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Abstract: The aim of this paper is to explore the potential capabilities of quantum machine
learning technology (a branch of quantum computing) when applied to surface quality supervi-
sion inside steel manufacturing processes where environmental conditions can affect the quality
of images. Comparison with classical deep learning classification schema is performed. The
application case, driven by the so-called quantvolutional configuration, shows a large potential
of using this technology in this field, mainly because of the speed when using a physical quantum
engine.
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1. INTRODUCTION.

Scale is the product of oxidation which occurs during
steel hot rolling, which involves reheating of steel in a
reheating furnace, multipass hot rolling, and air cooling
in the interpass delay time and after rolling. The scale
formed during the heating of steel to rolling temperature
in the reheating furnace is known as primary scale and it
must be removed before hot rolling, looking for producing
steel products with high surface quality and for reducing
roll wear (Pirón Abellán et al., 2009).

If scale is a uniformly well-adhered covering on the steel,
then it can make an ideal protective barrier. Unfortunately,
the scale is not uniform, nor it is well-adhered. It is less
reactive than the steel underneath, and consistent with
the behavior of two dissimilar metals when in contact.
The scale can ‘pop off’ the surface, cracking the coating
and allowing moisture to penetrate. This allows a galvanic
reaction to occur which results in pitting corrosion (rust)
on the base steel (Tavakkolizadeh and Saadatmanesh,
2001; Basabe and Szpunar, 2004).

Removal of scale is virtually impossible by hand (see Fig-
ure 1). It is extremely tedious and time consuming using
power tool cleaning methods. Several types of descaling
processes are used for the removal of scale from the surface

Fig. 1. Descaler equipment in charge of primary scale
removal.

of the hot rolled steel bars. These descaling processes are
usually classified into four categories. These are,

• Flame cleaning process,
• Mechanical descaling processes,
• Hydraulic descaling process, and
• Chemical descaling processes.

In the carbon steel industry, when applied to hot billets,
the hydraulic descaling process is commonly used, because
one of the key factors in determining the quality of the final
product is the scale removal process, and the performance
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Puerta de Hierro 2, 28040 Madrid
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San José de Calasanz 31, 26004 Logroño, Spain (e-mail:

ana.gonzalez@unirioja.es)
† Sidenor Investigación y Desarrollo SA, Barrio Ugarte s/n, 48970,

Basauri, Bizkaia, Spain (e-mail: aintzane.soto@sidenor.com)

Abstract: The aim of this paper is to explore the potential capabilities of quantum machine
learning technology (a branch of quantum computing) when applied to surface quality supervi-
sion inside steel manufacturing processes where environmental conditions can affect the quality
of images. Comparison with classical deep learning classification schema is performed. The
application case, driven by the so-called quantvolutional configuration, shows a large potential
of using this technology in this field, mainly because of the speed when using a physical quantum
engine.

Keywords: Steel Descaler, Quality of Steel Billet, Quantum Deep Learning, Quantvolutional
Neural Network, Deep Learning, Quality in Steel Industry

1. INTRODUCTION.

Scale is the product of oxidation which occurs during
steel hot rolling, which involves reheating of steel in a
reheating furnace, multipass hot rolling, and air cooling
in the interpass delay time and after rolling. The scale
formed during the heating of steel to rolling temperature
in the reheating furnace is known as primary scale and it
must be removed before hot rolling, looking for producing
steel products with high surface quality and for reducing
roll wear (Pirón Abellán et al., 2009).

If scale is a uniformly well-adhered covering on the steel,
then it can make an ideal protective barrier. Unfortunately,
the scale is not uniform, nor it is well-adhered. It is less
reactive than the steel underneath, and consistent with
the behavior of two dissimilar metals when in contact.
The scale can ‘pop off’ the surface, cracking the coating
and allowing moisture to penetrate. This allows a galvanic
reaction to occur which results in pitting corrosion (rust)
on the base steel (Tavakkolizadeh and Saadatmanesh,
2001; Basabe and Szpunar, 2004).

Removal of scale is virtually impossible by hand (see Fig-
ure 1). It is extremely tedious and time consuming using
power tool cleaning methods. Several types of descaling
processes are used for the removal of scale from the surface

Fig. 1. Descaler equipment in charge of primary scale
removal.

of the hot rolled steel bars. These descaling processes are
usually classified into four categories. These are,

• Flame cleaning process,
• Mechanical descaling processes,
• Hydraulic descaling process, and
• Chemical descaling processes.

