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1 Fundamentals of the Method

kOmega is a Matlab script to calculate the average flow velocity and water depth of
rivers and open-channel flows from sequences of images of the water surface recorded
with a camera. The analysis is based on the method described in Dolcetti et al., 2022.
The script computes the frequency-wavenumber spectra of the input set of images,
and runs an optimisation routine to compare the measurements with the theoretical
dispersion relation of water waves and to identify the set of flow parameters that
provide the best fit with the measured data.

The method allows the estimation of the average flow velocity without requiring
the presence of artificial tracers. It implements a robust analytical model of the wa-
ter surface dynamics, therefore the accuracy is not undermined by the presence of
gravity waves (including standing/stationary waves). The method is best suited for
the analysis of videos or sets of images where surface deformations such as gravity
waves are clearly visible, although it can also be applied in the absence of visible
waves in the presence of artificial or natural floating tracers with suitable density.

Note: This script is intended for research applications only. The results of
the analysis shall be interpreted with caution and always validated against estab-
lished measurement methods. The Authors decline any responsibility for damage or
harm resulting from the inappropriate use of the script or of any part of it.

1.1 Types of surface deformations

The water surface of rivers and open-channel flows shows the presence of multiple
types of surface deformations (e.g., Muraro et al., 2021). For the kOmega method, it
is important to distinguish between gravity-capillary waves and turbulence-generated
or turbulence-forced surface deformations. These surface deformations produce dis-
tinct features in the frequency-wavenumber spectra of the water surface of river and
open-channel flows (Dolcetti et al., 2016).

Figure 1: Examples of water surface dominated by different types of deformations.
Left: turbulence-forced deformations (boils). Right: gravity-capillary waves.

Gravity-capillary waves are generally defined as sinusoidal long-crested waves
comprising multiple crests and troughs, although the combination of multiple gravity-
capillary waves can also produce patterns that are difficult to identify visually.
Gravity-capillary waves do not move at the same speed of the underlying flow. This
can affect the accuracy of standard optical velocimetry approaches if gravity waves
or ripples are used as tracers (e.g., Dolcetti et al., 2020). Instead, gravity-capillary
waves propagate relative to the flow with the intrinsic celerity ci, which varies with
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the wavelength (long waves are faster than short waves) and which also depends on
the depth of the flow, d:

ci(d) =

√
gd

(1 +B)

B

tanh(kd)

kd
, (1)

where B = ρgk−2γ−1 is the so-called Bond number (which tends to infinity for long
gravity-dominated waves), ρ is the water density, g is the acceleration due to gravity,
and γ is the surface tension coefficient. Gravity-capillary waves are also advected
by the flow, therefore their velocity in the streamwise direction is increased by an
amount proportional to the speed of the flow.

Turbulence-generated surface deformations can appear at the surface of
turbulent flows with different forms and shapes such as boils, scars, vortex dimples
(e.g., Brocchini and Peregrine, 2001; Muraro et al., 2021). Although their dynamics
are still largely unknown, they are believed to move downstream approximately at
the same speed of the flow. Hence, their speed is independent of their wavenumber.

Note: within kOmega, tracers (either artificial or natural, such as seeding particles,
leaves, foam, etc.) are effectively equivalent to turbulence-generated surface defor-
mations, since they also move at the same speed of the flow. Therefore, the method
can be used also with artificial or natural tracers.

1.2 Frequency-wavenumber spectra

kOmega exploits the relationship between the speed of the different types of waves
and the flow parameters (velocity and water depth) to estimate the flow conditions.
It does so by means of a Fourier-based approach applied to sequences of images of
the water surface, which produce the so-called frequency-wavenumber spectrum. In
fact, the speed or celerity of a wave is proportional to the ratio between its frequency
f and wavenumber k:

c =
2πf

k
. (2)

Frequency and wavenumber describe the temporal and spatial scales of a sinu-
soidal fluctuation. The frequency f (Hz) is the inverse of the period P (s), f = 1/P ,
and it indicates the number of cycles per second measured at a fixed location in
space. The wavenumber k (rad/m) is the spatial equivalent of frequency, it is pro-
portional to the inverse of the wavelength λ (m), |k| = 2π/λ, and it indicates how
many full wavelengths are found in a 1 m length. The wavenumber is a vector with
modulus k = |k| directed in the direction of propagation of the wave. The two
components of the wavenumber vector along the x and y directions are denoted as
kx and ky, respectively.

