things,
etc.) behave intelligently, think as humans do, and have a conscious, sub-
jective mind; they know who the AI systems are, what they are doing, and
why. Strong AI systems are represented by an AI-based application with
a larger scope, using high-level clustering and association to process data,
information, and knowledge.

In contrast, Weak AI defines the simulated thinking of the brain processes
with the help of a computer. It behaves intelligently (e.g., chatbots, Siri,

1.3 The Industrial AI Spectrum 13

Alexa, etc.) but does not exhibit any kind of consciousness about what it
is doing.

Weak AI systems are represented by Narrow AI-based applications with
a limited scope that are optimised by using supervised and unsupervised
learning to process data collected from different sources (e.g., real-time or
from databases, etc.).

Although Weak AI systems never attain the breadth of a General AI, most
Narrow AI systems are very powerful and focused. It is therefore important
to not conflate Narrow AI, which deals with specific tasks, with weak AI.

1.3.3 Basic AI vs. Super AI

The term Super AI refers to the combination of General AI and Strong AI
at the point at which it surpasses the intelligence and ability of the human
brain. This is made possible primarily due to the amount of memory and
instantaneous access to data, which far exceeds human limits. In addition,
this AI will improve self-capabilities to feel things and emotions.

Nevertheless, since Strong AI is still theoretical, the realization of Super
AI lays far in the future, relying strongly on technological advancements in
hardware (quantum computing), software, and other fields (biomimicry).

Basic AI, in contrast, can be considered for any AI that is under the thresh-
old of Super AI. It is an all-encompassing term that denotes the simplest tasks
and technologies used and is mentioned here merely as a foil to Super AI.

1.3.4 Red AI vs. Green AI

The term Green AI [12] defines AI research that yields novel technological
results while considering the financial cost of developing, training, and oper-
ating, as well as encouraging a positive impact both on the environment and
inclusiveness.

Green AI includes the optimisation of the use of data/information,
the processing at the deep edge/edge/cloud, the transfer and exchange of
data/information, and storage.

The term Red AI defines AI research that seeks to achieve progress
regardless of the huge computational power required and environmentally
unfriendly impact involved.

While Red AI research has made valuable scientific contributions to
the field, making AI both greener and more inclusive will lead to wider
acceptance of AI in industry.

14 Industrial AI Technologies for Next-Generation Autonomous Operations

Nevertheless, ensuring a smooth transition from Red AI to Green AI
is not straightforward. For instance, the type of energy sources used for
powering the data centres, edge computing facilities, or the intelligent
devices at the edge is part of the efficiency equation associated with train-
ing/learning/reasoning algorithms. Even if powered by renewable sources,
massive power consumption for stronger results from the algorithms may not
be considered an improvement step towards Green AI.

To conclude the discussion on the industrial AI spectrum, the degree to
which more General, Strong, Super and Green AI can be achieved will largely
depend on the abilities of the particular AI system to continuously learn
how to solve problems from multiple application domains without requiring
extensive retraining for each, to learn in a self-supervised manner, and to
adapt the knowledge and skills acquired to new situations with little-to-no
training.

1.4 AI Problem Solving Domains

Problem-solving is a method used to reach a desired goal or find a solution
to a problem. In the context of computer science, problem-solving refers to
various techniques, such as forming efficient algorithms and heuristics, to find
desirable solutions. A single problem can have many different solutions, and
these can be achieved by different methods. Also, some problems have unique
solutions, depending on the nature of the given problem and the domain.

AI has always been beneficial for solving complex problems and chal-
lenges that cannot be solved by other means. This section presents some of the
major AI problem solving domains that are most used in industrial problem-
solving and/or that have great potential for sustainable developments. The
various branches of AI and AI problem-solving domains are illustrated in
Figure 1.3. For a more complete overview of problem-solving techniques, we
refer the interested reader to [4][8].

1.4.1 Expert Systems

Expert systems (ES) are computer programs designed to act as experts in
a particular domain or area of expertise. In other words, they are designed
to model human expertise in that specific knowledge area. Problem-solving
relies on organising considerable amounts of knowledge and then system-
atically searching through them when selecting the path to go with each
decision, ultimately leading to a solution. A typical architecture is shown in
Figure 1.4.

1.4 AI Problem Solving Domains 15

13

Nevertheless, ensuring a smooth transition from Red AI to Green AI is not
straightforward. For instance, the type of energy sources used for powering the
data centres, edge computing facilities, or the intelligent devices at the edge is part
of the efficiency equation associated with training/learning/reasoning algorithms.
Even if powered by renewable sources, massive power consumption for stronger
results from the algorithms may not be considered an improvement step towards
Green AI.

To conclude the discussion on the industrial AI spectrum, the degree to which
more General, Strong, Super and Green AI can be achieved will largely depend on
the abilities of the particular AI system to continuously learn how to solve
problems from multiple application domains without requiring extensive
retraining for each, to learn in a self-supervised manner, and to adapt the
knowledge and skills acquired to new situations with little-to-no training.

1.4 AI Problem Solving Domains
Problem-solving is a method used to reach a desired goal or find a solution to a
problem. In the context of computer science, problem-solving refers to various
techniques, such as forming efficient algorithms and heuristics, to find desirable
solutions.A single problem can have many different solutions, and these can be
achieved by different methods. Also, some problems have unique solutions,
depending on the nature of the given problem and the domain.

AI has always been beneficial for solving complex problems and challenges that
cannot be solved by other means.This section presents some of the major AI
problem solving domains that are most used in industrial problem-solving and/or
that have great potential for sustainable developments. The various branches of AI
and AI problem-solving domains are illustrated in Figure 1.3. For a more complete
overview of problem-solving techniques, we refer the interested reader to [4][8].

Figure 1.3 AI problem solving domains.

14

Figure 1.3 AI problem solving domains.

1.4.1 Expert Systems

Expert systems (ES) are computer programs designed to act as experts in a
particular domain or area of expertise. In other words, they are designed to model
human expertise in that specific knowledge area. Problem-solving relies on
organising considerable amounts of knowledge and then systematically searching
through them when selecting the path to go with each decision, ultimately leading
to a solution. A typical architecture is shown in Figure 1.4.

There are two basic components in an expert system: a knowledge database and an
inference engine.The knowledge base mainly consists of facts about that domain
(declarative knowledge) and rules for applications to those facts (procedural
knowledge). The most common representation of human expert knowledge is in
the form of rules, for example, an ‘if A, then B’ structure.

Figure 1.4 Typical expert system architecture.

The inference engine processes the input information (for example, that A is true)
and draws the deductions based on the rules (for example, B). It consists of
algorithms, which, via step-by-step inferences, draw deductions based on the
knowledge rules. Depending on the application, ES may also have a user interface
to interact with users.

In the absence of generalised knowledge-based systems, the industry embraced the
idea of practical ES for specific tasks, and there are many successful applications
of ES in medicine, agriculture, and other areas, where ES assist or even replace
human experts with specialised knowledge. ES remain important tools for decision
support or decision-making; nevertheless, they have evolved in both the

Figure 1.4 Typical expert system architecture.

There are two basic components in an expert system: a knowledge
database and an inference engine. The knowledge base mainly consists of
facts about that domain (declarative knowledge) and rules for applications
to those facts (procedural knowledge). The most common representation of
human expert knowledge is in the form of rules, for example, an ‘if A, then
B’ structure.

The inference engine processes the input information (for example, that
A is true) and draws the deductions based on the rules (for example, B). It

16 Industrial AI Technologies for Next-Generation Autonomous Operations

consists of algorithms, which, via step-by-step inferences, draw deductions
based on the knowledge rules. Depending on the application, ES may also
have a user interface to interact with users.

In the absence of generalised knowledge-based systems, the industry
embraced the idea of practical ES for specific tasks, and there are many
successful applications of ES in medicine, agriculture, and other areas, where
ES assist or even replace human experts with specialised knowledge. ES
remain important tools for decision support or decision-making; neverthe-
less, they have evolved in both the technological and business directions.
ES can now be embedded into applications and can be designed to handle
uncertainty. Furthermore, new knowledge representation and reasoning tools
have been developed for ES: MYCIN [13] for disease diagnosis, DENDRAL
[30] for chemical analysis to predict molecular structure, R1 for configuring
orders for new computer systems [14], Fuzzy Logic UAV (Unmanned Aerial
Vehicle) Motion Planning [31], etc. There are other application areas such as
environment, manufacturing, diagnostic tools for vehicles, and machinery.

ES remain a feasible solution when there is a lot of human expert knowl-
edge and experience that can be modelled but not enough data to build other
problem-solving systems. ES can also be the preferred solution because of
their unique capability, namely explainability, which other systems lack in
spite of advanced problem-solving capabilities. This could be an obstacle
in some application areas, such as autonomous vehicles, where unexpected
decisions need to be understood.

On the downside, knowledge bases take time to acquire and represent on
computers, and if some knowledge is missing or incomplete, a less reliable
result will be produced. Hence, verification and validation methods and
techniques aimed at ensuring quality are fundamentally important.

Initially, ES were built around rules established by humans, but gradually
the rules are being set by computers, which can interpret and extrapolate
from large volumes of data. In this respect, the AI learning process can be
implemented using top-down approaches (e.g., expert systems) or bottom-up
approaches (e.g., machine learning).

ES and its technology have been one of the most important and widely
used parts of AI and goes back to the beginning of AI, so they have been used
in business for decades. This is an area that will continue to be important in
the future, either independently or in combination with other major branches
of AI.

As a concluding remark, there is a lot to learn from the earlier generation
of AI in our pursuit of the development of explainable and verifiable AI.

1.4 AI Problem Solving Domains 17

1.4.2 Machine Vision

Machine vision (MV) is a branch of AI that enables machines to imitate the
human visual system and perform various tasks, such as image classification
and segmentation, object detection and recognition, and object tracking, using
information collected from various sources including IIoT image sensors.
MV enables intelligent vision devices to grasp their visual surroundings
and to process, analyse and understand digital images. For example, in the
case of autonomous vehicles, MV detects traffic signs, buildings, vehicles,
pedestrians and other participants in the traffic.

Machine vision and computer vision (CV) are sometimes used inter-
changeably, but they are different. Both are used for image processing, so
they both use similar components, such as cameras, IIoT image sensors to
capture images and software to handle the data. However, CV uses systems
with PC-based processors to analyse the imaging data it collects, so it has a
lot of processing power and is commonly applied in the medical, financial
and security industries. CV can be used alone, without needing to be part of
a larger machine system.

MV, by contrast, is integrated into perception systems in industrial
sectors, such as autonomous vehicles, manufacturing, food processing and
semiconductors. An MV system uses algorithms to process and interpret
an image, and it instructs other components in the system to act upon that
data. MV systems are therefore designed to quickly analyse image data and
make simple, automated decisions on different tasks, such as quality control,
inspection, and guidance. The image could be obtained from a thermal or
infrared sensor, IIoT image sensors, motion detectors or other sources.

Analysis of reams of images produced by sensors requires that the
machines be able to see and understand images, and this is where AI comes
into the picture because its methods and techniques permit the automatic
extraction of information from images.

Machine vision is one of the areas that has greatly benefitted from the
rapid advances in AI/ML, and implementation of MV’s capabilities is now
possible at all micro, deep and meta edge levels. Modern MV systems are
usually built using different types of neural networks, including DL. DL
allows machines, robots and intelligent IIoT devices to recognise objects
with close to human-like ability. At the lower levels, ML algorithms perform
processing techniques on the image, extract features from the image and
access and intertwine multiple views. At the higher levels, they perform
more advanced tasks, such as image classification, and they make inferences
about whether the object in the image belongs to a specific class of objects.

18 Industrial AI Technologies for Next-Generation Autonomous Operations

17

Figure 1.5 Typical CNN-based machine (left) and workflow (right).

Nonetheless, some challenges arise when deploying MV on IIoT edge devices.
Most deep NNs are too complex to be created and trained on most present-day
microcontrollers, but if optimised in terms of memory, processing, and power
capabilities, they can run on them. The optimisation can be done either by
rewriting the models in low-level languages or by quantising to improve the
latency and the model size.

Real-time object detection on edge devices with live video analytics using YOLO
(You Only Look Once) are widely used for video surveillance and are important
for mobile robots, including self-driving vehicles.

The machine vision system uses embedded edge AI for use-case applicability and
autonomous optimisation in industrial manufacturing visual inspection and are
extensively used in various industrial applications and sectors.

1.4.3 Robotics

Robotics is a branch of AI that deals with creating machines that can perform
some actions like humans. Al capabilities enable robots to act intelligently in
certain situations by solving problems in a limited sphere or even learning in
controlled environments. Many industries are implementing robotics solutions to
overcome critical issues related to production and execution by eliminating the
potential for human error while reducing redundancy in manual labour.

In recent years, there has been consistent progress in intelligent robotics, driven by
an increased availability of complex and intelligent sensor systems, powerful
computing and communication capabilities, and software platforms. Progress in
deep learning in particular is opening up new opportunities in industrial robotics –
leveraging improvements in machine vision, robotic grippers that can pick up
randomly placed objects and stack them, and other agile and dynamic robotics
systems that operate at speeds essential for many industrial applications. Thus,
implementing inference at the edge, without connecting to the Internet, enables
robots to make decisions independently.

Figure 1.5 Typical CNN-based machine (left) and workflow (right).

The highest level is where DL is employed to build intelligent, scalable MV
systems that can recognise/identify and react/respond to objects in images
and videos.

From the multitude of neural network architectures, Convolutional Neural
Networks (CNNs) have become increasingly powerful in large-scale image
recognition by combining the feature extraction processes and classifying the
extracted features in the same algorithm. When DL technology is deployed
in IIoT devices, it relies on pretrained DL models, and transfer-learning
techniques are employed to retrain an existing image classifier into a custom
classifier by retraining a small image dataset using minimal resources. An
intuitive illustration of CNN-based MV is shown in Figure 1.5

Nonetheless, some challenges arise when deploying MV on IIoT edge
devices. Most deep NNs are too complex to be created and trained on most
present-day microcontrollers, but if optimised in terms of memory, process-
ing, and power capabilities, they can run on them. The optimisation can be
done either by rewriting the models in low-level languages or by quantising
to improve the latency and the model size.

Real-time object detection on edge devices with live video analytics using
YOLO (You Only Look Once) are widely used for video surveillance and are
important for mobile robots, including self-driving vehicles.

The machine vision system uses embedded edge AI for use-case applica-
bility and autonomous optimisation in industrial manufacturing visual inspec-
tion and are extensively used in various industrial applications and sectors.

1.4.3 Robotics

Robotics is a branch of AI that deals with creating machines that can
perform some actions like humans. Al capabilities enable robots to act
intelligently in certain situations by solving problems in a limited sphere
or even learning in controlled environments. Many industries are imple-
menting robotics solutions to overcome critical issues related to production

1.4 AI Problem Solving Domains 19

and execution by eliminating the potential for human error while reducing
redundancy in manual labour.

In recent years, there has been consistent progress in intelligent robotics,
driven by an increased availability of complex and intelligent sensor systems,
powerful computing and communication capabilities, and software platforms.
Progress in deep learning in particular is opening up new opportunities in
industrial robotics – leveraging improvements in machine vision, robotic
grippers that can pick up randomly placed objects and stack them, and other
agile and dynamic robotics systems that operate at speeds essential for many
industrial applications. Thus, implementing inference at the edge, without
connecting to the Internet, enables robots to make decisions independently.

The greatest impact has been on automobile industry and the use of
autonomous vehicles. The design of self-driving vehicles requires the inte-
gration of technologies such as sensor fusion, AI decision-making, vehicle-
dynamics prediction, on-the-fly rerouting, and inter-vehicle communication
to carry out tasks such as adaptive cruise control, to safely adjust speed, and
lane-keeping assistance, to keep vehicles centred on the road. A schematic
illustration of an end-to-end deep learning for self-driving vehicles is shown
in Figure 1.6.

18

The greatest impact has been on automobile industry and the use of autonomous
vehicles. The design of self-driving vehicles requires the integration of
technologies such as sensor fusion, AI decision-making, vehicle-dynamics
prediction, on-the-fly rerouting, and inter-vehicle communication to carry out
tasks such as adaptive cruise control, to safely adjust speed, and lane-keeping
assistance, to keep vehicles centred on the road. A schematic illustration of an
end-to-end deep learning for self-driving vehicles is shown in Figure 1.6.

Figure 1.6Self-driving vehicles: Training and inference (generate steering commands).

Adapted from[33].