In the carbon steel industry, when applied to hot billets,
the hydraulic descaling process is commonly used, because
one of the key factors in determining the quality of the final
product is the scale removal process, and the performance

Quantum Deep Learning for Steel Industry
Computer Vision Quality Control.

Javier Villalba–Diez ∗,∗∗ Joaqúın Ordieres-Meré ∗∗∗
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San José de Calasanz 31, 26004 Logroño, Spain (e-mail:

ana.gonzalez@unirioja.es)
† Sidenor Investigación y Desarrollo SA, Barrio Ugarte s/n, 48970,

Basauri, Bizkaia, Spain (e-mail: aintzane.soto@sidenor.com)

Abstract: The aim of this paper is to explore the potential capabilities of quantum machine
learning technology (a branch of quantum computing) when applied to surface quality supervi-
sion inside steel manufacturing processes where environmental conditions can affect the quality
of images. Comparison with classical deep learning classification schema is performed. The
application case, driven by the so-called quantvolutional configuration, shows a large potential
of using this technology in this field, mainly because of the speed when using a physical quantum
engine.

Keywords: Steel Descaler, Quality of Steel Billet, Quantum Deep Learning, Quantvolutional
Neural Network, Deep Learning, Quality in Steel Industry

1. INTRODUCTION.

Scale is the product of oxidation which occurs during
steel hot rolling, which involves reheating of steel in a
reheating furnace, multipass hot rolling, and air cooling
in the interpass delay time and after rolling. The scale
formed during the heating of steel to rolling temperature
in the reheating furnace is known as primary scale and it
must be removed before hot rolling, looking for producing
steel products with high surface quality and for reducing
roll wear (Pirón Abellán et al., 2009).

If scale is a uniformly well-adhered covering on the steel,
then it can make an ideal protective barrier. Unfortunately,
the scale is not uniform, nor it is well-adhered. It is less
reactive than the steel underneath, and consistent with
the behavior of two dissimilar metals when in contact.
The scale can ‘pop off’ the surface, cracking the coating
and allowing moisture to penetrate. This allows a galvanic
reaction to occur which results in pitting corrosion (rust)
on the base steel (Tavakkolizadeh and Saadatmanesh,
2001; Basabe and Szpunar, 2004).

Removal of scale is virtually impossible by hand (see Fig-
ure 1). It is extremely tedious and time consuming using
power tool cleaning methods. Several types of descaling
processes are used for the removal of scale from the surface

Fig. 1. Descaler equipment in charge of primary scale
removal.

of the hot rolled steel bars. These descaling processes are
usually classified into four categories. These are,

• Flame cleaning process,
• Mechanical descaling processes,
• Hydraulic descaling process, and
• Chemical descaling processes.

In the carbon steel industry, when applied to hot billets,
the hydraulic descaling process is commonly used, because
one of the key factors in determining the quality of the final
product is the scale removal process, and the performance

Quantum Deep Learning for Steel Industry
Computer Vision Quality Control.

Javier Villalba–Diez ∗,∗∗ Joaqúın Ordieres-Meré ∗∗∗
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Puerta de Hierro 2, 28040 Madrid
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in the reheating furnace is known as primary scale and it
must be removed before hot rolling, looking for producing
steel products with high surface quality and for reducing
roll wear (Pirón Abellán et al., 2009).

If scale is a uniformly well-adhered covering on the steel,
then it can make an ideal protective barrier. Unfortunately,
the scale is not uniform, nor it is well-adhered. It is less
reactive than the steel underneath, and consistent with
the behavior of two dissimilar metals when in contact.
The scale can ‘pop off’ the surface, cracking the coating
and allowing moisture to penetrate. This allows a galvanic
reaction to occur which results in pitting corrosion (rust)
on the base steel (Tavakkolizadeh and Saadatmanesh,
2001; Basabe and Szpunar, 2004).

Removal of scale is virtually impossible by hand (see Fig-
ure 1). It is extremely tedious and time consuming using
power tool cleaning methods. Several types of descaling
processes are used for the removal of scale from the surface

Fig. 1. Descaler equipment in charge of primary scale
removal.

of the hot rolled steel bars. These descaling processes are
usually classified into four categories. These are,

• Flame cleaning process,
• Mechanical descaling processes,
• Hydraulic descaling process, and
• Chemical descaling processes.

In the carbon steel industry, when applied to hot billets,
the hydraulic descaling process is commonly used, because
one of the key factors in determining the quality of the final
product is the scale removal process, and the performance
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of hydraulic descaling is convenient (Farrugia et al., 2014).
Some steel grades only require a water pressure of 220
bar, but the volume of water can be high. However, with
high alloyed steel grades, the water flow can be reduced
by around 50%, which is the case in the application under
consideration here.

A scale which is not properly removed can be combined
with the steel billet as it passes through the mill, resulting
in defective or lower quality steel because of inclusions
inside the steel. In addition, pickup of the rolls, if not
properly cleaned, can easily be transferred onto the steel
material (billets in this case), and may result in the
final steel product falling below the customers’ quality
standards (Yun et al., 2009; Utsunomiya et al., 2014).

Based on the previous context, to characterize the billets
at the exit of the descaler, before starting their trans-
formation through the mill makes full sense. Therefore,
steelmakers can install an optical camera at the exit of
the descaler to assess the effectiveness of the scale removal
(see Figure 2). The contribution of the present work is to
discuss to what end an automatic system can be used to
determine the quality of the billet product, as it can be also
used to provide extra information for assessing the quality
of coming transformations for the downstream plants.

The usage of machine learning techniques in steel industry
is not new, and it is widely used for prediction (Ordieres-
Meré et al., 2010) and clustering purposes (González-
Marcos et al., 2014). With the advent of machine learning
technologies such as deep learning, the effort by scientists,
researchers, and engineers to design artificial vision sys-
tems that exhibit bionic features of visual acuity (Caves
et al., 2018; Park et al., 2020) and accurate visual motion
detection (Fu et al., 2019b; Zhao et al., 2020) has been con-
siderable. One of the main reasons for the success of deep
neural networks in performing artificial vision is their abil-
ity to discover the statistical properties of data with grid–
like topology such as: shift–invariance, compositionality,
and local clustering (Simoncelli and Olshausen, 2001).
Convolutional networks use this mathematical property
to excel in extracting relevant information from shift–
invariant grid–like data–sets. The compositionality comes
from the multi–resolution of the dataset, for instance, the
RGB channels of a colored pixel, and local clustering is at-
tained because the grid–like dataset presents similar local
characteristics (Chollet, 2018). Indeed, there are applica-
tions where quality is the main goal (Ordieres-Meré et al.,
2013). Deep Learning as a tool for quality classification
in industry was also applied (Villalba-Diez et al., 2019;
Schmidt et al., 2020), including the steel one (Fu et al.,
2019b,a; Hao et al., 2021; Psuj, 2018; Zheng et al., 2021).

As far as Autosurveillance project deals with attack and
failure detection both at the process component level and
at the facility level, digging into the quality of the product
at the beginning of the transformation makes full sense to
bring contextual information to the process status when
considered as a whole. Therefore, in this application case,
the goal is to develop an accurate binary classification
system that can efficiently help production people, but
also safety, as it can contribute to understand the intrinsic
variations in process signals. Although it can be carried out
by using modern Deep Learning (DL) techniques, in this

Fig. 2. Image example of billet from the descaler.

case by using the convolutional neural networks (CNN)
approach, it is also worthy to consider other potential
techniques that can become not just quicker than CNN
but also bring a wider set of alternatives and algorithms
capable of estimating uncertainty in the decision. Then,
the research questions being addressed in this paper can
be formulated as

(1) Can Quantum Deep Learning (QDL) be useful in de-
ciding about product quality by considering computer
vision images?

(2) In case of positive answer to the previous question,
how effective the QDL approach can be regarding the
existing CNN technology?

To answer these questions, a set of two hundred and
seventy eight images, which are well balanced, from the
rear part of the descaler are taken and manually scored
(see Figure 2). Then, a 5-fold cross validation was used to
evaluate the trained models. Based on such sets, different
algorithms have been tested to estimate the classification
parameters of efficiency. The rest of the paper hereinafter
is structured as follows: Section 2 will introduce the QDL
approach, which includes a short review of the state of
the art, Section 3 presents the results and a discussion
of the selected case, and finally Section 4 summarizes the
findings, limitations and presents further research as this
is an ongoing effort.

2. QUANTUM DEEP LEARNING.

Quantum computing is a novel computation paradigm
that examines the flow and processing of information
as physical phenomena that follow the laws of quantum
mechanics. This is possible because quantum computing
makes use of “superposition”, which is the ability of quan-
tum computers to be simultaneously in multiple different
states (Gyongyosi and Imre, 2019). By doing so, quantum
computing has shown promising performance increases in
solving certain unassailable problems in classical com-
puting such as integer factorization targeted by Shor’s
algorithm (Shor, 1994) and Grover’s algorithm for un-
structured search (Grover, 1996). It has opened new ways
of solving some problems, e.g., in machine learning (Bia-
monte et al., 2017), finance (Woerner and Egger, 2019),
or human interaction (Villalba-Diez et al., 2020). Industry
4.0 problems using machine learning are likely to benefit
from quantum models of computation (Villalba-Diez and
Zheng, 2020; Villalba-Diez et al., 2021).

Quantum computing uses quantum discrete units of infor-
mation, the qubit (quantum bit) (Jaeger, 2007). Qubits
represent elementary units of information exchange in
quantum computing, similar to the “bits” of classical
computing. A bit is always in two basic states, either 0
or 1, while a qubit can be in both bases of these states
simultaneously. The characteristic is also known as su-
perposition. Quantum computing normally uses the Dirac
notation that represents the two bases of computing of
these states |0〉 and |1〉. A quantum gate consists of several
mathematical operations applied to the qubits that change
the amplitude of their probabilities and thus perform the
intended computations (Nielsen and Chuang, 2010).

The Hadamard gate H is a fundamental single qubit gate
that creates an equal superposition of the two basis states
|0〉 and |1〉. It can also be expressed as a [π/2] rotation
around the Y axis, followed by a [π] rotation around the
X axis. On the other hand, the U3(θ, φ, λ) gate is also a
single qubit gate that has three parameters θ, φ and λ
which represent a sequence of rotations around the Bloch
sphere’s axes –a geometrical representation of qubit states–
such that [φ] around the Z axis, [−π/2] around the X axis,
[θ] around the Z axis, [π/2] around the X axis, and a [λ]
around the Z axis. It can be used to obtain any single qubit
gate. Equation 1 provides its mathematical representation:

U3 |Ψ〉 =


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cos(
θ

2
) −eiλsin(

θ

2
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eiφsin(
θ
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and Equation 2 represents its quantum circuit equivalent:

|Ψ〉 U3(θ, φ, λ) . (2)

Deep learning is a recent technique of machine learning
that has substantially impacted the way in which clas-
sification, inference, and artificial intelligence (AI) tasks
are performed and it emerged in areas such as vision,
where it may be necessary to allow a machine to learn a
model that contains several layers of abstraction of the raw
input data. In general, deep neural networks (DNNs) may
contain several levels of abstraction encoded into a highly
connected, complex graphical network, and training such
graphical networks is the goal of deep learning. Although
DNNs have demonstrated excellent performance in a vari-
ety of problems, they have also some limitations, such as
the large datasets and the time required to be trained. In
this sense, quantum computing can provide improvements
in computational speed and learning efficiency, with a
possible need of less data to train models.

To allow a proper comparison of the performance asso-
ciated with quantum pre–processing of the images, the
deep learning framework used to evaluate the images pre–
processed with the quantum algorithm and without pre–
processing are identical. They first perform a flattening on
the image, then have a dense layer with a typical softmax
activation. Since this is a multiclass classification problem,
a sparse categorical cross–entropy is used to compute the
loss of the model with a standard adam optimizer. For
this application case, a specific architecture setup was as
presented in Figure 3.

Fig. 3. CNN architecture created for the classification
problem.

The CNN is a standard model in machine learning, which
is particularly suitable for processing images. The model
is based on the idea of a convolution layer where, instead
of processing the full input data with a global function,
a local convolution is applied. Small local regions of the
input image are sequentially processed with the same
kernel. The results obtained for each region are usually
associated to different channels of a single output pixel.
The union of all output pixels produces a new image-
like object, which can be further processed by additional
layers.

The first attempt to extend the CNN paradigm to quan-
tum computing came from Cong et al. (2019). The model
of QCNN applies the convolution layer and the pooling
layer, which are the main features of CNN, to quantum
systems as follows:

• The convolution circuit finds the hidden state by ap-
plying multiple qubit gates between adjacent qubits.

• The pooling circuit reduces the size of the quantum
system by observing the fraction of qubits or applying
2-qubit gates such as CNOT gates.

• Repeat the convolution circuit and pooling circuit
defined in the previous steps.

• When the size of the system is sufficiently small,
the fully connected circuit predicts the classification
result.
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notation that represents the two bases of computing of
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the amplitude of their probabilities and thus perform the
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The Hadamard gate H is a fundamental single qubit gate
that creates an equal superposition of the two basis states
|0〉 and |1〉. It can also be expressed as a [π/2] rotation
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X axis. On the other hand, the U3(θ, φ, λ) gate is also a
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sphere’s axes –a geometrical representation of qubit states–
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Deep learning is a recent technique of machine learning
that has substantially impacted the way in which clas-
sification, inference, and artificial intelligence (AI) tasks
are performed and it emerged in areas such as vision,
where it may be necessary to allow a machine to learn a
model that contains several layers of abstraction of the raw
input data. In general, deep neural networks (DNNs) may
contain several levels of abstraction encoded into a highly
connected, complex graphical network, and training such
graphical networks is the goal of deep learning. Although
DNNs have demonstrated excellent performance in a vari-
ety of problems, they have also some limitations, such as
the large datasets and the time required to be trained. In
this sense, quantum computing can provide improvements
in computational speed and learning efficiency, with a
possible need of less data to train models.

To allow a proper comparison of the performance asso-
ciated with quantum pre–processing of the images, the
deep learning framework used to evaluate the images pre–
processed with the quantum algorithm and without pre–
processing are identical. They first perform a flattening on
the image, then have a dense layer with a typical softmax
activation. Since this is a multiclass classification problem,
a sparse categorical cross–entropy is used to compute the
loss of the model with a standard adam optimizer. For
this application case, a specific architecture setup was as
presented in Figure 3.

Fig. 3. CNN architecture created for the classification
problem.

The CNN is a standard model in machine learning, which
is particularly suitable for processing images. The model
is based on the idea of a convolution layer where, instead
of processing the full input data with a global function,
a local convolution is applied. Small local regions of the
input image are sequentially processed with the same
kernel. The results obtained for each region are usually
associated to different channels of a single output pixel.
The union of all output pixels produces a new image-
like object, which can be further processed by additional
layers.

The first attempt to extend the CNN paradigm to quan-
tum computing came from Cong et al. (2019). The model
of QCNN applies the convolution layer and the pooling
layer, which are the main features of CNN, to quantum
systems as follows:

• The convolution circuit finds the hidden state by ap-
plying multiple qubit gates between adjacent qubits.

• The pooling circuit reduces the size of the quantum
system by observing the fraction of qubits or applying
2-qubit gates such as CNOT gates.

• Repeat the convolution circuit and pooling circuit
defined in the previous steps.

• When the size of the system is sufficiently small,
the fully connected circuit predicts the classification
result.
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The model used to satisfy this structure is known as Mul-
tiscale Entanglement Renormalization Ansatz (MERA),
where its major limitations happen because it exponen-
tially increases the size of the quantum system for each
depth by adding qubits of |0〉.
Recent applications of visual information pre–processing
with quantum circuits, dubbed quanvolutional neural net-
works, assign a qubit to each pixel of the convolution win-
dow and perform different rotations that allow to achieve
reasonable performance in image recognition in standard-
ized datasets such as MNIST, at first with randomized
layers (Henderson et al., 2019) and later increasing perfor-
mance without it (Henderson et al., 2021). Its operational
configuration works by,

• A small region of the input image is embedded into a
quantum circuit, where to avoid using a large number
of qubits, a mask of 2x2 elements was adopted.

• A quantum computation, associated with a unitary
U , is performed on the system. The unitary could be
generated by a variational quantum circuit or, more
simply, by a random circuit as proposed in Henderson
et al. (2019).

• The quantum system is finally measured, obtaining a
list of classical expectation values.

• In a similar way to a classical convolution layer, each
expectation value is mapped to a different channel of
a single output pixel.

• Repeating the same procedure over different regions,
the full input image is processed, producing an output
object which can be handled as a multichannel image.

• The quantum convolution can be followed by the
same dense neural network layers than in the CNN
architecture.

These applications, however, apply an identical weight to
all pixels in the circuit, which prevents the hierarchical
pre–processing of the information. To pre–process the rel-
evant information more accurately, we propose to consider
the pixels of the convolution window as a network whose
edges have weights that allow to adjust their importance.
Specifically, we start by visualizing each of the four pixels
of a 2x2 convolution in a fully connected directed network.
We assign a qubit to each of the pixels and perform rota-
tions as indicated by the quantum circuit of the Equation 3
to each of the junctions between the |Ψj〉 and |Ψk〉 pixels.
By performing this convolution repeatedly, we obtain an
effective pre–processing of the images. The pre–processing
process is shown in Figure 4.

|Ψj〉 |0〉 H U3(
πθj
2 , 0, 0) U3(

−πθj
2 , 0, 0) U3(π,

−π
2 , π

2 )

|Ψk〉 |0〉 •
• •

(3)

We expect this type of convolution based on a pixel net-
work to perform better than those previously proposed,
since it allows establishing conditional relationships be-
tween pixels, resulting in a better understanding of the
whole convolutional window. On the other hand, we expect
these same conditional rotations to affect the monotonic-
ity of the convergence of the deep learning algorithm.
Thus, we do not expect monotonic learning, but that the
asymptotic result will be better than that of the classical
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model. We now turn in Section 3 to summarize the results
obtained.

3. MAIN RESULTS AND DISCUSSION.

The results shown in Figure 5 demonstrate similar valida-
tion accuracy and loss with the quantum pre–processing
filter than without it. The learning process, however, as
expected, shows an improvement in computational speed
when the quantum pre–processing is applied. That is, the
QDL approach requires less training epochs to converge
than the CNN counterpart: the average number of epochs
to convergence lowered from 24 in the CNN case to 18.
In this sense, it is worth noting that 35% of QDL trained
models were more than twice as fast as the CNN ones.
In this research, a simulated four qubits quantum device
was considered, where the processing time is similar to
CNN. The processing speed is dramatically increased when
the physical device is used, whereas error correction due
to physical temperature induced noise must be consid-
ered (Mahajan, 2011; Patterson et al., 2021).

The receiver operating characteristic curve (ROC) in Fig-
ure 6 shows the performance of the classification model at
different classification thresholds. The two configurations
tested exhibit a similar behaviour. In Table 1 we show
the related F1–score of the different classes, according to
the trained classifier, when new data not previously seen
were analyzed, i.e., the average and standard deviation of
the F1–scores computed across the test folds (5-fold cross
validation). The summary of the comparison gives a consis-
tent perspective: similar performance of both alternatives,
except a 0.4% in favor of the CNN, which is very promising
considering that the CNN is a full developed solution and
the quantum quantvolutional proposal is the first step in
the research in this field.

Mean ± std. dev. F1 – Score measures

Class Quantum Deep Learning CNN Deep Learning
Good Quality 0.968 ± 0.030 0.970 ± 0.035
Bad Quality 0.960 ± 0.037 0.964 ± 0.036

Table 1. F1–score performance of the classifier.

4. CONCLUSIONS.

The aim of the paper was to explore the capabilities
of quantum machine learning when applied to surface
quality supervision in steel industry, using as application
case the descaler operation because it is critical for the

Fig. 5. Result with and without quantum pre–processing.

Fig. 6. Comparison – Quantum and CNN Deep Learning
Receiver Operating Characteristic Curve.

properties of steel products. The analysis carried out in
the previous section shows a very interesting capability
in classification of computer vision problems, where using
physical quantum devices with just four qubits allows a
powerful and faster classification tool, with acceptable
performance.

Regarding the performance, future research will look to
improve the stability of learning as well as to compare

with the quanvolutional approach with different number
of sequential quantum convolution layers. In addition, the
other source of improvement will be to replace the classical
deep network after the convolution step by a quantum deep
network, using the ideas of Pérez-Salinas et al. (2020).

From the practical application point of view, different
steel production plants, such as finishing lines can also
be analyzed, which raise several challenges, such as mul-
ticlass classification with unbalanced datasets, which also
requires further research. Further research should explore
ways to increase performance stability. This could be done
by designing new quantum convolutional filters. Alterna-
tively, inspecting new algebraic structures such as unitary
transforms could potentially lead to better results.
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