The relationship between frequency and wavenumber (the so-called dispersion
relation) can be approximated with the following equations (see Dolcetti et al.,
2022), for turbulence-generated deformations:

f =
1

2π
k ·Us, (3)

and for gravity-capillary waves:

f =
(1− β)

2π
k ·Us ±

1

2π

√
(βk ·Us)

2 + (kci)2, (4)

©2023. This work is licensed under a CC BY 4.0 license. 3/15

https://creativecommons.org/licenses/by-sa/4.0/


0

0
0

Figure 2: Dispersion relation of gravity-capillary waves in two-spatial dimensions.
ω = 2πf . Taken from Dolcetti et al., 2022.

where Us is the surface flow velocity,

β = (1− α)
tanh(kd)

kd
, (5)

and α = Ū/Us is the so-called velocity index, i.e., the ratio between the depth-
averaged flow velocity Ū and the surface velocity Us. Note that the dispersion
relation of turbulence-generated surface fluctuations (eq. (3)) depends linearly on
the surface flow velocity Us, while the dispersion relation of gravity-capillary waves
(eq. (4)) shows a more complex dependence on both the surface flow velocity Us and
on the water depth d.

The discrete frequency-wavenumber spectrum is employed for decomposing a
space-time signal such as a sequence of images into a discrete set of sinusoidal
components (waves), each with wavenumber components kx,q and ky,p and with
frequeny fn. This is achieved by means of a Fourier transform in three dimensions (x,
y, and time). It is assumed that a set of digital images is represented by a 3D matrix
ZNy×Nx×Nt , where Ny and Nx are the number of pixels in the y and x-direction,
respectively, and Nt is the number of frames. Zη,ξ,τ indicates the instantaneous
intensity of the pixel corresponding to the spatial co-ordinates y = ηLy/Ny and x =
ξLx/Nx at the time t = τT/Nt, where Ly and Lx are the physical dimensions covered
by the image (in m), and T is the duration of the set of images or video. Then,
the discrete frequency-wavenumber spectrum INy×Nx×Nt is a 3D matrix obtained by
means of three discrete Fourier transforms applied along all three dimensions of the
data, i.e.,

Ip,q,n =
1

NxNyNt

∣∣∣∣∣
Ny−1∑
η=0

Nx−1∑
ξ=0

Nt−1∑
τ=0

Zη,ξ,τ exp [−i2π (qη/Ny + pξ/Nx − nτ/Nt)]

∣∣∣∣∣
2

. (6)

Ip,q,n = I(ky,p, kx,q, fn) indicates the contribution in terms of energy that can be
attributed to a wave with wavenumber components ky,p = p2π/Ly and kx,q = q2π/Lx

and with frequency fn = n/T . If gravity-capillary waves or turbulence-generated
waves are present at the water surface, the frequency-wavenumber spectrum will
have a larger amplitude at the frequency-wavenumber combinations that satisfy
equations (3) and (4).
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Figure 3: Effect of a variation of the flow velocity (a, b) or of the water depth (c,
d) on the frequency-wavenumber spectra of the water surface fluctuations. In (a,b)
the depth is kept constant and the flow velocity is varied. In (c,d) the flow velocity
is kept constant and the depth is varied. (a,c): cross-section along the streamwise
direction. (b,d): cross-section along the lateral direction. Taken from Dolcetti et al.,
2022.

1.3 Estimation of the flow velocity and depth

The approach of kOmega consists in fitting equations (3) and (4) to the high-energy
peaks of the measured frequency-wavenumber spectrum in order to identify the
optimal values of Ux and Uy (the two components of Us) and eventually of d that
better approximate the data. The fitting is performed by means of an optimiser
that searches for the maximum of the Normalised Scalar Product:

NSP =

[∑
p,q,n

Zp,q,nMp,q,n

][∑
p,q,n

Zp,q,n

∑
p,q,n

Mp,q,n

]−1

, (7)

where MNy×Nx×Nt is a synthetic Gaussian-weighed frequency-wavenumber spectrum
that follows equations (3) and (4).
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Note: Unlike Dolcetti et al., 2022, who used a Self-Adaptive Differential Evolution
(SADE) algorithm (Qin and Suganthan, 2005) for the optimisation, kOmega employs
the nonlinear constrained multivariable solver fmincon in Matlab, which is part of
the Optimization Toolbox. Please ensure that the toolbox is installed in
order to run the code.