Training data contains single images sampled from video, paired with the
corresponding steering command. Training with data from the human driver is
insufficient. The network must likewise learn how to recover from any mistakes,
or the vehicle can slowly drift off the road. In this case, the training data is
augmented with additional images that show the vehicle in different shifts from
the centre of the lane and rotations from the direction of the road. The images for
two specific off-centre changes can be obtained from the right and left
cameras[33].

Images are fed into a CNN which computes a proposed steering command. The
proposed command is compared to the desired command for that image, and the
weights of the CNN are adjusted to bring the CNN output closer to the desired
output. During inference, the trained model generates steering commands from the
input video images.

Figure 1.6 Self-driving vehicles: Training and inference (generate steering commands).

Adapted from [33].

20 Industrial AI Technologies for Next-Generation Autonomous Operations

Training data contains single images sampled from video, paired with the
corresponding steering command. Training with data from the human driver
is insufficient. The network must likewise learn how to recover from any
mistakes, or the vehicle can slowly drift off the road. In this case, the training
data is augmented with additional images that show the vehicle in different
shifts from the centre of the lane and rotations from the direction of the road.
The images for two specific off-centre changes can be obtained from the right
and left cameras [33].

Images are fed into a CNN which computes a proposed steering com-
mand. The proposed command is compared to the desired command for that
image, and the weights of the CNN are adjusted to bring the CNN output
closer to the desired output. During inference, the trained model generates
steering commands from the input video images.

1.4.4 Biomimicry

The term AI typically connotes emulating, mimicking, or replicating
human intelligence in machines. However, AI also encompasses biological
intelligence, including that of plants, animals, and other living organisms.
Plants, for instance, do not possess brains, but they have senses. Hence, one
of the many lessons to be learned from billions of years of evolution, natural
engineering, and natural design is that embedding more processing power
close to the sensors and actuators will improve intelligent functioning in IIoT
technologies in different industrial applications.

There are many examples of AI problem-solving architectures and tech-
niques that incorporate insight from nature into their solutions, e.g., machine
learning, robotic vision, and path-planning. Biomimicry is an approach to
problem-solving that produces innovative sustainable solutions by learning
from and replicating the natural patterns observed in living systems and
beings (e.g., plants, animals, humans) to create remarkably intelligent tech-
nologies and products. These patterns, which appear in nature with varying
degrees of frequency, can be found not only in forms and shapes, but also
in processes (chemical, physical, and behavioural) and ecosystems. Highly
fundamental patterns observed across species that appear very frequently are
known as Life’s principles [25].

Life’s Principles are lessons from nature and can serve as inspirational
lessons for designers and developers and can be applied to various industrial
applications. Being locally attuned and responsive is one of the six primary
Life’s Principles, and it refers to how an organism fits into and integrates with

1.4 AI Problem Solving Domains 21

20

Figure 1.7 Life’s principles. Adopted from [25].

Life’s Principles are lessons from nature and can serve as inspirational lessons for

designers and developers and can be applied to various industrial applications.

Being locally attuned and responsive is one of the six primary Life’s Principles,

and it refers to how an organism fits into and integrates with it surrounding

environment. The use of feedback loops is a sub-principle or strategy for being

locally attuned and responsive. Feedback loops are cyclical information flows that

allow organisms to adequately modify their reactions to environmental stimuli and

situations.

We can find hundreds of unique strategies and mechanisms in nature for sending

and receiving signals in a feedback loop. The white clover is a good example of

the information flow that occurs between a prey and the formation to which it

belongs, finalised by feedback to the predator. To survive, this plant employs a

chemical defence mechanism to ward off herbivores. When white clover leaves

Figure 1.7 Life’s principles.

Adopted from [25].

it surrounding environment. The use of feedback loops is a sub-principle or
strategy for being locally attuned and responsive. Feedback loops are cyclical
information flows that allow organisms to adequately modify their reactions
to environmental stimuli and situations.

We can find hundreds of unique strategies and mechanisms in nature for
sending and receiving signals in a feedback loop. The white clover is a good
example of the information flow that occurs between a prey and the formation
to which it belongs, finalised by feedback to the predator. To survive, this
plant employs a chemical defence mechanism to ward off herbivores. When
white clover leaves are damaged (chewed), two chemicals mix to form
hydrogen cyanide, a bitter substance that makes the leaves less tasty.

22 Industrial AI Technologies for Next-Generation Autonomous Operations

For an AI system, feedback loops are essential because they enable
intelligence. A feedback loop entails the assessing and leveraging of its output
(predictions or recommendations) to retrain and improve the model over time.
Feedback loops are used in machine learning and deep learning, especially
in neural networks. A good example is the object recognition technology
in self-driving vehicles and its ability to recognise traffic lights, road signs,
pedestrians, automobiles, and various types of objects, with feedback loops
improving its accuracy. Through feedback from the output layer in a neural
network model, the variations of weights in the hidden layer(s) are adjusted
to fit the expected outputs. Positive feedback increases the change or output,
while negative feedback decreases the change or output.

Returning to the white clover example, when a white clover leaf is
attacked, this action triggers signals in every direction, making the other
leaves harder to chew and upgrading the mechanical and chemical resistance
of the entire formation. This is made possible by its network infrastructure
composed of runners—commonly found in many plant species.

Runners are stems growing just at or below the soil surface. They form
roots at the nodes, new plants grow from their buds, and they are part of
a propagation strategy. Above ground, these plants most often appear to be
distinct individuals, but underground, they are interconnected, such that when
one member of the formation senses something, a signal is sent to every other
member, facilitating a quick response to a predator.

Feedback loops also occur in ecosystems, with connections within the
formation allowing for rapid information circulation, information processing,
and reaction. To function like ecosystems, AI systems must be strongly
interconnected and equipped with built-in IIoT technologies that continually
capture stimuli from the environment. These stimuli are then converted
into information that is circulated and processed rapidly, resulting in an
almost instantaneous self-regulation and adaption to any change, along with
feedback on the origin of the change.

AI systems functioning like ecosystems will foster collaborative infras-
tructure design and sustain innovation, enabling these systems to evolve and
rapidly learn how to evolve. AI systems with collaborating sensors reminis-
cent of such collaborative infrastructure would behave almost organically.

1.4.5 Genetic and Evolutionary Algorithms

Genetic algorithms (GAs) represent a branch of AI searching for a range
of potential solutions to find one which solves a particular problem. GAs

1.4 AI Problem Solving Domains 23

save information about the paths traversed during the search, simulating
an evolutionary process and in this way overcoming known issues such as
inefficient searches, and convergence to local optimums rather than global
optima.

The idea of GAs can be traced back to Alan Turing’s paper from 1950
[26], where concepts derived from natural evolution are used to evolve AI
machines. These include mutation, hereditary material, survival of the fittest,
and keeping track of the different genetical combinations that have been tried
and tested, to avoid trying the same ones again.

GAs are a subset of a much larger branch of computation known as
evolutionary computation. The main concept behind GAs and evolutionary
algorithms (EAs) is inspired by the natural selection principle in biologi-
cal evolution [27], in which organisms evolve and adapt to thrive in the
surrounding environmental conditions.

According to this principle, new candidates can be produced from a cur-
rent population of individuals using crossover and mutation, which perform
different roles. Mutation is a divergence technique, driving the population
to discover new regions and enlarge the search space. Crossover is a con-
vergence technique, driving the population towards a local optimum. The
fitness of individuals is evaluated against a fitness function related to the
optimisation problem being solved, subsequently the stronger candidates are
selected to breed, the rest are ‘discarded’. Since the ultimate ‘goal’ is to
bring the population to a state of convergence, selection/crossover occur more
frequently than mutation.

This process is iterative, in that the new generation of candidate solutions
becomes the current population in the next iteration. The cycle terminates
after the maximum number of iterations has been executed, or earlier if the
fitness functions reach a satisfactory level. The advantages of GAs include
their relatively simple application to new problems – merely requiring redef-
inition of the fitness function, and they are also effective and scalable, due to
the “survival of the fittest” principle, according to which the unfit candidates
are eliminated during the process.

GAs and EAs have a wide range of applications, such as in robotics,
evolutionary machine learning, generative design applications and evolvable
hardware. For example, GAs can accelerate the NN learning process to solve
a certain problem, by learning the best hyper-parameters. This is illustrated
in Figure 1.8.

Evolvable hardware (EH) is another field focusing on the use of EAs
and GAs to create specialised hardware and electronics without manual

24 Industrial AI Technologies for Next-Generation Autonomous Operations

23

Figure 1.8 Using Genetic Algorithms in the iterative process of fine-tuning NN

hyperparameters.

Evolvable hardware (EH) is another field focusing on the use of EAs and GAs to

create specialised hardware and electronics without manual engineering. Although

it started out as a branch of electrical engineering and computer science, EH now

brings together reconfigurable hardware, evolutionary computation, fault

tolerance, sensors; connectivity and processing modules; and autonomous

systems. In a broader sense, EH refers to any form of hardware that can change its

architecture and behaviour dynamically and autonomously by interacting with its

environment.

Regardless of the industry, the generation and testing of different solutions is a

critical part of every design process, including generative design. The generative

design algorithm creates and tests different configurations, diverging to explore a

large variety of solutions based on the pre-set requirements, and then converging

on the best solution. Often such processes are cyclical/iterative, where initial

requirements are adjusted, leading to another cycle/iteration of generating

candidate solutions. Such processes can become very complex, hence the need for

AI systems, such as GAs. Thus, one of the most powerful benefits of generative

design is the speed with which new candidates can be generated and evaluated

because the entire cycle is automated.

1.4.6 Generative AI

Generative AI is a branch of AI that enable computers to learn underlying patterns

related to their input, which can be text, audio files or images, and then use these

Figure 1.8 Using Genetic Algorithms in the iterative process of fine-tuning NN
hyperparameters.

engineering. Although it started out as a branch of electrical engineering
and computer science, EH now brings together reconfigurable hardware, evo-
lutionary computation, fault tolerance, sensors; connectivity and processing
modules; and autonomous systems. In a broader sense, EH refers to any form
of hardware that can change its architecture and behaviour dynamically and
autonomously by interacting with its environment.

Regardless of the industry, the generation and testing of different solu-
tions is a critical part of every design process, including generative design.
The generative design algorithm creates and tests different configurations,
diverging to explore a large variety of solutions based on the pre-set require-
ments, and then converging on the best solution. Often such processes are
cyclical/iterative, where initial requirements are adjusted, leading to another
cycle/iteration of generating candidate solutions. Such processes can become
very complex, hence the need for AI systems, such as GAs. Thus, one of
the most powerful benefits of generative design is the speed with which
new candidates can be generated and evaluated because the entire cycle is
automated.

1.4.6 Generative AI

Generative AI is a branch of AI that enable computers to learn underlying
patterns related to their input, which can be text, audio files or images,

1.4 AI Problem Solving Domains 25

and then use these to create similar content [23]. While advances in ML
have mostly been the result of discriminative modelling, the most significant
advances in AI in recent years have been attributed to generative modelling,
not least due to its ability to create new things.

In contrast to discriminative techniques that learn to classify data, gen-
erative AI techniques are mostly involved in creating new data based on
training data. Discriminative modelling is focussed on learning a function
that maps an input to an output using a labelled dataset, a notion synonymous
with supervised learning. Generative modelling is usually performed with an
unlabelled dataset, that is, as a form of unsupervised learning.

The differences between discriminative and generative modelling are best
visualised in Figure 1.9. Discriminative models draw boundaries in the data
space, focusing on predicting the data labels, while generative models try to
model how data are placed throughout the space, focussing on explaining how
the data were generated.

There are three main classes of generative AI techniques: general
adversarial networks (GANs), autoregressive convolutional neural networks
(AR-CNN), and transformer-based models.

GANs are a breakthrough, empowering deep networks with the ability to
produce artificial content that passes for the real thing. GANs consist of two
competing components – the generator network, which learns the distribu-
tion of classes, and the discriminator network, which learns the boundaries
between those classes. Each network can be any type of neural network,
such as artificial neural network (ANN). The discriminator must have fully
connected layers with a classifier at the end.

24

to create similar content [23]. While advances in ML have mostly been the result

of discriminative modelling, the most significant advances in AI in recent years

have been attributed to generative modelling, not least due to its ability to create

new things.

In contrast to discriminative techniques that learn to classify data, generative AI

techniques are mostly involved in creating new data based on training data.

Discriminative modelling is focussed on learning a function that maps an input to

an output using a labelled dataset, a notion synonymous with supervised learning.

Generative modelling is usually performed with an unlabelled dataset, that is, as a

form of unsupervised learning.

The differences between discriminative and generative modelling are best

visualised in Figure 1.9. Discriminative models draw boundaries in the data space,

focusing on predicting the data labels, while generative models try to model how

data are placed throughout the space, focussing on explaining how the data were

generated.

Figure 1.9 Discriminative (left) vs Generative (right) Models in ML.

There are three main classes of generative AI techniques: general adversarial

networks (GANs), autoregressive convolutional neural networks (AR-CNN), and

transformer-based models.

GANs are a breakthrough, empowering deep networks with the ability to produce

artificial content that passes for the real thing. GANs consist of two competing

components – the generator network, which learns the distribution of classes, and

the discriminator network, which learns the boundaries between those classes.

Each network can be any type of neural network, such as artificial neural network

(ANN). The discriminator must have fully connected layers with a classifier at the

end.

Figure 1.9 Discriminative (left) vs Generative (right) Models in ML.

26 Industrial AI Technologies for Next-Generation Autonomous Operations

GANs are the cutting-edge technology of AI, not least due to two essential
key advantages: they solve the problem of generating data when there is not
enough to start with, and they require no human supervision.

One of the practical applications of GANs can be seen in anomaly
detection. Anomaly detection is known for identifying signal behaviours that
do not fit the normal patterns and which can be addressed as a supervised
learning problem. Depending on the application, this may require large,
labelled datasets. However, in many industrial applications, samples from
abnormal class may be insufficient for effective modelling. This is a challenge
that can be addressed by another approach, using GANs (i.e., training only on
samples considered ‘normal’ and then identifying the unusual, insufficiently
available samples (abnormal) that differ from the learned sample distribution
of normal).

An example of the network architecture of the generator and discriminator
based on deep convolutional GAN is shown in Figure 1.10. In the training
stage, only normal samples are involved. In the testing stage, abnormal
samples can be discriminated by a higher anomaly score. The generator is
trained only using the extracted features from normal samples. Anomaly
scores are designed for anomaly detection.

25

GANs are the cutting-edge technology of AI, not least due to two essential key
advantages: they solve the problem of generating data when there is not enough to
start with, and they require no human supervision.

One of the practical applications of GANs can be seen in anomaly detection.
Anomaly detection is known for identifying signal behaviours that do not fit the
normal patterns and which can be addressed as a supervised learning problem.
Depending on the application, this may require large, labelled datasets. However,
in many industrial applications, samples from abnormal class may be insufficient
for effective modelling. This is a challenge that can be addressed by another
approach, using GANs (i.e., training only on samples considered ‘normal’ and
then identifying the unusual, insufficiently available samples (abnormal) that
differ from the learned sample distribution of normal).

An example of the network architecture of the generator and discriminator based
on deep convolutional GAN is shown in Figure 1.10. In the training stage, only
normal samples are involved. In the testing stage, abnormal samples can be
discriminated by a higher anomaly score. The generator is trained only using the
extracted features from normal samples. Anomaly scores are designed for anomaly
detection.

Figure 1.10Network architecture of generator and discriminator based on deep

convolutional GAN. Adapted from [24].
Figure 1.10 Network architecture of generator and discriminator based on deep convolu-
tional GAN.

Adapted from [24].

1.4 AI Problem Solving Domains 27

Another practical application is GAN-based robotics control. Genera-
tive modelling helps reinforce ML models, so they are less biased and
comprehend more abstract concepts, both in simulations and the real world.

GANs generate data that are like real data; therefore, they are widely
used in industrial applications. They also have advantages over methods of
supervised and unsupervised learning. A GAN is a semi-supervised learning
framework that uses manually labelled training data for supervised learning
and unlabelled data for unsupervised learning to build models that can make
predictions beyond the labelled data by leveraging the same.

The other two classes of generative AI techniques are AR-CNN and
Transformer-based models. AR-CNN are used to examine systems that
evolve, predicting future outcomes of a sequence from the previously
observed results of that sequence. They rely on previous time-series data
to generate accurate new data as an autoregressive model is a feed-forward
model which predicts future values from past values. Transformer-based
models are used to analyse data with a sequential structure and have become
a standard tool for processing sequential input data, such as natural language.
Core to their architecture is the ability to identify and learn context within an
input sequence and thus refine the meaning of the other part of the sequence
(the so-called attention mechanism).