-50 0 50

0

2

4

6

0

0.5

1

-50 0 50

0

2

4

6

0

0.5

1

-50 0 50

0

2

4

6

0

0.5

1

-50 0 50

0

2

4

6

0

0.5

1

Figure 4: Example of the fitting procedure. (a) and (b) show the streamwise (a) and
lateral (b) cross-section through the 3D measured frequency wavenumber spectrum.
(c) and (d) show the theoretical Gaussian-weighed spectrum M after the optimisa-
tion. The green lines are the theoretical dispersion relations, eq. (3) and eq. (4).
Taken from Dolcetti et al., 2022.

1.4 Uncertainties and guidelines

The main sources of uncertainty of the method have been discussed in detail by
Dolcetti et al., 2022. As is customary with other optical velocimetry approaches
such as LSPIV (Muste et al., 2008), the whole size of an image is usually split into
portions (Areas of Interest, AOI) where conditions are assumed to be homogeneous,
and for which a single value of velocity and/or depth is estimated. A smaller AOI
improves the resolution of the measured distribution of the flow parameters. How-
ever, Dolcetti et al., 2022 demonstrated that the uncertainty of the Fourier-based
approach implemented in kOmega is strongly dominated by the spectral resolution.
This defines the minimum detectable change of the dispersion relation and therefore
of the flow parameters, and it is inversely proportional to the size of the AOI and
to the duration of the sequence of images.
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For accurate results, the area of interest (AOI, the portion of image that is actually
used for the analysis) should be large enough to include multiple wavelengths (ideally
6-10).
The velocity estimations rely mostly on short ripples that can be detected accurately
even with a small AOI. Therefore, measurements of the velocity alone can be
performed with high accuracy even with a small AOI, thus enabling a
high spatial resolution of the velocity distributions.
On the other hand, the sensitivity of the spectra to depth variations is small and
controlled by waves with a wavelength larger than the water depth itself. As a
result, depth estimations require a large AOI, at least 6-10 times larger
than the water depth. Moreover, depth estimations are highly uncertain when
long waves are absent. This could be the case of relatively calm, slow and/or deep
flows with relatively small bed roughness. In these cases an accurate estimation of
the water depth could be impossible. Additionally, the depth can only be estimated
in the presence of gravity-capillary waves, while velocity estimations are possible
even with turbulence-generated surface deformations alone.

When this is possible without affecting the relevance of the results (e.g., in the
case of a relatively flat bathymetry) it is suggested to perform the analysis in two
steps. In the first step, it is recommended to use a very large AOI covering almost the
entire width of the river/channel to estimate an average water depth and velocity.
In the second step, a refined spatial distribution of velocity and eventually depth can
be calculated by means of multiple smaller AOI’s opportunely distributed in space.
During this second step, it is possible to either use the value of depth estimated
during the first step, or to select relatively narrow boundaries to at least constrain
the depth within reasonable limits. An exemplification of this two-step approach is
given in the examples included with the code.

1.5 Camera placement

The relationship between the pixel intensity of an image of the water surface and
the local surface deformation depends on multiple factors such as the camera angle
and sensitivity to light and the illumination conditions. These factors can affect
the detectability of the surface deformations. As discussed by Dolcetti et al., 2022,
better visibility of the waves is obtained with oblique-viewing cameras in spite of
nadir-looking ones (e.g., from drones), although too low angles may result in in-
creased ortho-rectification errors. Direct sun reflections and sun glint should be
avoided as well as shadows from river banks, bridges, trees, etc., whenever possible.
The camera should be fixed and stable, or the images stabilised.

Note: kOmega does not include the algorithms to perform the image ortho-
rectification or stabilisation. These steps should be performed externally with an-
other software or code prior to the analysis.
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Figure 5: Left: successful optimisation. Right: unsuccessful optimisation caused
by a local minimum. Note the discrepancy between the measured spectrum and
the theoretical relations in the latter case. Top: streamwise cross-section of the
spectrum. Bottom: lateral cross-section of the spectrum.

2 Matlab Script

2.1 Requirements

kOmega uses the nonlinear constrained multivariable solver fmincon in Matlab, which
is part of the Optimization Toolbox. The toolbox must be installed in order to
run the code.

2.2 Algorithm Steps

1. Input data and parameters

2. Images pre-processing

3. Calculation of the frequency-wavenumber spectrum

4. Spectrum pre-processing

5. Optimisation

6. Output

The main input data consists in sets of orthorectified grayscale images
provided in the form of a 3-dimensional array, where the 3 dimensions correspond to
the spatial y-axis, to the spatial x-axis, and to the time (frame) axis, respectively.
By default, kOmega analyses the whole data provided as input. If downsampling in
time and/or space is required, or if the analysis should be limited to a smaller Area
of Interest, then these should be identified and selected before running the code.
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Figure 6: Main steps of kOmega algorithm.
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Figure 7: The system of reference used in kOmega.

By default, kOmega runs the optimisation only once, using the average of the
lower and upper boundaries for each parameter as starting point (see 2.3). In the
case of very noisy data, for small AOI size, or when the starting point is distant
from the actual flow conditions, the optimisation algorithm may fail to identify the
global maximum of the SNP and give erroneous results. Often these errors are
easily identified by comparing the measured spectra with the theoretical relations
of eq. (3) and (4) (see Fig. 6). For these cases, kOmega provides an option to run
the optimisation multiple times with randomly selected starting points. The options
is activated by setting the parameter options.initialisation runs equal to the desired
number of runs. The duration of the computation will increase accordingly. The
optimal parameters are then identified as those with the highest SNP value across
all runs.

2.3 Input data and parameters

The code requires three inputs: the array of images that need to be analysed
(input images); a structure array containing the input parameters (input params);
and a structure array containing options for the optimisation (options).

2.3.1 input images

The input images should be a set of ortho-rectified grayscale images provided in the
form of a 3-dimensional array, where the 3 dimensions correspond to the spatial y-
axis, to the spatial x-axis, and to the time (frame) axis, respectively. For example,
input images(:,:,10) is the 10-th frame. kOmega accepts input as grayscale images or
double.

Note: In kOmega, the x and y axis correspond to the first and second dimensions of
the input images file, respectively. The positive x and y axis point in the direction
of increasing indices. Therefore, the x-axis is the horizontal axis pointing towards
the right. The y-axis is the vertical axis pointing downwards (see Fig. 7).

2.3.2 input params

These parameters include metadata for the set of images, expected boundaries of
the flow parameters, and pre-processing parameters. Some parameters are required,
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while others are optional. input params must be provided as a structure array with
the following fields:

input params.fps Frame rate of the input images. s−1

input params.pxl size Size of a pixel in the physical space. m
input params.velocity indx Velocity index, i.e., ratio between the depth-

averaged velocity Ū and the surface velocity
Us. See Hauet et al., 2018 for guidelines on
the choice of this parameter2. Typical values
are between 0.7 and 0.9, usually 0.83 to 0.85.

-

input params.segment duration Segments duration. The whole dataset is seg-
mented into shorter segments and the spectra
of each segment are then averaged. Shorter
segment durations help the noise converge
but also reduce the spectral resolution.

s

input params.overlap
(optional)

Default 0. Overlap between consecutive seg-
ments. input params.overlap must be a nu-
merical value between 0 and 1, where 0 means
no overlap and 0.3 means 30% overlap. An
overlap can be useful in the case of a small
number of frames to improve the spectrum
convergence.