1.4.7 Artificial Swarm Intelligence

Swarm intelligence is a branch of AI that is based on an extrinsic type of
intelligence inspired from nature and biological systems and is connected to
collective behaviour of decentralized and self-organised systems.

Swarm intelligence systems typically consist of many independent but
similar individuals that follow very simple rules without a centralised control
system. These systems’ overall behaviour is a result of the interactions of the
individuals, with each other and with their environment, but globally they act
quite intelligently.

For example, ant colonies can optimise routes and shortest paths, and
bee colonies can find the location of their nest in an extremely efficient
manner. Swarm logic is a behaviour demonstrated by many animals, and
while each individual is less capable of independently making decisions or
solving problems, in a swarm they communicate, coordinate, organize, and
seemingly problem solve, seemingly without a central command.

The essence of swarm logic is the sharing of information, along with inter-
action with other individuals and the surroundings, to derive new information

28 Industrial AI Technologies for Next-Generation Autonomous Operations

27

agents can be ants, bees, cars, robots, among other things. An IIoT system can be
seen as multiple agents, where the intelligence lies both within agents and in their
interaction with each other.

Figure 1.11 Swarm intelligence visualized: population of agents searching for a destination
(left) and search space represented by a nonlinear regression generated surface (right).

Figure 1.11. intuitively illustrates the concept behind swarm intelligence, the
starting point of which is a population of agents (like birds or bees) searching for a
destination (left). Complicated intelligent behaviour to solve complex tasks
emerges from simple agents following simple rules such as keeping diverging
trajectories, avoiding collisions and interaction with near neighbours (rule is
known as self-organization). These agents will simultaneously know when the
destination is reached, based on the goal parameters of the destination. Swarm
intelligence’s aim is to optimise the goal parameters and minimise the search
space, represented by a surface generated using nonlinear regression (right).

1.4.8 Natural Language Processing

Natural language processing (NLP) is a branch of AI that focuses on developing
algorithms to enable computers to understand speech and text. NLP systems are
developed to imitate the human capacity to use language. NLP is used in a variety
of tasks, including text understanding, text summarization, information extraction,
machine translation, and speech recognition and synthesis. Examples of AI
techniques include support vector machine (SVM), for text classification (such as
spam detection); hidden Markov models (HMMs) for speech or text generation;
neural networks, for machine translation; and logic-based methods, for text
summarisation.

Figure 1.11 Swarm intelligence visualized: population of agents searching for a destination
(left) and search space represented by a nonlinear regression generated surface (right).

as a basis for global actions. Adopting a broader perspective, swarm intelli-
gence is the action of having decentralised agents swarm collectively towards
a goal. These agents can be ants, bees, cars, robots, among other things. An
IIoT system can be seen as multiple agents, where the intelligence lies both
within agents and in their interaction with each other.

Figure 1.11. intuitively illustrates the concept behind swarm intelligence,
the starting point of which is a population of agents (like birds or bees)
searching for a destination (left). Complicated intelligent behaviour to solve
complex tasks emerges from simple agents following simple rules such as
keeping diverging trajectories, avoiding collisions and interaction with near
neighbours (rule is known as self-organization). These agents will simultane-
ously know when the destination is reached, based on the goal parameters of
the destination. Swarm intelligence’s aim is to optimise the goal parameters
and minimise the search space, represented by a surface generated using
nonlinear regression (right).

1.4.8 Natural Language Processing

Natural language processing (NLP) is a branch of AI that focuses on devel-
oping algorithms to enable computers to understand speech and text. NLP
systems are developed to imitate the human capacity to use language. NLP is
used in a variety of tasks, including text understanding, text summarization,
information extraction, machine translation, and speech recognition and syn-
thesis. Examples of AI techniques include support vector machine (SVM), for
text classification (such as spam detection); hidden Markov models (HMMs)

1.4 AI Problem Solving Domains 29

for speech or text generation; neural networks, for machine translation; and
logic-based methods, for text summarisation.

NLP technology has made major progress in recent years, leading to the
development of network architectures better able to learn from complex and
context-sensitive data. These advances have been supported by the constantly
increasing data resources from intelligent sensors and computing power.

Current challenges include obtaining quality data and detecting and
removing data biases. Future applications are expected to meet these chal-
lenges, as well as to improve human–AI interactions across diverse languages
and situations.

NLP is too computationally expensive to run on microcontrollers, so
applications running on edge devices are often limited to looking for key-
words in speech, such as short commands for executing some actions.
Identifying non-voice sounds is also extremely useful. NLP based on embed-
ded machine learning will make edge devices more intelligent in future
applications.

1.4.9 Machine learning

Machine learning is a branch of AI that provide systems with the ability
to automatically learn and improve their performance in some tasks through
experience without being explicitly programmed. The rules of ML programs
are not determined in the same way as those of normal computer programs
are; instead, ML uses specialised algorithms to learn rules from data, in a
process known as training.

This training process starts with feeding data and then training the
machines by building various models using different algorithms. The choice
of algorithms depends on the kind of task we are attempting to automate.
Most ML tasks are narrowly specified to optimise specific functions using
particular data set.

Inference is the process of taking a trained model and deploying it into
a device, which will then process incoming data to look for and identify
whatever it has been trained to recognise.

During the inferencing phase, predictions and decisions are made con-
cerning new data, based on the learned parameters. Prediction is the process
of using a model to make a prediction about something that has yet to happen.
Inference is the process of evaluating the relationship between the predictor
and response variables.

Deep learning and neural networks are examples of ML techniques
frequently used today. Deep-learning (DL) systems learn from large amounts

30 Industrial AI Technologies for Next-Generation Autonomous Operations

of data to subsequently recognise and classify related, but previously unob-
served, data. For example, neural networks, often described as being loosely
modelled after the human brain, consist of thousands or millions of pro-
cessing nodes generally organised into layers. Advances in hardware have
allowed these networks to have many layers, which is what puts the “deep”
in deep learning. What differentiates DL from ML techniques is the former’s
ability to extract features automatically.

Humans and machines both acquire knowledge in the process of learning
based on experience; however, the former do so based on either direct or
shared experience, while the latter do so through experience shared in the
form of past data. With respect to which input data an ML process receives
and how it handles this data, three types of ML training methods can be
distinguished: supervised (labelled data required), unsupervised (no labelled
data; these attempt to discover patterns) and reinforcement learning (actions
taken to maximise cumulative rewards).

Supervised-learning algorithms learn from labelled input data and are
widely used for classification and regression tasks. The system learns which
components of the data are useful for classifying it correctly and uses that
information to correctly classify data it has not encountered before. Such
algorithms can also detect patterns in data and then use the uncovered
patterns to predict future data or other outcomes of interest. By contrast,
unsupervised-learning algorithms seek to discover hidden patterns and other
underlying structures in unlabelled data and are used in clustering tasks.

Reinforcement learning algorithms enable computer programs to learn from
experience and to be rewarded for reaching specified objectives – both
immediate actions and long-term goals. Reinforcement learning is akin to
how humans learn from their own mistakes over time through trial and error.
This means that the algorithm decides the next action by learning behaviours
that are based on its current state and that will maximise the reward in the
future.

More detailed description of the learning algorithms can be found in
Section 1.8.1.

1.4.10 Neural Networks

This section presents a high-level overview of neural networks (NNs) thus
providing a valuable and intuitive understanding of how the models work
when deployed in edge devices and operated within industrial settings.

1.4 AI Problem Solving Domains 31

30

Figure 1.12: Perceptron illustration.

The perceptron model multiplies all inputs with a weight parameter, whose value

is representative of how important each feature is in the calculation of the results.

The resulting values are added together with a bias term, resulting in the so-called

weighted sum, on which an activation function is finally applied. The activation

functions introduce non-linearity in NN models, thus differentiating them from

linear regression models.

During training, model parameters are gradually calibrated so that the NN output

comes increasingly nearer to the desired one, when given a certain input. A loss

function keeps track of how far the model is from predicting the correct output,

meaning that the higher the loss value, the less efficient the model is at predicting.

Accuracy is another metric, inversely proportional to the loss.

Anyone interested in more detailed reading regarding training is directed to [4][8]

and other sources. Generally, the first step is to forward feed one signal sample or

a batch of samples through the network. Feedforward is the process of passing

input values, through the hierarchical layering of neurons, to produce an output in

the final layer. Network loss is then calculated by comparing the predictions with

the actual outputs and this is then used to update the model’s parameters in the

next step known as backpropagation. Backpropagation is the process by which the

error contribution of each neuron is calculated and passed backwards through the

network. The weights and biases are adjusted proportionally to this error

contribution, and this is how the machine learns.

This stepwise procedure is run several times with the aim of improving the output

of feedforward, ultimately optimising the network’s predictions. One feedforward

and backward pass is called an iteration, while a pass of the entire dataset is called

an epoch. After each epoch, the algorithm will perform a forward pass of each

validation sample, looking at loss and accuracy. Usually, accuracy improves over

time as loss drops.

Figure 1.12 Perceptron illustration.

Neural networks simulate the learning capacity of biological neurons in
the human brain. The fundamental unit of a neural network is a perceptron
(Figure 1.12).

The perceptron model multiplies all inputs with a weight parameter,
whose value is representative of how important each feature is in the cal-
culation of the results. The resulting values are added together with a bias
term, resulting in the so-called weighted sum, on which an activation function
is finally applied. The activation functions introduce non-linearity in NN
models, thus differentiating them from linear regression models.

During training, model parameters are gradually calibrated so that the
NN output comes increasingly nearer to the desired one, when given a certain
input. A loss function keeps track of how far the model is from predicting the
correct output, meaning that the higher the loss value, the less efficient the
model is at predicting. Accuracy is another metric, inversely proportional to
the loss.

Anyone interested in more detailed reading regarding training is directed
to [4][8] and other sources. Generally, the first step is to forward feed one
signal sample or a batch of samples through the network. Feedforward is the
process of passing input values, through the hierarchical layering of neurons,
to produce an output in the final layer. Network loss is then calculated by
comparing the predictions with the actual outputs and this is then used to
update the model’s parameters in the next step known as backpropagation.
Backpropagation is the process by which the error contribution of each
neuron is calculated and passed backwards through the network. The weights
and biases are adjusted proportionally to this error contribution, and this is
how the machine learns.

This stepwise procedure is run several times with the aim of improving
the output of feedforward, ultimately optimising the network’s predictions.

32 Industrial AI Technologies for Next-Generation Autonomous Operations

One feedforward and backward pass is called an iteration, while a pass of the
entire dataset is called an epoch. After each epoch, the algorithm will perform
a forward pass of each validation sample, looking at loss and accuracy.
Usually, accuracy improves over time as loss drops.

The number of epochs and the learning rate, i.e., how much the model’s
internal parameters are updated during each training step, are known as
hyperparameters, and can be configured to make a model more efficient.

1.4.11 Automated Planning and Plan Recognition

Automated planning is a branch of AI that concerns providing goal-oriented,
deliberative behaviour to both physical and virtual intelligent agents [29]. It
takes as inputs a planning domain, an initial state and a goal, and it employs
optimisation algorithms to return a sequence of actions that guides the agent’s
behaviour. The correct representation of states, conditions and actions and
the suitable algorithms all contribute to the agent reaching its goals and
optimising performance.

31

The number of epochs and the learning rate, i.e., how much the model’s internal
parameters are updated during each training step, are known as hyperparameters,
and can be configured to make a model more efficient.

1.4.11 Automated Planning and Plan Recognition

Automated planning is a branch of AI that concerns providing goal-oriented,
deliberative behaviour to both physical and virtual intelligent agents [29]. It takes
as inputs a planning domain, an initial state and a goal, and it employs
optimisation algorithms to return a sequence of actions that guides the agent’s
behaviour. The correct representation of states, conditions and actions and the
suitable algorithms all contribute to the agent reaching its goals and optimising
performance.

Figure 1.13: Automated planning, states, and actions.

In many industries, automation is an emergent trend that requires efficient
automated planning, such as robotic and autonomous systems. Mobile and fixed
robotic systems can perform various tasks in the industrial application domain
without the need to acquire knowledge, relying on only the accuracy of the model.
The model encompasses explicitly represented domain knowledge acquired from
human experts.

Figure 1.13 Automated planning, states, and actions.

1.4 AI Problem Solving Domains 33

In many industries, automation is an emergent trend that requires efficient
automated planning, such as robotic and autonomous systems. Mobile and
fixed robotic systems can perform various tasks in the industrial application
domain without the need to acquire knowledge, relying on only the accu-
racy of the model. The model encompasses explicitly represented domain
knowledge acquired from human experts.

Incorporating AI capabilities in automated production planning in manu-
facturing also has significant potential. Embedded industrial AI optimisation
algorithms can balance the product result and the resources used during
production and can learn by collecting considerable amounts of “cause and
effect” data that can be used for what-if simulations and analysis.

Embedded edge AI solutions for path planning for swarms in mobile
autonomous systems are evolving, and they have been applied in several
manufacturing optimisation and logistics applications. Swarm automated
planning algorithms are used as planning methods based on planning graph
technology to improve the searching efficiency using swarm intelligence in
fleets of autonomous devices operating on the manufacturing floor.

AI planning techniques are widely used when explainability is neces-
sary, i.e. the planner can explain why a specific course of action has been
chosen.

On the downside, there are some challenges to AI planning techniques
when they are employed in real-time applications, due to slow response time.
The more complex the planning domain, the larger the search space becomes,
thus increasing the response time to find a proper sequence of actions. This is
especially critical when planning and acting are intertwined.

An alternative to acquiring knowledge from human experts is to learn
the model in time. Architectures relying on ML have the advantage of not
requiring much prior knowledge about the domain; once trained, they act
quickly. Nevertheless, they need a large amount of data for the training. They
are usually limited to the industrial application domain they were trained for
and presenting them with new situations might be challenging.

The two approaches can be incorporated into the same agent architecture,
thus achieving better trade-offs than if only one approach were used. More
about the synergistic benefits of combining symbolic AI and ML can be found
in Section 1.6.

Plan recognition deals with inferring the goals or plans that explain
the observed actions of an agent; as such, it is considered the opposite of
planning. Plan recognition algorithms require knowledge about the potential
behaviours of the agent and how the agent makes its decisions. When this

34 Industrial AI Technologies for Next-Generation Autonomous Operations

33

processing large amounts of data to enhance immersive experience and enable
human-like intelligence of virtual agents.

ML algorithms, DL architectures and other emerging technologies such as swarm
intelligence have had a role in the foundation and development of the metaverse,
such as AR, VR, mixed reality (MR). These are now ready to be employed in
applications such as machine vision, blockchain, networking, digital twin, and in
different industrial applications (Figure 1.14).

Figure 1.14: Application of Metaverse.

1.5 Edge AIcontinuum
Edge processing can redefine the landscape of interconnected devices by moving
data processing and analytics to the edge and employing AI techniques and
embedded security. Edge AI computing and processing allow for the development
of new real-time applications due to the processing being performed close to the
data source.It can reduce the amount of transmitted data by transforming extensive
amounts of raw data into essential insight data. It can also decrease
communication bandwidth and data storage requirements while reducing energy
consumption and increasing security, privacy, and data protection.

Edge AI technology developments are used to implement applications that benefit
from AI-based technology advances across the edge continuum.

Various forms of AI have already been adopted by multiple industries,
governments, and society. However, a breakthrough is needed in several industrial

Figure 1.14 Application of Metaverse.

knowledge is unavailable, neural networks can be employed to learn the
decision model automatically.

1.4.12 AI for the Metaverse

Metaverse is a term formed by combining meta and universe and has been
introduced as a shared virtual world that is fuelled by many emerging tech-
nologies, such as virtual reality, and AI. AI has shown the great importance
of processing large amounts of data to enhance immersive experience and
enable human-like intelligence of virtual agents.

ML algorithms, DL architectures and other emerging technologies such
as swarm intelligence have had a role in the foundation and development of
the metaverse, such as AR, VR, mixed reality (MR). These are now ready to
be employed in applications such as machine vision, blockchain, networking,
digital twin, and in different industrial applications (Figure 1.14).

1.5 Edge AI continuum

Edge processing can redefine the landscape of interconnected devices by
moving data processing and analytics to the edge and employing AI tech-
niques and embedded security. Edge AI computing and processing allow for

1.5 Edge AI continuum 35

the development of new real-time applications due to the processing being
performed close to the data source. It can reduce the amount of transmitted
data by transforming extensive amounts of raw data into essential insight data.
It can also decrease communication bandwidth and data storage requirements
while reducing energy consumption and increasing security, privacy, and data
protection.

Edge AI technology developments are used to implement applications
that benefit from AI-based technology advances across the edge continuum.

Various forms of AI have already been adopted by multiple industries,
governments, and society. However, a breakthrough is needed in several
industrial sectors to bring the intelligence close to the data source and imple-
ment it in industrial processes. However, this breakthrough may face several
hurdles that challenge its advancement.

Leveraging AI methods and techniques at the edge is essential for increas-
ing the performance and capabilities of the intelligent sensor systems and
IIoT devices used in various industrial applications. The edge AI processing
concept is reflected in the emergence of micro-, deep-, and meta-edge layers
for several industrial intelligent applications.

The edge processing continuum includes sensing, processing, and com-
munication units close to physical industrial assets (micro edge), gate-
ways and intelligent controller processing (deep edge), and on-premises
multi-use computing (meta edge). This computing continuum creates a
multi-level structure that advances processing, intelligence, and connectivity
capabilities.

The edge AI computing and processing concept for intelligent appli-
cations is mirrored in the development of different edge-processing levels.
Figure 1.15 shows an all-encompassing edge AI architecture incorporating
the computing and intelligence continuum from sensors and actuators, pro-
cessing, units, controllers, gateways, and on-premises servers to multi-access,
fog, to cloud computing interfaces.

Edge AI computing and processing device functions cover edge com-
puting, communication, and data analytics capabilities, which make it
smart/intelligent. An edge AI computing and processing device is designed
around the computing units (CPUs, GPUs, FPGAs, application specific
integrated circuits (ASICs), AI accelerators/processing), communication net-
works, storage infrastructures, and applications (workloads) that run on
it. Single- and multi-core microcontrollers (MCUs) are based on ARM
Cortex-M cores or on cores using new open-source RISC-V instruction set
architecture (ISA) and high-performance embedded processors with varying

36 Industrial AI Technologies for Next-Generation Autonomous Operations

34

sectors to bring the intelligence close to the data source and implement it in
industrial processes. However, this breakthrough may face several hurdles that
challenge its advancement.

Leveraging AI methods and techniques at the edge is essential for increasing the
performance and capabilities of the intelligent sensor systems and IIoT devices
used in various industrial applications. The edge AI processing concept is reflected
in the emergence of micro-, deep-, and meta-edge layers for several industrial
intelligent applications.

The edge processing continuum includes sensing, processing, and communication
units close to physical industrial assets (micro edge), gateways and intelligent
controller processing (deep edge), and on-premises multi-use computing (meta
edge). This computing continuum creates a multi-level structure that advances
processing, intelligence, and connectivity capabilities.

The edge AI computing and processing concept for intelligent applications is
mirrored in the development of different edge-processing levels. Figure 1.15
shows an all-encompassing edge AI architecture incorporating the computing and
intelligence continuum from sensors and actuators, processing, units, controllers,
gateways, and on-premises servers to multi-access, fog, to cloud computing
interfaces.

Figure 1.15 AI across the edge continuum.

Edge AI computing and processing device functions cover edge computing,
communication, and data analytics capabilities, which make it smart/intelligent.
An edge AI computing and processing device is designed around the computing
units (CPUs, GPUs, FPGAs, application specific integrated circuits (ASICs), AI

Figure 1.15 AI across the edge continuum.

capabilities. The memory footprint, computing time, transmission, and power
consumption requirements always depend on whether the device operates at
the micro, deep, or meta edge. ML and DL models need to be converted into
efficient formats before compiling and flashing them into edge devices.

AI building blocks are optimised for the type of processor, the amount
of RAM, and the number and types of sensors. The solutions are usually
provided as a C library, which can be embedded into the main microcontroller
program and compiled and downloaded into the embedded system.

The edge can scale from a few devices to tens of thousands of devices
distributed in various locations with unique identities. Edge AI computing
and processing devices are physically separated, yet they can be connected
by wireless/wired topology connections, such as mesh topologies. Edge
AI computing and processing devices can operate independently, and local
decisions can be supported by inference actions, including the unexplored
evolution of training on edge devices.

Micro-edge

The micro edge includes intelligent sensor systems (physical, chemical,
environmental parameters, perception, etc.) with processing and connec-
tivity capabilities that use IIoT devices that generate insight data and
analytics. Micro-edge devices are implemented using microcontrollers built
around ARM Cortex M0, M0+, M3, M4, M7X, ASICs and RISC V. The

1.5 Edge AI continuum 37

distance from the data source (sensors) is minimised, and the micro-edge
devices have cost and power consumption constraints. Micro-edge hardware
devices implement analytics and intelligent functions by integrating AI-based
components and algorithms and running the AI algorithms for inference,
training, and self-training. The intelligent micro edge makes IIoT real-time
applications ubiquitous and merges them with the industrial environment.

Deep-edge

The deep edge comprises intelligent controllers, PLCs, SCADA elements,
connected machine vision systems, networking equipment, gateways, and
computing units that aggregate data from the sensors/actuators and IIoT
devices. Deep-edge processing capabilities are implemented with perfor-
mant processors and microcontrollers, such as Intel i-series, Atom, ARM
Cortex M7+, etc., including CPUs, GPUs, TPUs, FPGAs and ASICs. The
system architecture, including the deep edge, relies on foreseen functionality
and deployment options. These functions include cognitive capabilities that
can acquire, aggregate, understand, react to data, exchange, and distribute
information.

Meta-edge

The meta edge integrates processing units, typically on-premises, imple-
mented with high-performance embedded computing units, edge machine
vision systems, and edge servers (e.g., high-performance CPUs, GPUs,
FPGAs, etc.), which are designed to handle compute-intensive tasks (e.g.,
data series, image, and video processing), advanced analytics, AI-based
functions, networking, and data storage.

Fog computing extends the computing capabilities of industrial systems
and interfaces cloud computing capabilities with the edge of the network.
Fog computing enables repeatable structures in the edge computing concept,
so enterprises can push computing out of centralised systems or clouds for a
better and more scalable performance. A Fog computing implementation is
a virtualised platform located between cloud data centres (hosted within the
Internet) and end-user devices that provides support for edge processing and
is complementary to cloud computing platforms.

AI models increase various potential industrial applications; however,
developing AI functionalities for the edge continuum is complex and presents
several challenges, such as scalability, interoperability, and performance

38 Industrial AI Technologies for Next-Generation Autonomous Operations

optimisation versus the resource constraints of the edge devices. Overall,
implementing AI models on edge-embedded devices has advantages for
different use cases and applications in various industrial sectors.

A key element for the transition of AI processing to the edge is the
capabilities of the developer edge environment, covering the hardware, inter-
faces, platforms, training/learning, applications, and services. The intelligent
infrastructure at the edge refers to the tools, platforms, and techniques used
to run store data, build, and train AI/ ML algorithms, and the algorithms
themselves.

1.6 Symbolic AI – ML Continuum

Human intelligence comes in two distinct but complementary forms of arriv-
ing at conclusions, one based on structured and rational decisions and the
other on perception and understanding patterns. Machine intelligence also
comes in two similar forms, one based on symbolic knowledge representation
and reasoning (the symbolic AI approach) and the other on deep learning and
the interpretation of data patterns (the ML approach).

Therefore, when faced with an AI problem, one can look for a solution
combining technologies in the symbolic AI – ML/DL continuum, instead of
choosing between the symbolic or ML/DL approach in solving it. Neverthe-
less, it is essential to understand the difference between and the advantages
and disadvantages of these two approaches.

Generally, the symbolic AI approach is suitable when the AI problem is
abstract, no large amounts of data about the AI problem are available (for
example, data coming from sensors, such as images, sounds, etc.) but the
steps to the solution are commonly known so that this knowledge can be
modelled explicitly.

On the contrary, ML is useful when the steps to the solution are not
known, but the large amount of data allows us to look for larger patterns,
which may ultimately lead to the likely solution. This approach requires
several iterations and massive computational power to arrive at a conclu-
sion. Nevertheless, as computing hardware becomes faster and cheaper and
ML algorithms become more powerful, ML becomes more inclusive (i.e.,
available not only to actors with strong computational resources).

The concept is easier to grasp if we consider a simple-use case of the
automated diagnosis of a malfunctioning motor problem. In the case of sym-
bolic AI approaches, this would require that a human expert fully describe
the motor and its features, functioning and malfunctioning situations. This

1.7 Logic-based AI: Knowledge Representation and Reasoning 39

knowledge would then be represented in a form that could be processed by
machines. With the help of algorithms and step-by-step inferences from this
knowledge base, it is possible to arrive at a diagnostic for the motor problem
when fed real-time sensor data.

The advantage of this approach is that it does not rely on massive data
and might work for most motors. However, the knowledge base takes time
to acquire and set up, and if some knowledge (about a particular motor) is
missing or incomplete, it will yield no result.

The ML approach would be to feed a neural network with many sig-
nals/data of the motor, vibration data and audio data in both functioning
and malfunctioning situations. The trained network would then be able to
accurately guess the motor diagnosis when fed real-time sensor data. The
advantage of this approach is that it does not rely on a motor expert’s
knowledge to be made explicit, and it allows for automation due to its ability
to handle large amounts of real-time sensor data.

It is technologically possible to combine symbolic AI and ML, for exam-
ple, by using symbolic AI to generate answers (constraints) and then feeding
these answers to ML to generate predictions. A balance between the two can
be achieved based on experimentation.

In short, with symbolic AI, the rules of the AI algorithms are decided by a
human. These rules and some data are provided as input to the AI algorithms,
and data are processed according to these rules to produce answers in the
output. With ML, on the other hand, the inputs to the ML algorithms during
the training process include some data and answers, while the rules are the
output. These rules are then used during inference to produce predictions
about input data that have not been seen before (i.e., data that was not part of
the training).

Therefore, AI can also be understood from the perspective of combining
technologies in the symbolic AI – ML continuum and balancing them to
achieve better trade-offs than otherwise achieved if only one technology were
used.

1.7 Logic-based AI: Knowledge Representation
and Reasoning

As full-scale AI applications increase in number and complexity, accelerating
digital innovation across industries and boosting productivity, so does the
need for AI to be more comprehensible, explainable, and therefore trustwor-
thy. Thus, symbolic approaches to classical AI are re-gaining momentum.

40 Industrial AI Technologies for Next-Generation Autonomous Operations

38

during inference to produce predictions about input data that have not been seen
before (i.e., data that was not part of the training).

Therefore, AI can also be understood from the perspective of combining
technologies in the symbolic AI – ML continuum and balancing them to achieve
better trade-offs than otherwise achieved if only one technology were used.

1.7 Logic-based AI: Knowledge Representation and Reasoning
As full-scale AI applications increase in number and complexity, accelerating
digital innovation across industries and boosting productivity, so does the need for
AI to be more comprehensible, explainable, and therefore trustworthy. Thus,
symbolic approaches to classical AI are re-gaining momentum. This section
summarises some of the logic-based approaches that are likely to be adopted by
various industrial sectors and discuss future perspectives for exploiting logic-
based technologies.

Intelligent machines require knowledge to make intelligent decisions, the same
way as humans do. This usually entails that expert knowledge need to be acquired
and represented in a form that machines can process, called a knowledge base.
Predicate logic and propositional logic are representative ways to reflect
knowledge; semantic networks, rules, frames, or programming languages are also
good examples (Figure 1.16). Languages that are designed specifically for AI
include LISP and Prolog.

Figure 1.16: Knowledge representation.

A knowledge representation should have specific properties, for example be
unambiguous,easy to use, inferential adequate and efficient, and able to represent
all types of knowledge: declarative, procedural, heuristic, structural, meta-

Figure 1.16 Knowledge representation.

This section summarises some of the logic-based approaches that are likely
to be adopted by various industrial sectors and discuss future perspectives for
exploiting logic-based technologies.

Intelligent machines require knowledge to make intelligent decisions, the
same way as humans do. This usually entails that expert knowledge need
to be acquired and represented in a form that machines can process, called
a knowledge base. Predicate logic and propositional logic are representative
ways to reflect knowledge; semantic networks, rules, frames, or programming
languages are also good examples (Figure 1.16). Languages that are designed
specifically for AI include LISP and Prolog.

A knowledge representation should have specific properties, for example
be unambiguous, easy to use, inferential adequate and efficient, and able to
represent all types of knowledge: declarative, procedural, heuristic, struc-
tural, meta-knowledge (Figure 1.17). The choice of knowledge representation
method largely depends on the problem to solve.

Inference is a term representing the derivation of new knowledge from
existing knowledge and axioms (i.e., rules of derivation) within a single step,
using logical constructions. The rule of derivation can be one of many kinds,
such as, induction, deduction, and abduction. Modus ponens (if A is true, then
B is true. A is true. therefore, B is true) and modus tollens (if A is true, then
B is true. B is not true. therefore, A is not true) are two such logical argument
constructions.

Reasoning is a term used in the context of a goal (e.g., proof whether a
propositional statement is satisfiable or not) and is carried out via a search

1.7 Logic-based AI: Knowledge Representation and Reasoning 41

39

knowledge (Figure 1.17).The choice of knowledge representation method largely
depends on the problem to solve.

Inference is a term representing the derivation of new knowledge from existing
knowledge and axioms (i.e., rules of derivation) within a single step, using logical
constructions. The rule of derivation can be one of many kinds, such as, induction,
deduction, and abduction. Modus ponens (if A is true, then B is true. A is true.
therefore, B is true) and modus tollens (if A is true, then B is true. B is not true.
therefore, A is not true) are two such logical argument constructions.

Reasoning is a term used in the context of a goal (e.g., proof whether a
propositional statement is satisfiable or not) and is carried out via a search process
involving multiple inferences. Choices during such search have to be made such as
which axiom to "fire" along with which knowledge in order to derive new
knowledge. Resolution is a particular kind of reasoning involving the "resolution
rule".

Figure 1.17: Type of knowledge.

Reasoning from premises to logical consequences, have been a major part of AI
since its beginnings. Inferences are steps in reasoning, moving from premises to
logical consequences. One motivation behind is the utilization of knowledge of a
domain for obtaining answers for given problems. In this case knowledge must be
available in a formal form like propositional or first-order logic. Reasoning and
mechanical theorem proving is used for computing an answer using the formalized
knowledge directly. It is worth noting that this kind of application of logic comes
with several advantages, i.e., making knowledge explicit (and thus understandable
for humans), allowing to use the same knowledge for various problems, and

Figure 1.17 Type of knowledge.

process involving multiple inferences. Choices during such search have to be
made such as which axiom to “fire” along with which knowledge in order to
derive new knowledge. Resolution is a particular kind of reasoning involving
the “resolution rule”.

Reasoning from premises to logical consequences, have been a major part
of AI since its beginnings. Inferences are steps in reasoning, moving from
premises to logical consequences. One motivation behind is the utilization of
knowledge of a domain for obtaining answers for given problems. In this case
knowledge must be available in a formal form like propositional or first-order
logic. Reasoning and mechanical theorem proving is used for computing
an answer using the formalized knowledge directly. It is worth noting that
this kind of application of logic comes with several advantages, i.e., making
knowledge explicit (and thus understandable for humans), allowing to use
the same knowledge for various problems, and allowing to explain solutions
based on knowledge. On the downside logical theorem proving requires high
computational resources, but which are widely available today.

For more information about the foundations of logic (and in particular
propositional and first-order logic) we refer the interested reader to [8] (with
the direct context to AI).

42 Industrial AI Technologies for Next-Generation Autonomous Operations

To solve this problem, other classes of (non-monotonic) logic has been
proposed like default logic [15], and abduction, which is also non-monotonic.
In the past decades, research in non-monotonic logics and their applications
has been a very active part of AI. This includes model-based reasoning
[17][18] with a strong relationship to default logic, and also more recently
answer set programming (ASP) [19]. All these inference mechanisms can
be used to solve practical challenges, like diagnosis and fail-operational
behaviour. More about these topics and reasoning from first principles for
self-adaptive and autonomous systems can be found in [20].

Logical inference has been an active research area of AI since its begin-
nings, ranging from expert systems to more recent developments on non-
monotonic inference. Due to the increased available computational power
and the availability of efficient reasoning and inference engines the direct
use of knowledge formalized in ontologies and knowledge bases for solving
various tasks can be achieved. Recent work describing a mapping from neural
networks to a logical representation can be found in [21][22].

1.8 Hardware/Software Technology Stack

Technology stacks are widely used to structure technologies in a particular
area. AI is no exception, as it is possible to conceptualise AI as a technology
stack with various layers. A five-layer stack is presented in Figure 1.18.