-

input params.boundaries.velx [lb,ub] where lb and ub are the minimum and
maximum allowed values for the target pa-
rameter velx. Setting lb = ub effectively fixes
the parameter velx = lb = ub.

m
s−1

input params.boundaries.vely [lb,ub] where lb and ub are the minimum and
maximum allowed values for the target pa-
rameter vely. Setting lb = ub effectively fixes
the parameter vely = lb = ub.

m
s−1

input params.boundaries.depth [lb,ub] where lb and ub are the minimum and
maximum allowed values for the target pa-
rameter depth. Setting lb = ub effectively
fixes the parameter depth = lb = ub.

m

input params.depth
(optional)

Default [ ]. Fixed water depth value, so that
output params.depth = input params.depth. If
input params.depth is not declared or if in-
put params.depth = [ ], then the estimation
of the water depth is attempted.

m

input params.GravityWaves
(optional)

Default ’on’. Set input params.GravityWaves
= ’off’ to ignore the spectrum of gravity-
capillary waves, if needed.

-

input params.TurbulenceWaves
(optional)

Default ’on’. Set input params.Turbulence
Waves = ’off’ to ignore the spectrum of
turbulence-generated waves, if needed.

-

2Note that unlike typical non-contact velocimetry methods where the velocity index is only used
for estimating the depth-averaged velocity and thus calculating the flow rate, here the velocity index
also affects the wave dynamics (see eq. (4)). Therefore a different value of input params.velocity indx
will yield different estimates of the flow velocity and depth.
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2.3.3 options

These parameters include various options for the optimisation. In addition to a few
dedicated parameters listed below, any option for the fmincon optimiser described
in the fmincon documentation can be passed within the field options.optimoptions
using the dedicated Matlab function optimoptions.

options.output
(optional)

Default: ’2DSpectra’. Defines the form of the
komega spectrum output structure. By default, this
structure contains the 2D cross-sections along the x
and y-directions and the theoretical equations (3) and
(4). Setting options.output = ’3DSpectra’ forces the full
3D spectra to be passed to the output.

options.initialisation runs
(optional)

Default: 1. Number of runs for the optimisation. If
options.initialisation runs = 1 the optimisation is run
only once and the starting point for the optimiser is
the average of the lower and upper boundaries for each
parameter. If options.initialisation runs > 1, the optimi-
sation is run multiple times with initial points chosen
randomly each time within the provided boundaries.
This option can help with noisy data or data with small
AOI’s when the optimiser can struggle to identify the
global optimum.

options.parallel
(optional)

Default: ’off’. Parallel computing. If options.parallel =
’on’ the multiple optimisation runs are run in parallel
on multiple workers (using a parfor loop). This option
should only be used if options.initialisation runs > 1.

options.SNR factor
(optional)

Default: 1. Signal-to-Noise-Ratio threshold. The por-
tion of the measured frequency-wavenumber spectrum
with amplitude < options.SNR factor × the average of
the spectrum is identified as a noise-floor and removed
from the computation. Setting options.SNR factor <
1 lowers the threshold and could improve the perfor-
mance with noisy data.

options.GaussWidth
(optional)

Default: 1. Width of the Gaussian weighing function.
Larger values may improve the performance with noisy
data or in the presence of strong velocity gradients.

options.optimoptions
(optional)

Use the syntax options.optimoptions = optimop-
tions(. . . ) to pass any option to the fmincon opti-
miser. Refer to the official Matlab documentation for
the available options.3

3The examples included with the script show a successful application of the method obtained
with the following options: options.optimoptions = optimoptions(’fmincon’,’Algorithm’,’interior-
point’,’Display’,’notify’,’FunValCheck’,’on’,’OptimalityTolerance’,1e-12,’PlotFcn’,’optimplotx’); These
examples could serve as a starting point for the identification of the optimal parameters, which
will ultimately depend on the input data.
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2.4 Outputs

By default, kOmega attempts to estimate the three following parameters:

output params.velx x-component of the time-averaged surface flow ve-
locity

m s−1

output params.vely y-component of the time-averaged surface flow ve-
locity

m s−1

output params.depth time-averaged water depth m

The value of each parameter can be fixed if needed by setting identical lower-
and upper-boundary values for that parameter (see Sect. 2.3). An alternative way
to fix the water depth is to set the input parameter input params.depth equal to the
desired value (see Sect. 2.3). Both methods are equivalent.

kOmega also outputs the following optimisation diagnostics:

output params.NSP Normalised Scalar Product (eq. (7)) calculated for the op-
timal set of output parameters.

output params.info This is a streaming of the output field of the fmincon opti-
miser, with the diagnostics of the optimisation.