During the past decades, the focus has moved back and forth between
logic (symbolic reasoning) and pattern recognition (neural networks), driven
by the varying abilities of technologies to acquire data, learn, derive new
information and reason to reach decisions. In the last years, machine learning
and neural network models have been the primary focus due to advances in
hardware development and processing capabilities. Hence, the technology
stack is illustrated by machine and deep learning, covering topics such as
learning/training and inference.

The foundation of the stack is represented by the hardware layer, which
contains at least three sets of components that reflect the processing units
responsible for performing specialised AI operations. The neuromorphic
hardware components consist of new ultra-low-power silicon chip architec-
tures (e.g., neuromorphic modules and chips, analogue NN, spike NN) that
incorporate different chip designs and algorithms to mimic how the human
brain works. The accelerator set of components consists of silicon chips
designed to perform the highly parallel functions required during training

1.8 Hardware/Software Technology Stack 43

41

Figure 1.18: Five-layer (with sublayers) AI technology stack.

During the past decades, the focus has moved back and forth between logic
(symbolic reasoning) and pattern recognition (neural networks), driven by the
varying abilities of technologies to acquire data, learn, derive new information and
reason to reach decisions. In the last years, machine learning and neural network
models have been the primary focus due to advances in hardware development and
processing capabilities. Hence, the technology stack is illustrated by machine and
deep learning, covering topics such as learning/training and inference.

The foundation of the stack is represented by the hardware layer, which contains at
least three sets of components that reflect the processing units responsible for
performing specialised AI operations. The neuromorphic hardware components
consist of new ultra-low-power silicon chip architectures (e.g., neuromorphic
modules and chips, analogue NN, spike NN) that incorporate different chip
designs and algorithms to mimic how the human brain works. The accelerator set
of components consists of silicon chips designed to perform the highly parallel
functions required during training and inference, such as GPUs, FPGAs, or ASICs.

Figure 1.18 Five-layer (with sublayers) AI technology stack.

and inference, such as GPUs, FPGAs, or ASICs. The head node components
are units that coordinate computations among accelerators.

The platforms layer is used for AI and ML/DL deployment and consists of
three sublayers, the goal of which is to abstract firmware from the underlying
hardware. The frameworks sublayer consists of packages that trigger HW
algorithms, such as Caffe, Torch, Theano, etc. This happens through the
interface layer, which connects the hardware and platform layers and is in
charge of facilitating communication between them. The algorithms sublayer
consists of rules to achieve optimal inference according to the training method
employed, such as backpropagation, evolutionary, and contrasted divergence.
The architectures sublayer consists of many continuously evolving neural
network architectures, such as CNN, RNN, etc.

The AI training/learning layer consists of two sublayers. The methods
sublayer involves techniques for optimising the model for specific domain

44 Industrial AI Technologies for Next-Generation Autonomous Operations

data, such as supervised, unsupervised and reinforcement learning. The data
type sublayer consists of categories of domain input data, such as labelled
and unlabelled data.

Finally, the applications and services layer incorporate ready-to-use AI
functionality into solutions to real industry problems and use cases, such as
autonomous vehicles and object recognition. The solutions can be customised
based on generic data or on customer-specific training data.

The AI technology stack provides a common understanding of the AI
layers and components when implementing and benchmarking various AI
technologies and applications. The elements presented in the different sec-
tions - spectrum, continuums, methods, techniques, concepts, and others - are
all connected through the AI technology stack defined by European projects
such as AI4DI [3].

This section briefly introduces the industry-adopted ML terms and the ML
methods such as supervised, unsupervised, and reinforcement learning, and
neural networks architectures. Specifically, the focus is on embedded ML, for
which the advances in hardware architectures opened an entirely new space
of applications and opportunities. The new hardware architectures make
possible to run complex ML workloads on microcontrollers, with limited
compute and memory profiles.

1.8.1 ML Methods and Techniques

There are a multitude of methods and techniques that depend on the type
of learning, and the type of learning – supervised, unsupervised, or reinforce-
ment –depends on the data available for the application. A taxonomy is shown
in Figure 1.19.

Supervised Machine Learning

Supervised learning algorithms learn from a training set of data that is
labelled with the correct description; the system subsequently learns which
components of the data are useful for classifying it correctly and uses that
information to correctly classify data it has never encountered before. These
algorithms are widely used for classification and regression tasks, as detailed
below.

Regression is considered the fundamental ML paradigm. The process of
regression connects outputs to inputs. It shows an output for a given input,
and the regression component creates a transfer function to best fit that

1.8 Hardware/Software Technology Stack 45

Figure 1.19 ML taxonomy.

data. This transfer function then provides a method to predict an output for
an untested input. In other words, if the independent variable is time, then
the model forecasts future values; otherwise, the model predicts present but
unknown values. Typically, when selecting a regression strategy, the number
and type of inputs and the type of transfer functions need to be considered.
The transfer functions can be represented as curves (Figure 1.20 left) and
surfaces (Figure 1.20 right).

There is a wide variety of regression strategies employed in industrial
applications such as simple linear regression, polynomial regression, logistic
regression, support vector for regression (SVR), decision tree regression,
random forest regression. Figure 1.21 shows an example of logistic regression
that predicts a binary outcome, such as normal or abnormal, based on

44

Figure 1.20: Regression visualized 2D (left), 3D (right).

There is a wide variety of regression strategies employed in industrial
applicationssuch as simple linear regression, polynomial regression, logistic
regression, support vector for regression (SVR), decision tree regression, random
forest regression. Figure 1.21shows an example of logistic regression that predicts
a binary outcome, such as normal or abnormal, based on observations of the data
set, which could be motor vibration measurements.The large dots are the learning
data, while the small dots are the data to test against learning data.

Figure 1.21: Normal(blue)-abnormal(red) (left). Predicted values using logistic regression

(right).

Classification addresses the problem of determining the class that a given data
instance belongs to. It requires more input, i.e., training data must be provided for
the definition of classes. The more training, the more accurate the classification
algorithm. Given sufficient training data, classification tools can distinguish
between classes as well as or better than humans.

Many of the most powerful applications of ML are classification systems. Neural
networks based on the layered architecture of biological brains have emerged as a
common classification technique because they are able to group explicit, visible
features into abstract or inferred features that correlate closely to the predefined
classes in the training data.

Classification methods are widely used in machine vision with the classification of
images, e.g., to determine whether an image contains specific objects. Another

Figure 1.20 Regression visualized 2D (left), 3D (right).

46 Industrial AI Technologies for Next-Generation Autonomous Operations

44

Figure 1.20: Regression visualized 2D (left), 3D (right).

There is a wide variety of regression strategies employed in industrial
applicationssuch as simple linear regression, polynomial regression, logistic
regression, support vector for regression (SVR), decision tree regression, random
forest regression. Figure 1.21shows an example of logistic regression that predicts
a binary outcome, such as normal or abnormal, based on observations of the data
set, which could be motor vibration measurements.The large dots are the learning
data, while the small dots are the data to test against learning data.

Figure 1.21: Normal(blue)-abnormal(red) (left). Predicted values using logistic regression

(right).

Classification addresses the problem of determining the class that a given data
instance belongs to. It requires more input, i.e., training data must be provided for
the definition of classes. The more training, the more accurate the classification
algorithm. Given sufficient training data, classification tools can distinguish
between classes as well as or better than humans.

Many of the most powerful applications of ML are classification systems. Neural
networks based on the layered architecture of biological brains have emerged as a
common classification technique because they are able to group explicit, visible
features into abstract or inferred features that correlate closely to the predefined
classes in the training data.

Classification methods are widely used in machine vision with the classification of
images, e.g., to determine whether an image contains specific objects. Another

Figure 1.21 Normal(blue) - abnormal(red) (left). Predicted values using logistic regression
(right).

observations of the data set, which could be motor vibration measurements.
The large dots are the learning data, while the small dots are the data to test
against learning data.

Classification addresses the problem of determining the class that a given
data instance belongs to. It requires more input, i.e., training data must be
provided for the definition of classes. The more training, the more accurate
the classification algorithm. Given sufficient training data, classification tools
can distinguish between classes as well as or better than humans.

Many of the most powerful applications of ML are classification systems.
Neural networks based on the layered architecture of biological brains have
emerged as a common classification technique because they are able to group
explicit, visible features into abstract or inferred features that correlate closely
to the predefined classes in the training data.

Classification methods are widely used in machine vision with the clas-
sification of images, e.g., to determine whether an image contains specific
objects. Another example is with time series, e.g., motor classification in
predictive maintenance. Among their other benefits, classification tools can
extend automation to incorporate the ability to differentiate inputs auto-
matically, alleviating one of the most time-consuming manual steps in the
generative-design workflow.

The intuitive images in Figure 1.22 show how the two classification and
regression can be distinguished. Regression searches for a line or plane that
fits the given input points, while classification searches for a line or surface
to separate the classes.

1.8 Hardware/Software Technology Stack 47

45

example is with time series, e.g., motor classification in predictive maintenance.
Among their other benefits, classification tools can extend automation to
incorporate the ability to differentiate inputs automatically, alleviating one of the
most time-consuming manual steps in the generative-design workflow.

The intuitive images in Figure 1.22 show how the two classification and
regression can be distinguished. Regression searches for a line or plane that fits the
given input points, while classification searches for a line or surface to separate the
classes.

Figure 1.22: Classification (left) vs Regression (right)

Unsupervised machine learning

In contrast to supervised learning, unsupervised learning algorithms search for
underlying structures in unlabelled data. Unsupervised learning is where there is
only input data and no corresponding output variables. The goal for unsupervised
learning is to model the underlying structure or distribution in the data to learn
more about the data. These algorithms are widely used for clustering and
dimension reduction tasks, as detailed below.

Clustering is one of the most flexible techniques in ML: it is easy to apply and
requires no sample data or predetermined classifications. Clustering algorithms
group together data with similar characteristics without any prior training or
guidance on how to distinguish between groups. This is very powerful precisely
because it is so flexible. The raw data and the number of groups are given as
inputs, and the clusters are generated as outputs. K-means is one of the most used
methods for clustering, where K is the number of clusters to be created. In short,
the algorithm places the centres of the K clusters in the data set, assigns the closest
points to the K cluster and recalculates the centre of the cluster iteratively. Another
powerful clustering algorithm is the Gaussian mix (example inFigure 1.23).The
better the data describes different features within the data, the better or likelier the
grouping result.

Clustering is powerful in its flexibility and simplicity. Often, clustering is the
starting point when organising poorly structured data or sorting continuous data

Figure 1.22 Classification (left) vs Regression (right)

Unsupervised machine learning

In contrast to supervised learning, unsupervised learning algorithms search
for underlying structures in unlabelled data. Unsupervised learning is where
there is only input data and no corresponding output variables. The goal for
unsupervised learning is to model the underlying structure or distribution in
the data to learn more about the data. These algorithms are widely used for
clustering and dimension reduction tasks, as detailed below.

Clustering is one of the most flexible techniques in ML: it is easy to apply
and requires no sample data or predetermined classifications. Clustering
algorithms group together data with similar characteristics without any prior
training or guidance on how to distinguish between groups. This is very
powerful precisely because it is so flexible. The raw data and the number
of groups are given as inputs, and the clusters are generated as outputs. K-
means is one of the most used methods for clustering, where K is the number
of clusters to be created. In short, the algorithm places the centres of the
K clusters in the data set, assigns the closest points to the K cluster and
recalculates the centre of the cluster iteratively. Another powerful clustering
algorithm is the Gaussian mix (example in Figure 1.23). The better the data
describes different features within the data, the better or likelier the grouping
result.

Clustering is powerful in its flexibility and simplicity. Often, clustering
is the starting point when organising poorly structured data or sorting con-
tinuous data into useful groups. On the downside, the results are difficult to
control precisely and depend on the resolution of the input data.

Dimension reduction is used to simplify the model by removing the less
important or redundant information from the data set to make it manageable
while maintaining relevance and performance. Data sets can sometimes have

48 Industrial AI Technologies for Next-Generation Autonomous Operations

46

into useful groups. On the downside, the results are difficult to control precisely
and depend on the resolution of the input data.

Figure 1.23: Cluster (Gaussian mix) 4 clusters (left) vs 2 clusters (right).

Dimension reduction is used to simplify the model by removing the less
important or redundant information from the data set to make it manageable while
maintaining relevance and performance. Data sets can sometimes have hundreds
of features, and by extracting fewer independent features, the complexity of the
model can be greatly reduced. The most used algorithm is PCA (Principal
Component Analysis), which finds new vectors that maximise the linear variation
of the data by drastically reducing the size of the data without losing too much
information (Figure 1.24). Another commonly used method is t-Stochastic
Neighbour Embedding(t-SNE), used for automatic learning by reducing the space
of functions.

Figure 1.24: Principal component analysis. Intuitive visualisation, select variables that

capture the largest variability in data.

There are two types of dimensionality reduction techniques:feature selection and
feature extraction. Feature selection techniques are backward elimination, forward
selection, bidirectional elimination, score comparison and more. Feature extraction
techniquesare, Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), Kernel PCA, Quadratic Discriminant Analysis (QDA).

Reinforcement learning

Figure 1.23 Cluster (Gaussian mix) 4 clusters (left) vs 2 clusters (right).

46

into useful groups. On the downside, the results are difficult to control precisely
and depend on the resolution of the input data.

Figure 1.23: Cluster (Gaussian mix) 4 clusters (left) vs 2 clusters (right).

Dimension reduction is used to simplify the model by removing the less
important or redundant information from the data set to make it manageable while
maintaining relevance and performance. Data sets can sometimes have hundreds
of features, and by extracting fewer independent features, the complexity of the
model can be greatly reduced. The most used algorithm is PCA (Principal
Component Analysis), which finds new vectors that maximise the linear variation
of the data by drastically reducing the size of the data without losing too much
information (Figure 1.24). Another commonly used method is t-Stochastic
Neighbour Embedding(t-SNE), used for automatic learning by reducing the space
of functions.

Figure 1.24: Principal component analysis. Intuitive visualisation, select variables that

capture the largest variability in data.

There are two types of dimensionality reduction techniques:feature selection and
feature extraction. Feature selection techniques are backward elimination, forward
selection, bidirectional elimination, score comparison and more. Feature extraction
techniquesare, Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), Kernel PCA, Quadratic Discriminant Analysis (QDA).

Reinforcement learning

Figure 1.24 Principal component analysis. Intuitive visualisation, select variables that
capture the largest variability in data.

hundreds of features, and by extracting fewer independent features, the com-
plexity of the model can be greatly reduced. The most used algorithm is PCA
(Principal Component Analysis), which finds new vectors that maximise the
linear variation of the data by drastically reducing the size of the data without
losing too much information (Figure 1.24). Another commonly used method
is t-Stochastic Neighbour Embedding (t-SNE), used for automatic learning
by reducing the space of functions.

There are two types of dimensionality reduction techniques: feature
selection and feature extraction. Feature selection techniques are backward
elimination, forward selection, bidirectional elimination, score comparison
and more. Feature extraction techniques are, Principal Component Anal-
ysis (PCA), Linear Discriminant Analysis (LDA), Kernel PCA, Quadratic
Discriminant Analysis (QDA).

Reinforcement learning

Reinforcement learning (RL) enables computer programs to learn from expe-
rience by trial and error and to be rewarded for reaching specified objectives

1.8 Hardware/Software Technology Stack 49

– both immediate actions and long-term goals. The two main components are
the environment, which represents the problem to be solved, and the agent,
which represents the learning algorithm.

Different from other ML approaches is RL’s emphasis on simulated
motivation and learning from direct interaction with humans and the envi-
ronment, without requiring explicit examples and models. RL is akin to how
humans learn from their own mistakes over time through trial and error.
This means that the algorithm decides the next action by learning behaviours
that are based on its current state and that will maximise the reward in the
future. RL shifts the focus of machine learning (ML) from pattern recogni-
tion to experienced-based sequential decision-making and execution. Many
applications in robotics and machine vision use RL to perform tasks.

One of the core concepts in RL is the Q-Learning, which is about learning
an action-value function, representing the measure of the overall expected
reward assuming the agent performs the action. A simple data structure such
as a table can be used to keep track of the states, actions, and their expected
rewards. In case of an infinite state space, this function is implemented with
DNNs, hence the term deep Q-learning illustrated in Figure 1.25.

Deep RL has demonstrated great potential for addressing the challenges
of real-time decision-making based on information captured by sensors. The

47

Reinforcement learning (RL) enables computer programs to learn from experience
by trial and error and to be rewarded for reaching specified objectives – both
immediate actions and long-term goals. The two main components are the
environment, which represents the problem to be solved, and the agent, which
represents the learning algorithm.

Different from other ML approaches is RL’s emphasis on simulated motivation
and learning from direct interaction with humans and the environment, without
requiring explicit examples and models. RL is akin to how humans learn from
their own mistakes over time through trial and error. This means that the algorithm
decides the next action by learning behaviours that are based on its current state
and that will maximise the reward in the future. RL shifts the focus of machine
learning (ML) from pattern recognition to experienced-based sequential decision-
making and execution.Many applications in robotics and machine vision use RL to
perform tasks.

One of the core concepts in RL is theQ-Learning, which is about learning an
action-value function, representingthe measure of the overall expected reward
assuming the agent performs the action. A simple data structure such as a table can
be used to keep track of the states, actions, and their expected rewards. In case of
an infinite state space, this function is implemented with DNNs, hence the term
deep Q-learningillustrated in Figure 1.25.

Figure 1.25: Q-Learning vs Deep Q-Learning.

Deep RL has demonstrated great potential for addressing the challenges of real-
time decision-making based on information captured by sensors. The increased
complexity of sensor-intensive systems with expensive subsystems and costly
repairs requires efficient real-time control and decision-making approaches. Thus,

Figure 1.25 Q-Learning vs Deep Q-Learning.

50 Industrial AI Technologies for Next-Generation Autonomous Operations

increased complexity of sensor-intensive systems with expensive subsystems
and costly repairs requires efficient real-time control and decision-making
approaches. Thus, many research efforts have recently been devoted to
applying deep RL to the field of predictive maintenance [28].

1.8.2 Neural Networks Architectures

An artificial neural network (ANN) encompasses any form of a DL model and
can have one hidden layer connecting the input and the output. DL is a class of
machine learning algorithms that uses multiple stacked layers of processing
nodes to learn high-level representations from data, such as images, audio,
and text. ANN can have many hidden layers, in which case they are called
“deep”, hence the term deep neural network (DNN). By adding more hidden
layers, the model gets more parameters, which in turn allows the model to fit
more complex functions.

A DNN consists of a series of stacked layers, and each layer is made up
of nodes that are connected to the previous layer’s nodes through a set of
weights. By stacking layers, the nodes in each subsequent layer can represent
increasingly sophisticated aspects of the original input. Understanding how
each layer changes the shape of the data as it flows through the network is
a key aspect of truly understanding the mechanics of DL. There are many
different types of layers, but one of the most common layers is the dense
layer that connects all units in the layer directly to every unit in the previous
layer.

The DNN architecture is forward in nature, i.e., the information does not
shift between two consecutive layers, i.e., the layers give no feedback to the
previous layers. A feed forward neural network (FFNN) is the most basic type
of multi-layer NN, and as the name suggests, information is passed in the
forward direction. Data flows from the input layer to the output layer without
going backwards, and the links between the layers move one way, which is in
the forward direction. FFNNs are the foundations of deep networks, such as
CNN and RNN. Other architectures include LSTMs.

CNN is an FFNN that is generally used for image/object recognition
and classification and for other complex classification problems, such as
predictive maintenance. CNNs can extract the local features of the input data
and combine them layer by layer to generate high-level features. As illustrated
in Figure 1.26, a typical CNN has two phases. The first phase is a series of
convolutions of layers, usually followed by pooling layers, while the second
phase is a series of dense layers. CNNs can be used for deep learning with

1.8 Hardware/Software Technology Stack 51

Figure 1.26 Typical CNN architecture.

a few parameters; thus, there are fewer parameters to learn as compared to
dense layers.

RNN is the time-series version of an FFNN. It has connections between
passes and through time. The connections form a directed graph along a
sequence of features that link one layer to previous layers, allowing infor-
mation to flow back into the previous parts of the network. Thus, each model
in the layers depends on past events, allowing information to persist. The key
idea behind RNN is to share parameters over time so that decisions can be
made at each point in a sequence of events about what has happened so far in
the sequence. In short, it ends up with a network that has a relatively simple
repeating pattern, with part of the classifier connecting to the input at each
time step and another part, called the recurrent connection, connecting you to
the past at each step, as shown in the following Figure 1.27. On the downside,
training RNNs can often be a challenging task due to their memory associated
with the recurrent aspect (i.e. signals travel both forward and back and may
contain loops, thus adding to their complexity).

LSTM is a type of RNN that, in addition to standards cells, also includes
memory cells that can retain information for long periods of time. The
enhanced architecture allows LSTMs to learn about long-term dependencies,
which makes them smart at remembering things that have happened in the
past and finding patterns across time.

Deep architectures are continuously evolving. Thus, the number of indus-
trial applications in which DL is employed has grown steadily over the last
decade. Many reported architectures have proven their superior ability in
specific tasks, such as fault classification and fault prediction. An example
of an architecture useful for fault diagnosis is shown in Figure 1.28.

It uses source domain-labelled datasets (such as vibration signals) to pre-
train a CNN model, and a discriminator with two independent classifiers

52 Industrial AI Technologies for Next-Generation Autonomous Operations

49

Figure 1.26: Typical CNN architecture.

RNN is the time-series version of an FFNN. It has connections between passes
and through time. The connections form a directed graph along a sequence of
features that link one layer to previous layers, allowing information to flow back
into the previous parts of the network. Thus, each model in the layers depends on
past events, allowing information to persist. The key idea behind RNN is to share
parameters over time so that decisions can be made at each point in a sequence of
events about what has happened so far in the sequence. In short, it ends up with a
network that has a relatively simple repeating pattern, with part of the classifier
connecting to the input at each time step and another part, called the recurrent
connection, connecting you to the past at each step, as shown in the following
Figure 1.27.On the downside, training RNNs can often be a challenging task due
to their memory associated with the recurrent aspect (i.e. signals travel both
forward and back and may contain loops, thus adding to their complexity).

Figure 1.27: The repeating module underlying RNN architecture.

LSTM is a type of RNN that, in addition to standards cells, also includes memory
cells that can retain information for long periods of time. The enhanced

Figure 1.27 The repeating module underlying RNN architecture.

50

architecture allows LSTMs to learn about long-term dependencies, which makes
them smart at remembering things that have happened in the past and finding
patterns across time.

Deep architectures are continuously evolving. Thus, the number of industrial
applications in which DL is employed has grown steadily over the last decade.
Many reported architectures have proven their superior ability in specific tasks,
such as fault classification and fault prediction. An example of an architecture
useful for fault diagnosis is shown in Figure 1.28.

Figure 1.28 Example of an architecture useful for fault diagnosis. Adapted from [28]

It uses source domain-labelled datasets (such as vibration signals) to pre-train a
CNN model, and a discriminator with two independent classifiers (fully connected
layers) to optimize the CNN-based feature extractor parameters by minimizing
distributions between the source and target domains.

1.8.3 Industrial embedded AI/ML

Embedded AI is the application of AI at the embedded device level. While there
are many examples of intelligent devices in the consumer space, embedded AI
may have far higher potential in industrial applications. There are many contexts
in which embedded AI may be very useful for collecting and understanding
important phenomena in industrial settings, right where the sensors are located.

Embedded ML is the field of ML when applied to embedded systems such as
microcontrollers. An embedded system is a combination of computer hardware
and software, and additional parts, either mechanical or electronic, designed to
perform a dedicated function.

Figure 1.28 Example of an architecture useful for fault diagnosis.

Adapted from [28]

(fully connected layers) to optimize the CNN-based feature extractor param-
eters by minimizing distributions between the source and target domains.

1.8.3 Industrial Embedded AI/ML

Embedded AI is the application of AI at the embedded device level. While
there are many examples of intelligent devices in the consumer space,

1.8 Hardware/Software Technology Stack 53

embedded AI may have far higher potential in industrial applications. There
are many contexts in which embedded AI may be very useful for collecting
and understanding important phenomena in industrial settings, right where
the sensors are located.

Embedded ML is the field of ML when applied to embedded systems
such as microcontrollers. An embedded system is a combination of computer
hardware and software, and additional parts, either mechanical or electronic,
designed to perform a dedicated function.

The trend has been to connect the embedded devices via the Internet,
collect the data and run the inference on servers in the cloud. However,
according to the demand of the industry, the processing is moving from
the cloud to the edge by using embedded ML, where lots of application
can be designed having features of low cost, low power consumption, low
bandwidth, secure and intelligent processing.

Embedded ML and DL techniques enable electronic systems to learn from
real-time sensor data, audio and video and use the acquired knowledge to
make standalone assessments, predictions, and decisions locally rather than in
the cloud. Even more potential lies in combining real-time data from multiple
sensors and thus deriving new types of information, leading to a continuous
refinement and improvement of the ML/DL techniques. These techniques are
applied on low power devices at the edge, hence the terms “edge ML and DL”
are used interchangeably with “embedded ML and DL”.

Edge AI refers to processing the data at the edge using AI methods and
techniques, including ML and DL; however, edge AI has much more potential
to accomplish edge intelligence than ML and DL alone. Edge AI equips sen-
sor data with “the what” and “the how” to drive problem-solving processes,
design, and development; hence, edge AI can be seen as the edge ML/DL
of the future, encompassing architectures, frameworks, applications and edge
intelligence and concepts, such as meta-learning and meta-intelligence.

The applications of embedded ML span many market segments and appli-
cations, for some of which the best pathways to development and deployment,
such as time- and safety-critical applications, have yet to be found. The
chapter seeks to cover a wide range of terms and concepts, not only with
the aim of achieving a broader understanding of ML/DL applications but also
to provide a valuable vantage point of where ML/DL are heading in the near
future.

Many industrial applications target embedded ML and DL into edge
devices, addressing the challenges and solving the problems posed by the
gap between the advanced state-of-the-art models developed in and for the

54 Industrial AI Technologies for Next-Generation Autonomous Operations

cloud and the limited capabilities of edge devices. The memory, processing,
transmission and power consumption capabilities and limitations always
depend on whether the device is micro-, deep-, or meta-edge device, but the
challenges are the same. The AI/ML model needs to be converted into an
efficient format, before compiling and flashing it into the device.

Benchmarking experiments are needed to demonstrate that state-of-the-
art models with the right design and optimisation are compatible with the
stringent resource requirements of edge devices and to suggest areas of
improvement for the AI models.

Edge devices are typically single- and multi-core microcontrollers, with
varying capabilities and limitations and unique identities. The edge can
scale from a few devices to tens of thousands of devices distributed in
different locations, so the devices are able to operate independently, with
an unexplored evolution to training and inference actions. Although phys-
ically separated, the edge devices can be connected using wireless/wired
connections in topologies such as mesh, with an unexplored potential for
communication and distributed learning across devices inspired by recent
advances in emergent intelligence.

ML model architectures can allow for highly interactive flows, starting
with capturing the data straight from the embedded device all the way
to production and deployment. This entails gathering sensor data directly
from the products and environments and turning that data into useful data
sets to be applied to ML algorithms and signal processing, instead of
relying on predefined data sets. Furthermore, interactivity involves the ver-
ification, validation, and testing (VV&T) of algorithms, so that the most
optimal solution given the device’s capabilities and limitations is finally
deployed.

The data, hardware/software platforms and more are the ingredients to
design vertically integrated AI stacks, ensuring that edge AI is optimised
for its hardware and its target application with optimised performance and
efficiency.

The inference is performed on static models implemented on edge devices
or other types of devices depending on the application. The inference requires
many mathematical operations such as matrix multiplications and dot product
operations and the processing run on a CPUs, GPUs, FPGAs, DSPs, ASICs
depending on the processing power, energy efficiency, speed, and memory
requirements.

Edge inference requires optimised hardware acceleration and when the
process is connected to other performance-critical functions there is a need to

1.8 Hardware/Software Technology Stack 55

provide interfaces by tightly coupling other accelerators or processing units
into a common dynamic architecture.

1.8.4 On-device ML Applications Enabling True Edge Computing

The typical ML workflow takes advantage of several tools and frameworks,
such as TensorFlow, TensorFlow Lite, and PyTorch, as shown in Figure 1.29.
Some of them are optimised to run in very small footprints of memory and
processing cycles, and thus can be employed in industrial embedded systems
at the edge.

Figure 1.29 Embedded ML design and development ecosystem view.

56 Industrial AI Technologies for Next-Generation Autonomous Operations

Most industrial embedded systems can be loosely classified into three
main categories:

• Vibration and motion include industrial systems with sensors that
allow not only for the control of the device but also for its predictive
maintenance.

• Voice and sound include industrial systems with microphones for voice
keyword detection and speech recognition.

• Vision includes industrial systems recognizing objects to sort them
or spot defects, or systems identifying, for example, faces to unlock
devices.

The problems that may arise in industrial embedded systems worth investi-
gating to solve with the help of ML are many and multi-folded, but three
general main categories can be identified:

• Detecting anomalies in the operation of edge devices before something
breaks because industrial equipment can be expensive to produce and
even costlier to repair or replace.

• Classifying things, behaviour, or objects from any variety and combina-
tion of sensors, either internal or external to the edge device.

• Forecasting, such as what the signal will look like in the near or far
future, based on historical data.

All the potential use cases will have different workload performance and
scalability requirements, depending on the application:

• For the prediction and maintenance of machines, it is essential to predict
and give feedback on their health status as early as possible to avoid
instant shutdown.

• For security systems, it is essential to implement features such as facial
and voice recognition on edge devices to ensure they effectively con-
tribute to providing security, through their use with security locks for
home, offices, vehicles, and so forth.

• For autonomous vehicles, it is important that the devices installed on
the car analyse local surroundings to recognize traffic lights, pedestrian
roads, and people to make smart decisions.

• For surveillance and monitoring, it is crucial that any suspicious activ-
ities are monitored on edge devices and in real time by, for instance,
recognizing human movements.

• For robots and robotic things, it is essential to make decisions indepen-
dently without the need to connect to the internet.

1.8 Hardware/Software Technology Stack 57

While ML can be used to arrive at innovative solutions, it is important to
note that embedding AI on the edge has limitations and that ML alone
cannot always solve complex problems. Many industrial applications require
other technologies to work in tandem with ML to achieve effective, low-
power solutions to be deployed close to the sensor, thus enabling true edge
computing.

More in-depth insights into use cases implementing industrial AI appli-
cations at the edge and the transition to Industry 5.0 can be found in [36].

1.8.5 Machine Learning on Embedded Devices

Most AI frameworks have been developed for desktops, servers, and laptops
with large resources. By contrast, embedded edge AI frameworks run on
smaller but efficient devices, such as single-board computers and microcon-
trollers. Single-board computers usually have a powerful microprocessor with
a separate memory, can run a full operating system, and can provide a full-
user interface; hence, they can adapt ML algorithms (such as Scikit-learn,
TensorFlow, PyTorch, Keras, and Caffe) that use high-level programming
languages such as Python, provided that they have enough power to fulfil
the task effectively and efficiently.

The situation is rather different for microcontrollers, which are usually
less expensive and require much less power, with only a few buttons or a
simple LCD screen of the user interface. Hence, the adaption of the existing
AI frameworks to run on microcontrollers has started to show results only
recently.

Software platforms

TensorFlow Lite was the first AI software framework specifically designed
for micro-controllers that allows running simple NNs without manually pro-
gramming the matrix operations and with only a few kilobytes of memory.
Since it was introduced, many AI software tools have been developed to
address the different requirements for designing and implementing ML on
edge devices. However, it was the optimisation of both hardware and soft-
ware in tandem that allowed for the use of more complex ML algorithms
in microcontrollers, which led to industries embracing the application of
embedded ML.

Optimisation can be multi fold: enable more complex models to be
deployed, meet real time latency constraints, extend the battery life of edge

58 Industrial AI Technologies for Next-Generation Autonomous Operations

55

can adapt ML algorithms (such as Scikit-learn, TensorFlow, PyTorch, Keras, and
Caffe) that use high-level programming languages such as Python, provided that
they have enough power to fulfil the task effectively and efficiently.

The situation is rather different for microcontrollers, which are usually less
expensive and require much less power, with only a few buttons or a simple LCD
screen of the user interface. Hence, the adaption of the existing AI frameworks to
run on microcontrollers has started to show results only recently.

Software platforms

TensorFlow Lite was the first AI software framework specifically designed for
micro-controllers that allows running simple NNs without manually programming
the matrix operations and with only a few kilobytes of memory. Since it was
introduced, many AI software tools have been developed to address the different
requirements for designing and implementing ML on edge devices. However, it
was the optimisation of both hardware and software in tandem that allowed for the
use of more complex ML algorithms in microcontrollers, which led to industries
embracing the application of embedded ML.

Optimisation can be multi fold: enable more complex models to be deployed, meet
real time latency constraints, extend the battery life of edge devices. The important
point is that even the smallest optimisation anywhere in the system can make a
difference, be it in hardware, software algorithms, framework, libraries, as shown
in Figure 1.30.