Additionally, kOmega outputs the 2D cross-sections of the measured frequency-
wavenumber spectra along the x and y-directions, and the data to plot eq.(3) and
(4) according to the estimated velocity and depth:

komega spectrum.Spectrum kx Pre-processed frequency wavenumber spec-
trum1. Cross-section along the x-direction
(with ky = 0).

komega spectrum.Spectrum ky Pre-processed frequency wavenumber spec-
trum1. Cross-section along the y-direction
(with kx = 0).

komega spectrum.fTurbx Theoretical frequency of turbulence-
generated waves, eq. (3), as calculated based
on the estimated flow velocity and water
depth. Cross-section along the x-direction,
f(kx).

s−1

komega spectrum.fTurby Theoretical frequency of turbulence-
generated waves, eq. (3), as calculated based
on the estimated flow velocity and water
depth. Cross-section along the y-direction,
f(ky).

s−1

komega spectrum.fGWx plus Theoretical frequency of gravity-capillary
waves, eq. (4), as calculated based on the
estimated flow velocity and water depth.
Cross-section along the x-direction, f(kx).

s−1

komega spectrum.fGWy plus Theoretical frequency of gravity-capillary
waves, eq. (4), as calculated based on the
estimated flow velocity and water depth.
Cross-section along the y-direction, f(ky).

s−1

1Note that this is the non-dimensional normalised spectrum used for the optimisation, which
has been pre-processed in order to facilitate the fitting, and which may differ significantly from the
raw frequency-wavenumber spectrum.
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komega spectrum.fGWx minus Like komega spectrum.fGWx plus, but con-
sidering the solution with the ‘-’ sign.

s−1

komega spectrum.fGWy minus Like komega spectrum.fGWy plus, but con-
sidering the solution with the ‘-’ sign.

s−1

If the full 3D arrays of the frequency-wavenumber spectra are needed, these can
be obtained in alternative to the 2D cross-section by setting options.output = ’Spec-
tra projections’ in the input options structure. In that case, the komega spectrum
structure will be as follows:

The following outputs require setting options.output = ’Spectra projections’
komega spectrum.kx kx array. rad

m−1

komega spectrum.ky ky array. rad
m−1

komega spectrum.f f array. s−1

komega spectrum.Spectrum Pre-processed 3D frequency wavenumber
spectrum1.

komega spectrum.fTurb Theoretical frequency of turbulence-
generated waves, eq. (3), as calculated based
on the estimated flow velocity and water
depth. 2D array, f(kx, ky)

s−1

komega spectrum.fGW plus Theoretical frequency of gravity-capillary
waves, eq. (4), as calculated based on the
estimated flow velocity and water depth. 2D
array, f(kx, ky)

s−1

komega spectrum.fGW minus Like komega spectrum.fGW plus, but consid-
ering the solution with the ‘-’ sign.

s−1

3 Reusing and Sharing

This work is licensed under a Creative Commons CC BY 4.0 license. This license al-
lows reusers to distribute, remix, adapt, and build upon the material in any medium
or format, so long as attribution is given to the creator. The license allows for com-
mercial use. If you remix, adapt, or build upon the material, you must license the
modified material under identical terms.

When sharing products obtained with kOmega or derived from kOmega and/or
from this document please reference the following article:

Dolcetti, G., Hortobágyi, B., Perks, M., Tait, S. J. & Dervilis, N.
(2022). Using non-contact measurement of water surface dynamics to es-
timate water discharge. Water Resources Research, 58(9), e2022WR032829.
https://doi.org/10.1029/2022WR032829.

1Note that this is the non-dimensional normalised spectrum used for the optimisation, which
has been pre-processed in order to facilitate the fitting, and which may differ significantly from the
raw frequency-wavenumber spectrum.
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4 Support

For support, questions, and to flag eventual bugs, please contact Dr Giulio Dolcetti:
giulio.dolcetti@unitn.it
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