Figure 1.30Embedded ML optimisation. Figure 1.30 Embedded ML optimisation.

devices. The important point is that even the smallest optimisation anywhere
in the system can make a difference, be it in hardware, software algorithms,
framework, libraries, as shown in Figure 1.30.

Hardware platforms and hardware-software co-design
for ML

Embedded edge AI can be defined from the perspective of both hardware
and software, depending on whose capabilities are focused on. From the
hardware perspective, embedded edge AI is defined as the capability of low-
power, resource-constrained devices such as sensors and actuators to execute
AI algorithms. From the software perspective, embedded edge AI is defined
as the capability of AI algorithms to adapt and run effectively and efficiently
on devices with limited resources.

The ability to embed AI in low-end devices is highly dependent on the
availability of automated frameworks with easy-to-use design flows that can
generate optimised AI models for the hardware targets. Thus, all hardware
components (microcontroller, communication- modules, sensors, actuators,
etc.) are part of the design flow. Hence, regardless of whether embedded edge
AI is defined from the hardware or software perspective, a hardware-software
co-design is key to embedding AI in edge devices.

1.8 Hardware/Software Technology Stack 59

56

Hardware platforms and hardware-software co-design for ML

Embedded edge AI can be defined from the perspective ofboth hardware and
software, depending on whose capabilities are focused on. From the hardware
perspective, embedded edge AI is defined as the capability of low-power,
resource-constrained devices such as sensors and actuators to execute AI
algorithms. From the software perspective, embedded edge AI is defined as the
capability of AI algorithms to adapt and run effectively and efficiently on devices
with limited resources.

The ability to embed AI in low-end devices is highly dependent on the availability
of automated frameworks with easy-to-use design flows that can generate
optimised AI models for the hardware targets. Thus, all hardware components
(microcontroller, communication- modules, sensors, actuators, etc.) are part of the
design flow. Hence, regardless of whether embedded edge AI is defined from the
hardware or software perspective, a hardware-software co-design is key to
embedding AI in edge devices.

Embedded edge ML has changed the way microprocessors and microcontrollers
are used. AI can be embedded by augmenting development boards with
components such as sensors and additional chips, all geared towards executing AI
programs spanning from simple ML algorithms to resource intensive deep NNs.

Until recently, most of the chips developed only supported a subset of functions
used in modern deep NNs, imposed by the memory restrictions and computing
capabilities of the hardware; not even specialised hardware could execute deep
NNs.

Figure 1.31 ML hardware options for various AI tasks.

With the recent advances in hardware, developments have been directed towards
integrating AI and deep NNs directly into sensor hardware. NNs targeting

Figure 1.31 ML hardware options for various AI tasks.

Embedded edge ML has changed the way microprocessors and microcon-
trollers are used. AI can be embedded by augmenting development boards
with components such as sensors and additional chips, all geared towards
executing AI programs spanning from simple ML algorithms to resource
intensive deep NNs.

Until recently, most of the chips developed only supported a subset of
functions used in modern deep NNs, imposed by the memory restrictions and
computing capabilities of the hardware; not even specialised hardware could
execute deep NNs.

With the recent advances in hardware, developments have been directed
towards integrating AI and deep NNs directly into sensor hardware. NNs
targeting constrained devices are more efficient in terms of memory footprint
and inference time. Techniques such as quantisation are used to reduce
computing precision with no significant decrease in algorithm accuracy.

When designing hardware, special attention must be paid to the three
main classes of AI-related building blocks, namely memory, storage, and
logic. Memory is used for short-term storage during processing and consists
of dynamic random-access memory (DRAM). Storage represents the long-
term repository of large electronic data sets and consists of NAND flash
memory. Logic is used for processing, computing, and optimising the cal-
culation of NN operations or other specific AI functions and consisting of
CPUs, GPUs, FPGAs, different custom ASICs, etc.

The edge processing units under development must have several charac-
teristics such as a heterogeneous computing architecture (e.g., CPU, GPU,

60 Industrial AI Technologies for Next-Generation Autonomous Operations

ASIC, FPGA, neuromorphic, etc.), support for the main AI edge frameworks
(e.g., TensorFlow, Caffe, Keras, etc.), multi-modality, end-to-end embedded
security, and high energy efficiency.

Accelerators and Neuromorphic hardware

Accelerators and neuromorphic hardware are both represented as sub-layers
of the hardware layer, which is at the foundation of the technology stack.
Employing both generic and hardware-specific optimisations can lead to a
significant decrease in the memory footprint of NNs and accelerate inference
latency.

Hardware accelerators are specialised hardware components within the
system that enable greater efficiency when running certain computing tasks
than is possible with software running on a general-purpose CPU alone. A
wide variety of dedicated hardware acceleration systems exist, and the most
common hardware used for acceleration include GPU, ASIC, FPGA.

Neuromorphic computing is a new computing technology that reproduces
human brain activity with models of selective spiking ensembles of neurons
in models that reproduce biological reactions.

Neuromorphic computers—as opposed to Von Neumann computers,
which are composed of separate CPUs and memory units—are inspired
by the human brain and are composed of neurons and synapses governing
both processing and memory. Programs in neuromorphic processing units
are determined by the structure of the neural network and its parameters
instead of explicit instructions, as in a von Neumann computer. Neuromor-
phic computers receive spikes as input that can be used to encode numerical
information, as opposed to Von Neumann computers that encode numerical
values represented by binary values [34]. This is intuitively illustrated in
Figure 1.32.

Consequently, neuromorphic computers present some essential opera-
tional differences: they are highly parallel, meaning that, in principle, all
neurons and synapses can operate simultaneously. Both neurons and synapses
perform processing and store values, resulting in no separation between
processing and memory. In addition, increasing the number of neurons and
synapses can be done easily; thus, neuromorphic computers are highly scal-
able. Neurons and synapses ‘spike’ only when there are spikes to process,
making them “event-driven”.

Most of the work in neuromorphic computing has focused on hardware
development. A neuromorphic chip can contain thousands of neurons, with

1.8 Hardware/Software Technology Stack 61

58

Figure 1.32 Comparison of the von Neumann architecture with the neuromorphic

architecture.

Consequently, neuromorphic computers present some essential operational

differences: they are highly parallel, meaning that, in principle, all neurons and

synapses can operate simultaneously. Both neurons and synapses perform

processing and store values, resulting in no separation between processing and

memory. In addition, increasing the number of neurons and synapses can be done

easily; thus, neuromorphic computers are highly scalable. Neurons and synapses

„spike‟ only when there are spikes to process, making them “event-driven”.

Most of the work in neuromorphic computing has focused on hardware

development. A neuromorphic chip can contain thousands of neurons, with their

synapses, dendrites and axons reproducing human brain activity. However,

neuromorphic computing requires both hardware and software, and to be widely

adopted by industry in the future, neuromorphic algorithms and applications must

catch up with technological advances in hardware. Spiking Neural Networks

(SNN), which mimics the energy-efficient signal system in the brain, has drawn

much recent attention. The main difference between SNNs and traditional

networks is that neurons in SNNs accumulate charge from the environment or

from other neurons over time; thus, time is a new element in their operation.

Algorithms that have been successful for deep-learning applications will need to

be adapted to work on SNNs [34].

1.8.1 Embedded ML Development Flow in Industrial Setting

It is important to emphasise that the embedded edge ML flow and its associated

processes are different from most typical ML flows. Many applications deal with

static ML flows. A ML flow is static when there are no time variables in the

equation. Hence, the static model is trained offline exactly once, and then the

trained model is used for inference for some time, at least until an update is

required. Moreover, many pre-built data sets are available for various domains and

applications that ML practitioners can use as a start.

Figure 1.32 Comparison of the von Neumann architecture with the neuromorphic
architecture.

their synapses, dendrites and axons reproducing human brain activity. How-
ever, neuromorphic computing requires both hardware and software, and
to be widely adopted by industry in the future, neuromorphic algorithms
and applications must catch up with technological advances in hardware.
Spiking Neural Networks (SNN), which mimics the energy-efficient signal
system in the brain, has drawn much recent attention. The main difference
between SNNs and traditional networks is that neurons in SNNs accumulate
charge from the environment or from other neurons over time; thus, time is
a new element in their operation. Algorithms that have been successful for
deep-learning applications will need to be adapted to work on SNNs [34].

1.8.6 Embedded ML Development Flow in Industrial Setting

It is important to emphasise that the embedded edge ML flow and its associ-
ated processes are different from most typical ML flows. Many applications
deal with static ML flows. A ML flow is static when there are no time
variables in the equation. Hence, the static model is trained offline exactly
once, and then the trained model is used for inference for some time, at
least until an update is required. Moreover, many pre-built data sets are
available for various domains and applications that ML practitioners can use
as a start.

By contrast, most industrial applications must cope with time series
problems and thus deal with data continuously entering the system over time.
Pre-built data sets are not configured for use with smaller ML applications
such as those intended for microcontrollers. In edge embedded systems,
data are not extracted from data stores such as files or databases but rather
are acquired directly from sensors. Thus, inference occurs in real time, and
in many cases, so does training. The timeline can be short (seconds or

62 Industrial AI Technologies for Next-Generation Autonomous Operations

59

By contrast, most industrial applications must cope with time series problems and
thus deal with data continuously entering the system over time. Pre-built data sets
are not configured for use with smaller ML applications such as those intended for
microcontrollers. In edge embedded systems, data are not extracted from data
stores such as files or databases but rather are acquired directly from sensors.
Thus, inference occurs in real time, and in many cases, so does training. The
timeline can be short (seconds or minutes) or long (days or months). Owing to the
dynamic aspect, re-training is necessary.

Figure 1.33The high-level embedded ML developmentflow.

Figure 1.33 illustrates a typical embedded ML development flow. In short, the
flow starts with the collection of signals. Continuous raw data are sliced into
smaller windowsand processed into extract features. The trained model is then
deployed on the IIoT device and used to run inferences, whose result, depending
on the application, can be a prediction, a class detected, or an anomaly detected.
Pre-processing steps such as cleaning or filtering data may be necessary to obtain
a representative data set for the application and make it easier to process.

In the following paragraphs the basic steps of the embedded ML design flow are
described, with examples from a generic use case, i.e.,classification of the state of
a motor based on the vibration measurements using an accelerometer sensor from
an IIoT device. The motor is operating at fixed speeds, which are divided into
several classes based on various percentages of the maximum speed.

The data collection process is essential, as good results are dependent of qualified
data for the training andcan require considerable effort and expertise to design the
correct signal acquisition and sampling methodology suitable for a particular
application.

The signals for each of the classes can be acquired straight from the device.The
continuous raw data are usually sliced into smaller windows whose size can be
configured with parameters. From a three-axis accelerometer sensor and with a
buffer size of 256 samples on each axis, a total of768 values are produced per
signal. With a sampling frequency of 833 Hz, each buffer represents a snapshot of

Figure 1.33 The high-level embedded ML development flow.

minutes) or long (days or months). Owing to the dynamic aspect, re-training
is necessary.

Figure 1.33 illustrates a typical embedded ML development flow. In short,
the flow starts with the collection of signals. Continuous raw data are sliced
into smaller windows and processed into extract features. The trained model
is then deployed on the IIoT device and used to run inferences, whose result,
depending on the application, can be a prediction, a class detected, or an
anomaly detected. Pre-processing steps such as cleaning or filtering data may
be necessary to obtain a representative data set for the application and make
it easier to process.

In the following paragraphs the basic steps of the embedded ML design
flow are described, with examples from a generic use case, i.e., classifica-
tion of the state of a motor based on the vibration measurements using an
accelerometer sensor from an IIoT device. The motor is operating at fixed
speeds, which are divided into several classes based on various percentages
of the maximum speed.

The data collection process is essential, as good results are dependent
of qualified data for the training and can require considerable effort and
expertise to design the correct signal acquisition and sampling methodology
suitable for a particular application.

The signals for each of the classes can be acquired straight from the
device. The continuous raw data are usually sliced into smaller windows
whose size can be configured with parameters. From a three-axis accelerom-
eter sensor and with a buffer size of 256 samples on each axis, a total of
768 values are produced per signal. With a sampling frequency of 833 Hz,
each buffer represents a snapshot of approximately 300 milliseconds of the
accelerometer temporal vibration data. The number of signals and the split

1.8 Hardware/Software Technology Stack 63

60

approximately 300 milliseconds of the accelerometer temporal vibration data. The
number of signals and the split between training and validation data can also be
configured (usually 80% training, 20%).

The vibration signals collected can be visualised as shown inFigure 1.34, in both
temporal and frequency plots for each of the classes.

Figure 1.34Temporal and frequency plots as input to motor classification.

One common pre-processing technique when examining vibration or motion data
to identify features is to take the Fourier transform of the data to obtain
information about them in the frequency domain and break the signal into its
various frequency components.By providing filtering, only the frequencies that
represent the characteristics of the motor vibration are kept, and the rest are
attenuated.

A feature is an individual measurable property or characteristic of a phenomenon
being observed and deciding what features to select is an important task. Poor
features will have negative impacts. For example, if the feature only takes one
snapshot in time, it is a poor feature because it provides no information about how
the signal changes in time.

Extracting the features to be fed into the AI model for training and, ultimately,
inference from large inputs can be performed automatically by many AI
frameworks. In a matter of seconds or minutes, all raw samples are converted into
sets of features.

A useful aspect of this automation is the possibility to visualise and explore the
features. In the case of a classifier, features that are visually clustered are a good
sign that the model can be trained to do the same. On the contrary, if features
overlap in various degrees and are intertwined, it is very likely the trained model
will have difficulties in differentiating between classes. This problem can be
solved in various ways such as increasing the buffer size, that is, prolonging the
sampling signal, to better capture signal patterns or even changing some of the
features.

The training process employs back-propagation algorithms to configure and
update the parameters inside the model that can improve the chances of predicting
each feature set. Parameters are usually configured automatically.

Figure 1.34 Temporal and frequency plots as input to motor classification.

between training and validation data can also be configured (usually 80%
training, 20%).

The vibration signals collected can be visualised as shown in Figure 1.34,
in both temporal and frequency plots for each of the classes.

One common pre-processing technique when examining vibration or
motion data to identify features is to take the Fourier transform of the data
to obtain information about them in the frequency domain and break the
signal into its various frequency components. By providing filtering, only the
frequencies that represent the characteristics of the motor vibration are kept,
and the rest are attenuated.

A feature is an individual measurable property or characteristic of a phe-
nomenon being observed and deciding what features to select is an important
task. Poor features will have negative impacts. For example, if the feature
only takes one snapshot in time, it is a poor feature because it provides no
information about how the signal changes in time.

Extracting the features to be fed into the AI model for training and,
ultimately, inference from large inputs can be performed automatically by
many AI frameworks. In a matter of seconds or minutes, all raw samples are
converted into sets of features.

A useful aspect of this automation is the possibility to visualise and
explore the features. In the case of a classifier, features that are visually
clustered are a good sign that the model can be trained to do the same. On
the contrary, if features overlap in various degrees and are intertwined, it is
very likely the trained model will have difficulties in differentiating between
classes. This problem can be solved in various ways such as increasing the
buffer size, that is, prolonging the sampling signal, to better capture signal
patterns or even changing some of the features.

The training process employs back-propagation algorithms to configure
and update the parameters inside the model that can improve the chances of
predicting each feature set. Parameters are usually configured automatically.

64 Industrial AI Technologies for Next-Generation Autonomous Operations

61

In contrast to the model parameters, hyper-parameters cannot be tuned by the data
and lie outside the model (Figure 1.35). These are values that must be set
manually, such as the size and shape of the model, the learning rate, and the
number of training steps to take, the features to use, and the methods and
calculations to pre-process the data.

Figure 1.35 Hyperparameters (outside the model) vs parameters(inside the model).

The model validationdatasets and test datasets are not part of the training
datasets. The validation data set can be used to analyse how well the model
performs against unseen data and to adjust identified problems prior to using the
test set (Figure 1.36).

Figure 1.36 Categories of datasets and where they are used.

Two common issues in ML are when the model underfits or overfits the input
data. The former is when the model performs poorly on training and validation
data, whereas the latter is when the model performs better on the training data than
it does with the validation or test data.

Figure 1.35 Hyperparameters (outside the model) vs parameters (inside the model).

In contrast to the model parameters, hyper-parameters cannot be tuned by
the data and lie outside the model (Figure 1.35). These are values that must
be set manually, such as the size and shape of the model, the learning rate,
and the number of training steps to take, the features to use, and the methods
and calculations to pre-process the data.

The model validation datasets and test datasets are not part of the training
datasets. The validation data set can be used to analyse how well the model
performs against unseen data and to adjust identified problems prior to using
the test set (Figure 1.36).

Two common issues in ML are when the model underfits or overfits the
input data. The former is when the model performs poorly on training and
validation data, whereas the latter is when the model performs better on the
training data than it does with the validation or test data.

61

In contrast to the model parameters, hyper-parameters cannot be tuned by the data
and lie outside the model (Figure 1.35). These are values that must be set
manually, such as the size and shape of the model, the learning rate, and the
number of training steps to take, the features to use, and the methods and
calculations to pre-process the data.

Figure 1.35 Hyperparameters (outside the model) vs parameters(inside the model).

The model validationdatasets and test datasets are not part of the training
datasets. The validation data set can be used to analyse how well the model
performs against unseen data and to adjust identified problems prior to using the
test set (Figure 1.36).

Figure 1.36 Categories of datasets and where they are used.

Two common issues in ML are when the model underfits or overfits the input
data. The former is when the model performs poorly on training and validation
data, whereas the latter is when the model performs better on the training data than
it does with the validation or test data.

Figure 1.36 Categories of datasets and where they are used.

1.8 Hardware/Software Technology Stack 65

The solutions to these issues present particularities in the case of embed-
ded edge ML, but, in short, collecting more signals, selecting different
features, extending the training time and increasing model complexity will
usually work for underfitting, while gathering more data, training for a shorter
length of time and reducing model complexity and adding dropout layers will
work for overfitting.

Understanding NN architecture is essential to explore how increasing
or reducing model complexity affects model accuracy. A neural network
architecture can be optimised by several means (adding more layers to
deeper the model or increasing the number of hidden units to wider the
model, changing the activation, and optimization functions, learning rate,
fitting more data, and more), and knowing what and how to optimise it is
a matter of experimentation. Fortunately, most platforms can automatically
tune hyperparameters.

Much of creating a better model is trial and error: gathering more data or
adjusting the hyperparameters and re-training your model to see if it improves
the per-class accuracy. Or sometimes, there may not be enough or the right
kind of data to train a good model.

One of the most useful evaluation tools is the confusion matrix of the
validation data (Figure 1.37).

The predicted labels are on the x-axis and the true labels on the y-axis.
The diagonal elements are the number of points for which the predicted
label is equal to the true label, while off-diagonal elements are those that
are mislabelled. The higher the diagonal values of the confusion matrix the
better. The matrix is a good way to visually interpret how well the model is
doing at its predictions and understand where it may need improvement.

In the context of micro-edge embedded systems, the deployment is
dependent on the hardware/software platform and is more or less automated,
and in essence comprises of three steps: the first is a format conversion
of the fully trained model, then a weight/model compression to reduce the
amount of memory to store the weights in the target hardware platform and
to simplify the computation so it can run efficiently on target processors. This
step is usually to quantize, i.e., converts all parameters from floating point
values to integers. Finally, the last step is compiling the model and generating
the code to be integrated with the MCUs firmware. The implementation
of these steps must follow the back-end flow specific to the target. The
optimisation challenge is to save as much memory as possible in the processor
or microcontroller, with as little reduction in the accuracy of the model as
possible.

66 Industrial AI Technologies for Next-Generation Autonomous Operations

62

The solutions to these issues present particularities in the case of embedded edge
ML, but, in short, collecting more signals, selecting different features, extending
the training time and increasing model complexity will usually work for
underfitting, while gathering more data, training for a shorter length of time and
reducing model complexity and adding dropout layers will work for overfitting.

Understanding NN architecture is essential to explore how increasing or reducing
model complexity affects model accuracy. A neural network architecturecan be
optimised by several means (adding more layers to deeper the model or increasing
the number of hidden units to wider the model, changing the activation, and
optimization functions, learning rate, fitting more data, and more), and knowing
what and how to optimise it is a matter of experimentation. Fortunately, most
platforms can automaticallytune hyperparameters.

Much of creating a better model is trial and error: gathering more data or adjusting
the hyperparameters and re-training your model to see if it improves the per-class
accuracy. Or sometimes, there may not be enough or the right kind of data to train
a good model.

One of the most useful evaluation tools is the confusion matrix of the validation
data (Figure 1.37).

Figure 1.37 Confusion matrix.

Inference is the process of using live unseen data with a fully trained model to
make predictions. The inference and the output will look different depending
on the actual target device and production environment, but in essence, it
happens in three steps.

First, the input signal is sampled for a period of time sufficient to capture
the essence of the signal patterns before sending the raw accelerometer data
to the library for inference. With 833 Hz sampling rate and 300 milliseconds
time length, the buffer size will be 256 samples producing in total 768
values. The library expects these values to be stored in an array containing
raw sensor values. Next, features are extracted, and finally, inference is
performed, with the inference function returning the predicted probabilities,
each corresponding to one of the classes. The highest probability will indicate
the correct class, but threshold comparison and other algorithms can be used.
A minimum threshold can also be considered. This process loops indefinitely.
The state machine usually consists of two states with two functions “init”

1.9 Summary 67

and “inferencing”, respectively, with the former initializing the NN model
and the latter being a continuously running function for collecting raw data
from the sensors on board and making predictions in real-time. While feature
extraction and inference are performed, the buffer fills up with raw sensor
data in the background. More about applications that benefit from inference
at the edge can be found in [10].

To conclude the discussion on the Hardware/Software technology stack,
machine learning and neural networks can now be efficiently deployed
on resource-constrained devices, which allow for cost-efficient deployment,
widespread availability, and the preservation of sensitive data. However, the
trade-offs that optimisation methods, software frameworks and hardware
architecture have on key performance metrics, such as inference latency and
energy consumption, have yet to be studied in depth.

1.9 Summary

Industrial AI and IoT/IIoT are enablers for building the foundations for digital
transformation and business innovation. Full-scale and full-stack industrial
AI technology accelerates digital innovation across industries and therefore
boosts productivity. The adoption of AI helps industries climb the value chain
and drive innovation, thus providing new paths to growth for manufacturing,
service, and other industries.

In this context, managing the end-to-end (E2E) AI technologies con-
nected with the IoT/IIoT, supervisory control and data acquisition (SCADA),
and edge computing, is crucial for various industrial sectors. Addressing the
developments in silicon-born AI that enable and generate AI-born embed-
ded and industrial systems accelerates harnessing the silicon and embedded
systems designed specifically for AI, thus supporting E2E solutions and
advancing the adoption of AI technologies across industrial sectors.

Contributions to this chapter come from a diverse number of disciplines
and communities and cover related technologies across different layers in the
AI technology stack.

As result, the chapter provides an overview of the main concepts and
terminology related to industrial embedded edge AI technologies.

The shifting of AI methodologies from operating in the cloud to operating
on the edge as a fundamental approach for future developments on digitising
industries marks the beginning of a widespread transition in the control
of industrial processes and the functionality of devices. AI methodologies

68 Industrial AI Technologies for Next-Generation Autonomous Operations

operating on the edge must drive the major milestones of this transition on
any roadmap.

Embedded edge AI platforms, training and learning, and applications
form the foundation that supports the development of edge AI applications.

AI-optimised hardware provides the core infrastructure for embedded
edge AI applications. It includes AI chips (neuromorphic, CPUs, GPUs,
FPGAs, ASICs), large-capacity, low-latency, and all-flash arrays, and solid-
state storage devices; high-performance, high-throughput, and highly scal-
able edge servers and network equipment. Turning data into descriptive,
diagnostic, and predictive analytic insights requires visualised modelling and
code testing environments, as well as ML and DL edge platforms configured
for general AI applications or real-time embedded environments.

Edge AI technologies and applications require advanced industrial enter-
prise high-level architecture as a reference for implementing embedded
edge AI technologies in an environment that can manage the large-scale
deployment of AI applications.

The infrastructure layer requires edge computing and modular processing
units integrated with on-premises platforms. In the industrial platforms and
application layers, the analytics and flexible service capabilities of edge
must support the integration of industrial enterprise applications with various
industrial AI applications.

As AI matures, AI technological development often intersects other
technological areas.

The chapter introduced an overview of AI concepts, including definitions
to establish a common vocabulary for the stakeholders involved and for the
presentation of E2E industrial embedded edge AI technologies across the
technology stack, application, and industrial sectors. The chapter can thus
serve as a reference for various partners and stakeholders to help reach the
full potential of edge AI for digitising industry by introducing developments
in silicon-born AI to enable and generate AI-born embedded and industrial
systems and accelerate the adoption of edge AI technologies across various
industrial sectors.

Industrial edge AI technologies differ from consumer AI technologies that
provide citizens with direct technology exposure, so industrial AI solutions
may lack direct consumer scrutiny. Nevertheless, societal perception has an
impact on how unions perceive the introduction of edge AI technologies, how
management decisions on investment are made and how policymakers decide
upon regulations.

References 69

Acknowledgements

This work is conducted under the framework of the ECSEL AI4DI “Artificial
Intelligence for Digitising Industry” project. The project has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No 826060.
The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Germany, Austria, Czech Republic, Italy,
Latvia, Belgium, Lithuania, France, Greece, Finland, Norway.

References

[1] Research and Markets. “Smart Manufacturing Market by Technol-
ogy (Robotics, AI, IIoT, Cloud, AR/VR), Application (Machine
Inspection; Energy, Quality, and Warehouse Management; Plan-
ning, Surveillance, Optimization), End-use Industry, and Geogra-
phy - Global Forecast to 2029”, June 2022. Available online at:
https://www.researchandmarkets.com/

[2] Vantage Market Research. “AI in Manufacturing Market Size, Share
& Trends Analysis Report by Offering (Hardware, Software, Ser-
vices), by Technology (Machine Learning, Natural Language Pro-
cessing, Context-aware Computing, Computer Vision), by Application
(Predictive Maintenance and Machinery Inspection, Material Move-
ment, Production Planning, Field Services), by Industry (Automo-
bile, Energy and Power, Pharmaceuticals, Heavy Metals and Machine
Manufacturing), by Region (North America, Europe, Asia Pacific,
Latin America and Middle East & Africa) - Global Industry Assess-
ment (2016 - 2021) & Forecast (2022 - 2028)”. Available online at:
https://www.globenewswire.com/

[3] AI4DI, Artificial Intelligence for Digitising Industry. Available online
at: https://ai4di.eu/

[4] P. H. Winston. Artificial Intelligence. Third Edition, Addison-Wesley
Publishing Company, 1992.

[5] D. B. Fogel, “Defining Artificial Intelligence”. In Evolutionary Com-
putation: Toward a New Philosophy of Machine Intelligence. Third
Edition, The Institute of Electrical and Electronics Engineers, Inc., IEEE
Press, pp. 1-32, 2006.

[6] S. Legg, and M. Hutter, “Universal Intelligence: A Definition of
Machine Intelligence. Minds and Machines”, 17(4):391-444, Springer,
2007. Available online at: https://arxiv.org/abs/0712.3329

70 Industrial AI Technologies for Next-Generation Autonomous Operations

[7] J. McCarthy, “What Is Artificial Intelligence, Basic Questions”, Stan-
ford Formal Reasoning Group, 2007.

[8] S. J. Russell, and P. Norvig, Artificial Intelligence: A Modern Approach,
Fourth Edition. Prentice Hall, 2022.

[9] J. R. Searle, Mind, language and society, New York, NY: Basic Books,
ISBN 978-0-465-04521-1, 1999.

[10] What is AI Inference at the Edge? Available online at: https://www.stea
tite-embedded.co.uk/what-is-ai-inference-at-the-edge/

[11] O. Vermesan, J. Bacquet, (Editors). Next Generation Internet of Things
- Distributed Intelligence at the Edge and Human Machine-to-Machine
Cooperation. ISBN: 978-87-7022-008-8 (Hardback), 978-887-7022-
007-1 (Ebook). River Publishers, 2018.

[12] R. Schwartz, J. Dodge, N. A. Smith, O. Etzioni, (2019). “Green AI”.
Available online at: https://arxiv.org/pdf/1907.10597.pdf

[13] Buchanan, B.G., Shortliffe, E.H. (eds.). Rule-Based Expert Systems
- The MYCIN Experiments of the Stanford Heuristic Programming
Project. Addison-Wesley Publishing Company (1984)

[14] J. McDermott. R1: an Expert in the Computer Systems Domain. Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI),
pp. 269-271 1980.

[15] R. Reiter. A logic for default reasoning. Artificial Intelligence 13(1–2),
1980.

[16] X. Yang, Z. Song, I. King and Z. Xu. “A Survey on Deep Semi-
supervised Learning”. https://doi.org/10.48550/arXiv.2103.00550

[17] R. Reiter, (1987). A theory of diagnosis from first principles. Artificial
Intelligence, 32(1), 57–95.

[18] J. De Kleer, A. K. Mackworth, and R. Reiter, (1992). Characterizing
diagnosis and systems. Artificial Intelligence, 56.

[19] T. Eiter, G. Ianni, T. Krennwallner, “Answer Set Programming: A
Primer”, pp. 40–110. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03754-2_2

[20] F. Wotawa, “Reasoning from first principles for self-adaptive and
autonomous systems”. Springer (2019). https://doi.org/10.1007/978-3-
030-05645-2

[21] A. Choi, R. Wang, A. Darwiche, “On the relative expressiveness of
Bayesian and neural networks”. Int. J. Approx. Reason. 113: 303-323
(2019)

[22] W. Shi, A. Shih, A. Darwiche, A. Choi, “On Tractable Representations
of Binary Neural Networks”. CoRR abs/2004.02082 (2020)

https://www.steatite-embedded.co.uk/what-is-ai-inference-at-the-edge/
https://www.steatite-embedded.co.uk/what-is-ai-inference-at-the-edge/

References 71

[23] D. Foster. Generative Deep Learning. (Kindle Locations 242-243).
O’Reilly Media. Kindle Edition.

[24] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly:
Semi-supervised anomaly detection via adversarial training,” in Asian
Conference on Computer Vision, pp. 622–637. Springer, 2018

[25] Biomimicry 3.8 https://biomimicry.net/resource-handbook/
[26] A. M. Turing, (October 1950). “Computing machinery and intelli-

gence”. Mind. LIX (238): 433–460. https://academic.oup.com/min
d/article/LIX/236/433/986238?login=false

[27] E. B. Baum, D. Boneh and C. Garrett, “On genetic algorithms.” COLT
’95 (1995).

[28] Y. Ran, X. Zhou, P. Lin, Y. Wen and R. Deng, “A Survey of Predictive
Maintenance: Systems, Purposes and Approaches”, IEEE Communica-
tions Surveys and Tutorials, Nov. 2019.

[29] M. Ghallab, D. Nau, and P. Traverso. Automated planning and acting.
Cambridge University Press, 2016.

[30] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Leder-
berg. Applications of Artificial Intelligence for Organic Chemistry: The
DENDRAL Project. New York: McGraw-Hill

[31] C. Sabo, K. Cohen, “Fuzzy logic unmanned air vehicle motion plan-
ning”, Advances in Fuzzy Systems Volume January 2012 Article No.:
13, pp 13. https://doi.org/10.1155/2012/989051

[32] M. Xu, W. C. Ng, W. Yang, B. Lim, J. Kang, Z. Xiong, D. Niyato, Q.
Yang, X. S. Shen, C. Miao. (2022). A Full Dive into Realizing the Edge-
enabled Metaverse: Visions, Enabling Technologies, and Challenges.
https://doi.org/10.48550/arXiv.2203.05471

[33] M. Bojarski, B. Firner, B. Flepp, L. Jackel, U. Muller, K. Zieba and
D. Del Testa, “End-to-End Deep Learning for Self-Driving Cars”.
https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

[34] C. D. Schuman, S. R. Kulkarni, M. Parsa, et al. “Opportunities for
neuromorphic computing algorithms and applications”. Nat Comput Sci
2, 10–19 (2022). https://doi.org/10.1038/s43588-021-00184-y

[35] J. Popper, J. Hermann, K. Cui, et al. (2018). Artificial intelligence across
industries - IEC Whitepaper.

[36] O. Vermesan, J. Reiner, C. De Luca, M. Coppola (Eds). Artificial Intel-
ligence for Digitising Industry Applications. ISBN: 9788770226646,
River Publishers, 2022.

[37] The German Artificial Intelligence (AI) Standardization Roadmap,
2020, https://www.din.de/resource/blob/772610/e96c34dd6b1290
0ea75b460538805349/normungsroadmap-en-data.pdf

https://academic.oup.com/mind/article/LIX/236/433/986238?login=false
https://academic.oup.com/mind/article/LIX/236/433/986238?login=false
https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf
https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf

