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RDF Describes data by defining relationships between data entities 
expressed using URIs (Uniform Resource Identifiers) and related via 
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Executive summary 

Deliverable (D) 4.7 is the fifth out of five deliverables, produced by Work Package (WP) 4 of the DWC 
projects, which pertains to managing data and systems in an interoperable way. This document builds 
upon D4.4 which details the semantic interoperability design requirements and D4.1, which outlined 
an interoperable and secure flow of information. Within the water sector, there exist a myriad of 
under- or un-utilized data within both the consortium and the domain in total. Therefore, we proposed 
the development of a middleware framework consisting of generic components for semantic 
alignment and matching to be able to utilize existing and novel data, across multiple systems and 
software components.  

This report describes the development of a microservice structured middleware that provides data 
transformation from different file formats such as CSV, TSV, JSON into the FIWARE NGSIv21 format 
across multiple protocols, allowing stakeholders to easily integrate their systems and data sources into 
the DWC FIWARE ecosystem without having to write their own data converters. The middleware has 
been implemented following the requirements described in D4.4 [1]. While the original idea of 
developing a microservice framework with generic components was changed to utilizing FIWARE 
instead, the implementation is still using a microservice architecture albeit as a part working in tandem 
with FIWARE and exposes an OpenAPI2 endpoint for users. 

Following the implementation details, the report also describes how the middleware is applied in one 
of the project pilots in the Paris Case Study, which monitors bathing water quality using data from 
multiple data sources, detailing how the middleware handles data sources with different access levels 
and authorizations. 

The report also describes the development and changes to the smart data models used in the project, 
as well as the proposed inputs to the existing SAREF ontologies, and the process for doing so. 

 

 

 

                                                           

 

1 https://fiware.github.io/specifications/ngsiv2/stable/ 
2 https://swagger.io/specification/ 
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1. Introduction 

1.1. Summary of DWC and objectives of work package 4 and subtask 4.3.3 

DWC aims at creating digital solutions to link water management in the physical world to the digital 
spheres such as sensor networks, real-time monitoring, machine learning, etc.  

24 partners from 10 countries work together in the case study cities Berlin, Copenhagen, Milan, Paris 
and Sofia and support the utilities and municipalities in improving water quality, return on investment 
and public information about water-related issues.  

Core of work package (WP) 4 is to ensure that the digital solutions are designed, developed and 
deployed in a way in which data and information are exchanged with the utility systems in a cyber-
secure and interoperable way. This includes a risk analysis and proposition of risk reduction measures 
to protect data and systems from unauthorized access as well as the description of semantic models 
and interoperability design guidelines. The tasks focus on the digital solutions and their impacts on the 
existing infrastructures, but not on general cyber-physical risks. 

As the DWC project progressed, the nature of subtask 4.3.3 of WP4 changed. The subtask was originally 
aiming to create a reusable microservice framework providing generic components for 
communication, data management and semantic interoperability. However, in the early stages of the 
Digital-Water.city project these objectives changed and it was decided at project management level 
that the existing FIWARE framework should be used instead. This decision was primarily made based 
on that other collaborating research projects in the DigitalWater 2020 and ICT4Water clusters were 
also implementing digital solutions based on FIWARE and FIWARE already offered an architecture and 
a set of open-source components that could support interoperability in the sector. Furthermore, 
multiple stakeholders in the project identified use cases, which aligned with FIWARE. Thus, 4.3.3 has 
changed character where we provide pluggable components interoperable with the FIWARE 
ecosystem as well as creating data transformers for the standardized data models and ontologies 
create in 4.3.1 and 4.3.2 as well as contribute to develop standardized data models and ontologies for 
the water management domain to facilitate semantic interoperability. These components can be 
placed within existing data pipelines and FIWARE instances as middleware. As a result, the original 
development on the framework was stopped in favor of this solution, and development was aligned 
with subtask 4.3.1 (Semantic interoperability design requirements) and 4.3.2 (Developing the DWC 
reference ontology) and how the partners are utilizing FIWARE, with an initial focus on the 
implementations created in Milan and Paris. 

The subtasks 4.3.1 and 4.3.2 have mapped out several use-case scenarios for the digital solutions in 
the DWC project where they will require some middleware to perform semantic interoperability. These 
use-case scenarios are described in D4.1 [2], D4.4 [1] and D4.5 [3]. Due to the changing requirements 
of the middleware described above, we decided to focus on some specific use cases instead of focus 
on generic functionality. Thus, we have in this work focused on mapping requirements related to the 
physical and logical architecture of the Paris case so that we can better support interoperability 
through the means of standardized data models and middleware components. We focused on the 
Paris case as it brought up interesting challenges in aspects regarding data ingestion, interoperability 
and use.  Therefore, the output from these subtasks is a key driver for this subtask providing both the 
design requirements but also providing key insights into the existing solutions and how we can interact 
with those. With collaboration with the partners in 4.3.3 we have also received feedback on our 
solution and how they wish to utilize it to achieve semantic interoperability across their solutions. 
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As part of the development of the semantically interoperable middleware the work described in this 
report targets three objectives: (1) introduce the software components that will be used in order to 
create the semantic middleware, including FIWARE and the surrounding architecture; (2) document 
how the development of the middleware component(s) have been done so far, as well as the future 
plans for development; (3) document the requirements as generically as possible in order to support 
reusability in other deployments taking place in the DWC project. With respect to the latter objective, 
the structuring and notation used in this report is guided by the ARCADE Framework3, a domain- and 
technology independent architectural description framework for software intensive systems. 

1.2. Structure of this document 

D4.7 consists of 5 main chapters, starting with the overall approach in chapter 2, describing the link 
between other deliverables and an overview outlining the core technologies and general ICT 
components utilized to realize development of the DWC middleware.  

Chapter 3 outlines the development process and software architecture for the DWC semantic software 
solution, how it interacts with FIWARE and how it can be used by the DWC solutions. It gives a brief 
overview of containerization, how it’s used in D4.7 and how it enables us to create coordinating 
components. Furthermore, it details the core context management in FIWARE and how it can interact 
with other systems. Chapter 4 subsequently details its usage in the Paris case and its interaction across 
multiple systems by multiple vendors. It also shows both technical and semantic interoperability 
between systems, services, and data. 

Chapter 5 describes how D4.7 assists in standardizing data models and how it extends and creates new 
data models for DWC. It details the procedures for submitting requirements to smartdatamodels.org 
and the extensions for those models for use in DWC. Whereas chapter 6 details our input to the SAREF 
ontologies and proposed extensions from the DWC project. 

New in this report from the previous D4.6 report is the more detailed description of how the 
middleware solution has been implemented, as many of the future developments mentioned in 
D4.6 have now been implemented. Additionally, it details the changes made to the Smart Data 
Models since the previous deliverable as well as the change requests made towards the SAREF 
ontologies used in DWC. 

Following external review, section 3.1 has been clarified and a new section 3.3 has been added to 
provide details on how the semantic middleware actually uses OWL data models. 

2. Overall Approach 

We decided to create novel components working in tandem with the FIWARE ecosystem based on the 
sketches outlined in the 4.4 deliverable. D4.4 [1] describes design requirements for implementing a 
semantic interoperability middleware architecture and will outline how we implemented these 
requirements. 

                                                           

 

3 http://arcade-framework.org/assets/documents/ARCADE-Example.pdf 
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We will follow the development processes as outlined utilizing a microservice architecture where we 
compose our components into reusable containers, based on Docker4. This chapter begins with a brief 
introduction to the most relevant concepts from both Docker and the FIWARE 
framework before we denote how we will move all developed code from the existing microservice 
framework into the ecosystem.  

2.1. Link between D4.4 and D4.7 

The requirements captured in D4.4 [1] will serve as the basis for the development of the semantic 
interoperability software outlined in this document. It serves as a classic requirement engineering 
process where requirement elicitation is the first natural step. This basis will allow us to create a more 
complete ontology for the DWC project as we will be able to design a more semantically relevant 
model. However, some information is also backported as the initial development performed in D4.6 
[4] could be showcased for the partners in meetings w.r.t the virtual workshops performed in D4.4 [1] 
so that we could collect feedback as early as possible. 

The decision to create a containerized application that works either within FIWARE or as a standalone 
component(s) also comes from the elicitation process performed in D4.4 [1] as not all partners fully 
understand how to utilize FIWARE and elect to perform processes more familiar to them. Therefore, 
the process is performed in iterations where we continuously seek to gather requirements as we 
develop so that we can change the software across releases until the final delivery. 

2.2. Introduction to Containerization 

Containerization is an approach to software development in which an application or service, its 
dependencies, and its configuration (abstracted as deployment manifest files) are packaged together 
as a container image. The containerized application can be tested as a unit and deployed as a container 
image instance to the host Operating System (OS)5. 

Software containerization enables developers and IT professionals to deploy them across 
environments with little or no modification. Importantly, this also allows them to isolate applications 
from each other on a shared OS, cloud system or with segregated networks. Containerized applications 
run on top of a container host that in turn runs on the OS (Linux or Windows). Containers therefore 
have a significantly smaller footprint than classical virtual machine (VM) images.  

Another benefit of containerization is scalability. You can scale out quickly by creating new containers 
for short-term tasks. From an application point of view, instantiating an image (creating a container) 
is like instantiating a process like a service or web app. This is also very beneficial for reliability, as it is 
quick and easy to spin up a new container should one crash, and they can be run in parallel on different 
hosts or VM, across domains. In short, containers offer the benefits of isolation, portability, agility, 
scalability, and control across the whole application lifecycle workflow. The most important benefit is 
the environment’s isolation provided between Dev and Ops. 

                                                           

 

4 https://www.docker.com/ 
5 https://aka.ms/microservicesebook 
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2.3. Introduction to Docker 

Docker is an open-source project for automating the deployment of applications as portable, self-
sufficient containers that can run on the cloud or on-premises. To support this functionality Docker 
provides a generic platform on demand for running these containers. Docker containers differentiate 
themselves from Virtual Machines because it uses only OS-level virtualization to run a container, 
without the developer having to think about the underlying platform. This means that multiple 
containers run on only a single OS kernel. 

Therefore, Docker containers can run anywhere, on-premises in the customer datacenter, in an 
external service provider, on a research lab or local machine, or in the cloud. Developers can use 
development environments whether on Windows, Linux, or MacOS as such making Docker suitable in 
interdisciplinary projects with cross-cutting concerns.  

2.4. Introduction to FIWARE 

FIWARE is a framework of open-sourced software components targeted towards digitalisation and 
smart application of data across multiple application domains. The focal point of FIWARE is 
interoperable solutions for context management. This includes the ability to source data from 
measurement devices (e.g., sensors), represent these source data in a wider context representation, 
and provide the means for accessing these context data by end-user applications. The five architectural 
perspectives of the framework are illustrated in Figure 1. In the following sections, we will focus on 
the three in the middle, namely Core Context Management, Interface with IoT, and Context Processing, 
Analysis and Visualisation, as these are the ones that are most relevant for the middleware being 
developed.  

 

Figure 1. FIWARE Framework6 

                                                           

 

6 Illustration taken from https://www.fiware.org/developers/ 
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2.4.1. Core Context Management 

The Core Context Management part of FIWARE represent the ability to produce, gather, publish and 
consume context data and turn this into actionable information to be applied by end user applications.  

The context data are represented through values assigned to attributes that contribute to define the 
entities and are managed by a Context Broker. A Context Broker is a core and mandatory component 
of the FIWARE framework that allows for storing, updating and subscribing to the entities representing 
the context via a standardised REST API (NGSIv2 or NGSI-LD as described below). Orion7 is a Context 
Broker that has been released by FIWARE. Orion provides an NGSI v2 API. In addition, the following 
Context Brokers providing NGSI-LD APIs are under incubation: Orion-LD Context Broker8, the Scorpio 
Broker9, and the Stellio Context Broker10.  

In addition to the Context Broker the Core Context Management also include Generic Enablers11 that 
enable to store context data persistently, such as STH-Comet12, Cygnus13, Draco14 and QuantumLeap15.  

The context itself is defined by means of the FIWARE NGSI16 API. NGSI defines a data model for 
describing context information; a context data interface for exchanging information via queries, 
subscriptions, and updates; and a context availability interface for exchanging information on how to 
obtain context information. There are basically two NGSI versions that are relevant, NGSIv2 and NGSI-
LD. The main elements in the NGSIv2 model are entities, attributes, and metadata, as shown in Figure 
2. An entity represents a physical or logical object (e.g., a sensor, a person, an issue in a ticketing 
system) defined by an identifier and a type definition, an attribute represents some property of the 
entity (e.g., a measurement value), while the metadata describes additional “data about the data”, 
such as the accuracy of the measurement value or the location of a sensor.  

 

                                                           

 

7 https://fiware-orion.readthedocs.io/en/master/#welcome-to-orion-context-broker 

8 https://github.com/FIWARE/context.Orion-LD 

9 https://github.com/ScorpioBroker/ScorpioBroker 

10 https://github.com/stellio-hub/stellio-context-broker 

11 A Generic Enabler is a component that is considered general purpose and independent of any particular usage area. 

12 https://github.com/telefonicaid/fiware-sth-comet 

13 https://fiware-cygnus.readthedocs.io/en/latest/ 

14 https://github.com/ging/fiware-draco 

15 https://github.com/smartsdk/ngsi-timeseries-api 

16 https://fiware.github.io/specifications/ngsiv2/stable/ 
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Figure 2. NGSIv217 

 

The other version of NGSI, NGSI-LD, where LD stands for Linked Data, has a different underlying data 
model than NGSIv2. Here, data are described in triples in a subject-predicate-object pattern resulting 
in a graph representation of the context data.  Furthermore, in NGSI-LD the ID of an entity should be 
a Uniform Resource Identifier (URI) ensuring a consistent representation of the identifier of an entity. 

Figure 3 shows the underlying model of NGSI-LD. As the figure shows, there is no metadata element, 
and the Attributes element in NGSIv2 now refers to either Property or Relationship where the former 
represents literal values (strings, decimals, etc.) while the latter represent relationships between 
different entities.  

 

Figure 3. NGSI-LD18 

                                                           

 

17 Illustration taken from https://www.fiware.org/developers/ 

 
18 Illustration taken from https://www.fiware.org/developers/ 
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Figure 4 and Figure 5 illustrate how data are formatted using NGSI v219 and NGSI-LD20. These JSON 
snippets, which both represent an extract of the WeatherObserved data model21, shows how 
temperature and precipitation is represented along with a timestamp and information about the 
weather station providing the measurements.  

As these examples show, there are some notable differences in how data are represented. First, 
NGSIv2 is represented as basic JSON format22, while NGSI-LD is represented using JSON-LD23. Further, 
in NGSI-LD the ID shall be represented using a URI, not a simple string value as in NGSIv2. Each attribute 
in NGSI-LD shall contain two fields, a property and a value, whereas in NGSIv2 an attribute can be 
represented by just a value. In NGSI-LD, a context element is added to provide fully qualified names 
(URIs) associated to terms. This is like how namespaces are used in XML.  

 

                                                           

 

19 https://fiware.github.io/specifications/ngsiv2/stable/ 

20 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf 

21See https://github.com/smart-data-models/dataModel.Weather/blob/master/WeatherObserved/README.md 

22 https://www.json.org/json-en.html 

23 https://json-ld.org/ 
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Figure 4. NGSIv2 example 

 

Figure 5. NGSI-LD example 

2.4.2. Interface with IoT 

In order to interface with devices and systems providing context data to the Context Broker and its 
NGSI API, the IDAS Generic Enabler provides a set of IoT Agents supporting different IoT protocols. 
Currently IoT Agents for the following protocols are provided: JSON (over HTTP/MQTT), Lightweight 
M2M (LWM2M), Ultralight, LoRaWAN, OPC-UA and Sigfox.  

2.4.3. Context Processing, Analysis and Visualisation 

This architectural layer provides Generic Enablers that aim to enable processing, analysis and 
visualisation of context information. Examples of Generic Enablers in this area are: Wirecloud24 for 
visualisation of integrated data, Knowage25 for business analytics and Kurento26 for real-time 
processing of media streams. 

 

                                                           

 

24 https://wirecloud.readthedocs.io/en/stable/ 

25 https://knowage.readthedocs.io/en/latest/ 

26 https://kurento.readthedocs.io/en/stable/ 
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2.5. Introduction to the DWC semantic interoperability development methodology 

The DWC digital solutions are developed by various stakeholders with differing experience with 
regards to DevOps. The IT/OT operations are placing their primary importance of adamant security, 
ensuring that additional software being installed does not weaken or expose the security of the 
existing solutions, as well as to provide robust software, which the different teams, with their different 
constrains can use. We decided to utilize containerization to support their production operations, so 
that the IT/OT team(s) can decide within which network segregation they want the software deployed. 
Ensuring that the local experts have control over their software will allow them to configure only the 
parts they require to reduce the attack surface.  

We originally planned to use a microservice oriented architecture which would orchestrate and 
coordinate multiple services, interfacing with multiple types of databases while supporting different 
communication protocols. To fulfil these requirements in a generic manner each microservices 
supported CQRS communicating primarily using either HTTP(s) or AMQP as between client apps and 
the microservices, using asynchronous communication for data updates. These were propagated 
based on Integration Events and an Event Bus. However, since FIWARE supports this type of 
architecture we changed our building blocks to an interoperable container based on HTTP 
communication which can leverage the DRACO broker from FIWARE for intersystem communication 
like a distributed event bus, i.e., a distributed software bus that interconnects multiple disparate 
systems. 

The development of the semantic interoperability software has used a design science approach based 
on a framework developed for R&D and the development of information systems [5]. The approach 
facilitates an agile development process, which focuses on user-centric design, early validation and 
reusing existing software. This process is especially applicable in multidisciplinary projects like DWC. 
The following methods have been selected to ensure close collaboration with industry and that the 
results are planned for usage in active operations: 

• both the design and development processes were conducted in close collaboration between 
all actors involved in the system so that we could quickly start prototyping architecture and 
logical units.  

• qualitative studies of the various prototypes developed throughout the project was evaluated 
with multiple facets so that we could understand user-interactions, the ramifications to their 
existing infrastructure and the movement throughout the supply chains. The project adopted 
multiple iterations using an agile approach. The semantic interoperability prototype was 
developed based on SOTA open-source frameworks, e.g., OWL. We have enhanced it and 
added missing features of the platform.   
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3. Utilization and development of interoperability software 

The semantic interoperability software has been developed as container(s) that can run either inside 
the FIWARE ecosystem or as a stand-alone component translating and matching resources using either 
FIWARE or SPARQL or another generic linked datastore. We do this to support a standalone application 
while being interoperable with the future semantic work ongoing in the FIWARE project and 
SAREF4WATR27. 

3.1. Initial development 

During the initial developments on the interoperability software, the FIWARE components and other 
applications that were to be used were tested and deployed as separate Docker images. Building upon 
this, the “dockerized” FIWARE components were then added to a compose file which could then be 
used to set up and deploy all included images without any additional input, excluding any local 
configurations like changing passwords and which ports to use. 

Figure 6 shows an example of a minimal docker compose file28, which is a YAML file defining services, 
networks, and volumes, to set up docker images for a FIWARE Orion Context Broker and FIWARE Draco 
Generic Enabler as well as their dependencies. Both these are compliant with NGSI v2. Note that while 
ports and passwords are hard coded in this example, they can just as easily be read from a config file 
or passed as environment variables at runtime. 

 

Figure 6. An example compose file for a Generic Enabler and Context Broker 

                                                           

 

27 https://saref.etsi.org/saref4watr/v1.1.1/ 
28 https://docs.docker.com/compose/compose-file/ 
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Since a Context Broker does not store historical data, it is useful to set up third-party storage of some 
kind. Figure 7 shows how a FIWARE Generic Enabler can be set up to subscribe to the data stream of a 
Generic Enabler and store updates values to a MySQL database. This is done using a set of processors 
that handle the tasks required to write the data to more persistent storage. First, the initial processor 
establishes an HTTP connection and sets up a subscription in the Context Broker, specifying which 
events it should be notified of. The second processor handles the task of reading the new data and 
storing it to the database. While not required, the third processor does the work of logging the actions 
of the other processors if configured to do so. 

 

 

Figure 7. FIWARE Draco data flow from Orion to MySQL 

3.2. Data management middleware 

To facilitate all digital solutions in the DWC project with a semantic interoperability software, we 
needed to ensure that we developed something that was applicable to the implementors.  As the 
development must work in conjunction with FIWARE without the partner developers having to adapt 
their solutions to integrate the software, we decided to deliver the software as standalone 
components. Therefore, we leverage both the DRACO generic enabler and the Origin broker as 
described in 3.1 and 2.4. 

As there are multiple levels of network segregation between the different IT/OT teams in the project 
consortia, they use a multitude of protocols and methods for publishing data from their SCADA or 
other types of secure systems. Although HTTP is a close to ubiquitous protocol, multiple partners utilize 
other methods for data transfer, especially in push configurations, meaning that data is pushed from 
the secure system(s) to FIWARE through our middleware. Furthermore, the systems work on differing 
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logical levels, such as on file systems and FTP/SFTP/SCP using files as transmission medium. To support 
the different modes of operations we’ve created a data management component which acts as 
forwarder and conversion agent to the other FIWARE components. 

This system implements a physical filesystem provider, working on both Windows, Linux, Samba, NTFS, 
and UNC to monitor a filesystem hierarchy detecting new, changed, deleted, or appended files and will 
perform necessary file conversion(s) to the data which support semantic data in FIWARE. Thus, 
allowing the various stakeholders to interact with FIWARE without changing existing workflows by 
converting the different files and datums into NGSI v2 so that the other components can interact with 
semantically enriched data. 

Using the methodology outlined in 3.1 for data storage in combination with traditional data ingestion, 
either through HTTP/MQTT or other IoT protocols, allows us to combine the persistent data with 
semantic models, linked data, and ontologies. This means we can use the stored sensor- and 
operational data in combination the semantic data structures, both static and dynamic. This is 
beneficial because it's impossible to create an all-inclusive ontology, therefore we use local domain 
ontologies and databases which allows us to create new ontology elements automatically using a 
reasoner [6]. This process is what enables us to create a standalone microservice, which can also be 
used within the FIWARE ecosystem. Using a simple API gateway or an orchestrator allows the 
application to be “context-independent” i.e. it uses HTTP with a configured persistent storage (such as 
configured in the compose file), to provide both intra- and intercommunication.  

There were two primary reasons for selecting this method. The first being that it would allow us to 
place the container within or outside of the FIWARE ecosystem while still supporting both systems and 
it allows industrial partners or other stakeholders to utilize private datasets, which can be, but does 
not have to be shared in a global network. Utilizing a combination of public and private data enables 
us to provide more sophisticated matchmaking in conjunction with the Ontology, which can result in 
better data quality. The increased quality comes from having more instance data in the ontology, which 
allows us to do interference and exchange data more accurately between the entities registered, thus 
increasing the quality of the middleware. For new entities that are not registered in the ontology, we 
can possibly infer its property and perform matching by utilizing a reasoner based on the ontology and 
existing instance data. This means we can better match resources (registered entities in the software 
i.e., IoT-sensor) based on their semantic properties due to having access to more data. 

The second reason was that for many operations, the stakeholders IT/OT team(s) do not want to 
manage any more dependencies than necessary. Deploying the container as a FIWARE component 
allows the software to be managed as a part of their existing FIWARE management, reducing the 
overhead for operations. Although, for stakeholders who do not need FIWARE and simply interacts 
with it, a standalone module will provide less configuration and management overhead. This allows us 
to interact with multiple data stores without necessarily having permission access to the same 
networks or ecosystem. 

3.3. Extending the middleware with additional semantic functionality 

In complex and dynamic data exchange scenarios, multiple data providers and consumers may be 
involved in the data exchange, and the data integration process will likely have to deal with complex 
data formats, possibly describing data from other domains but water management. The goal of the 
semantic interoperability middleware is to employ semantics to support mediation between different 
data providers/consumers and a FIWARE Context Broker. Here, semantics refer to the DWC Reference 
Ontology and techniques for inferring the underlying meaning of concepts in order to map different 
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formats. Preparing for such data integration in a fully manual fashion will require significant resources 
when mapping the syntax and semantics of these different data exchange, hence, semi-automated 
methods should be explored. The system architecture of the semantic interoperability middleware 
prepares for such semi-automated data integration scenarios. Here, different types of syntactic and 
semantic matching algorithms can be applied to identify mappings between data exchange formats to 
the DWC Reference Ontology (see D4.5 [3] for more details), effectively supporting ontology-based 
data integration (OBDI) [7]. The mapping between the ontology concept (to which elements in the 
different source data schemas are mapped to) and the corresponding element in the appropriate 
standardised data model used to store data in the FIWARE Context Broker is supported by the context 
references provided by the Smart Data Models initiative29.  

3.3.1. Overall systems architecture for the Semantic Interoperability Middleware 

Figure 8 depicts the core software components needed to enhance the middleware as described 
above. The DWC Reference Ontology will be used as a mediator between the formats used by data 
consumers / providers interacting with the FIWARE Context Broker. The Syntactic Matching Services 
and the Semantic Matching Services implemented as micro services will employ techniques from the 
research areas of schema- and ontology matching [8] to match elements of the data exchange formats 
to concepts defined in the DWC Reference Ontology.  

 

Figure 8. Overall component view of Semantic Interoperability Middleware. 

From the DWC Reference Ontology these techniques can employ both concept names, associated 
properties (and hence structural characteristics) and textual annotations associated with both 
concepts and properties. Here, we define Syntactic Matching Services as basic string-matching 
techniques, such as variants of Edit distance30, while Semantic Matching Services use techniques that 
aim to capture the underlying meaning of words and identify similarity despite differences in word 
compositions. In the latter category of techniques, we also include external sources of background 

                                                           

 

29 https://github.com/smart-data-models/data-models/tree/master/context 
30 https://en.wikipedia.org/wiki/Edit_distance 
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knowledge, such as WordNet31 and BabelNet32. Natural Language Processing (NLP) services, such as 
such as those included in Laser Translation Toolkit33, can support the Semantic and Syntactic Matching 
Services by e.g., parsing natural language definitions associated with the data exchange formats and 
concepts in the DWC Reference Ontology. The value of such an approach will self-reinforce as the 
number of element-to-concept mappings increase. In this case the element-to-concept mappings can 
be employed in the matching process.  

Figure 9 shows a high-level sequence view involving the middleware. Here, data exchange formats 
used by the Target System (i.e., the FIWARE Context Broker in our case) and the Source System (i.e., 
the system that will provide / consume data to/from the FIWARE Context Broker) are mapped to the 
DWC Reference Ontology. The mappings, containing element-wise alignment between the data 
exchange formats and the DWC Reference Ontology, are returned to the respective systems and stored 
within the middleware. Of course, the automatically generated mappings must be verified by human 
interaction before they are stored within the middleware. This way, whenever a Source System will 
interact with the FIWARE Context Broker, it may continue to use its original data exchange format.  

 

Figure 9. Overall sequence view of Semantic Interoperability Middleware. 

The benefit of using such an approach is when there are multiple Source Systems using different data 
exchange formats that map to a single ontology or multiple ontologies.  

3.4. Future developments 

As the system matures and more instance data is added to the system the semantic middleware can 
benefit from combining its reasoning capabilities with machine learning on the semantically enriched 
data for a hybrid system. One of the main advantages of the ontologies created for DWC is the ability 
to add new data to the system which can be reasoned upon automatically. Given the implemented 
properties and triplet representation, a major improvement to the capabilities of the system would be 

                                                           

 

31 https://wordnet.princeton.edu/ 
32 https://babelnet.org/ 
33 https://engineering.fb.com/2019/01/22/ai-research/laser-multilingual-sentence-embeddings/ 
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Knowledge Graph Embedding (KGE), which would support services such as search, ranking and 
inference in hierarchical relationships.  

KGE would allow for advanced analytics on the data facilitating a host of new operations available to 
the different pilots in the project, not only in the traditional graph-analytics sense, but also for artificial 
intelligence operations such as link-prediction and within the scope of DWC, most importantly 
recommender systems, to overcome the limitations of reinforcement learning. This would allow use 
to the graph to map a priori knowledge in combination with the embedded data to infer new 
knowledge. 

4. Semantic interoperability for the ALERT system for in situ e.coli and 

enterococci measurements and machine learning based early warning 

system for bathing water quality 

The semantic interoperability software with the accompanying smart data models as described in 
chapter 5, has been deployed and tested in the two pilots in Paris. The pilots are both trying to solve 
different needs and are thus relying on different types of data, formats, and protocols. The early 
warning software for bathing water quality is an open-source software interface that enables real-time 
bathing water quality assessment34. 

The middleware in this pilot will coordinate multiple data sources in both a push and pull configuration, 
interacting with different types of communication protocols and formats. The system relies on real-
time data from the SIAAP EDEN system (Environmental Data Exchange), however, for security reason, 
this data can only be acquired in a push configuration i.e., data can only be pushed from EDEN to 
whichever system needs to utilize their data. Furthermore, the system also requires real-time 
freshwater, river flow and other data from different companies and Paris municipality, fetched on 
demand through different APIs servicing data in CSV, TSV and JSON formats. These data sources must 
be coordinated and converted to NGSIv2 formatted ‘smart’ data models supporting semantics, which 
can enrich the data and thusly provide additional value than the raw data. Therefore, the middleware 
acts as a coordinator receiving data from EDEN using SFTP protocol, simultaneously fetching other data 
from various APIs and converting these on the fly, before pushing it into the FIWARE Orion broker, 
with valid converted smart models. Since the data from the SFTP protocol should support the regular 
REST calls in FIWARE: GET, POST, PATCH, DELETE verb, the middleware contains a file system hook 
which detects changes in the file system using a physical file system provider (thus also working in 
containers), which can detect new files, changes or appends to files and the deletion of said files. These 
events are thus propagated to the FIWARE instance to ensure that the semantic data is consistent with 
the data pushed from SIAAP. 

 

                                                           

 

34 https://www.digital-water.city/solution/machine-learning-based-early-warning-system-for-bathing-water-quality/ 
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Figure 10: Shows the data flow from EDEN to the middleware 

The semantic interoperability middleware contains a map of the physical files and fetched API data, 
which is managed through a smart model manager, and not until a proper response has been received 
from the FIWARE instance is the in-memory manage updated. This ensure that the manager has the 
same state as the FIWARE instance without any polling necessary. This also ensures that the 
middleware can serialize a map of the order of operations from the remote partner, and that all parties 
observe the same state. 

5. Input to Standardised Data Models  

5.1. Procedures for submitting requirements to smartdatamodels.org 

Smart Data Models35 is an initiative that develops standardised data models for several application 
domains, including water management.  These data models are compliant with the NGSIv2 and NGSI-
LD formats specified by the standardisation body ETSI, and which are used to represent digital entities 
in FIWARE Context Brokers. Standardising the data models that are used to describe data within an 
ecosystem is an important step towards interoperability. The procedures for contributing to 

                                                           

 

35 https://smartdatamodels.org/ 
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smartdatamodels.org are specified in a Contributions Manual36. In short, the manual states the 
following workflow for making contributions: 

 

According to this workflow, the DWC team followed the recommended path supported by guidelines 
in meetings with a member of smartdatamodels.org.  

Based on the requirements collected in Deliverable D4.4 [1] in DWC we identified a need for one new 
data model (following Option 2 in the workflow) and extensions to existing data models (point 3 in the 
workflow).  

The new data model, called Water Quality Predicted, is described in Section 5.3.1, while the extensions 
required from DWC are listed in Section 5.2.  

5.2. List of required extensions from DWC 

Data Element Description Relevant Data Model 

UVLampIntensity Measures the efficiency of UV lamps as 
milliwatts per square centimetre. 

Device 

Added as Controlled Property 
Type 

 

UVOrganicLoad Measures the spectral absorption 
coefficient of fluids. 

Device 

Added as Controlled Property 
Type 

escherichiaColi Escherichia coli or E. coli is a type of 
fecal coliform bacteria that is commonly 
found in the intestines of animals and 
humans. E. coli in water is a strong 

Water Quality Observed 

Added as new property 

                                                           

 

36 https://docs.google.com/presentation/d/e/2PACX-1vTs-
Ng5dIAwkg91oTTUdt8ua7woBXhPnwavZ0FxgR8BsAI_Ek3C5q97Nd94HS8KhP-
r_quD4H0fgyt3/pub?start=false&loop=false&delayms=3000#slide=id.p1 
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indicator of sewage or animal waste 
contamination. 

enterococci Enterococci are indicators of the 
presence of fecal material in water and, 
therefore, of the possible presence of 
disease-causing bacteria, viruses, and 
protozoa. 

Water Quality Observed 

Added as new property 

waterLevel The water level at a certain place in a 
reservoir, river, storage tank, or similar. 

Water Observed 

Added as new property 

waterDischarge The amount of water discharged from a 
wastewater treatment plant or 
stormwater overflows. 

Water Observed 

Added as new property 

soilTextureType Describes the different soil texture 
types as a set of possible enumeration 
values: “Clay”, “Clay, Sandy”, “Clay, 
Silty”, “Loam”, “Loam, Clay”, “Loam, 
Sandy”, “Loam, Sandy Clay”, “Loam, 
Silty”, “Loam, Silty Clay”, “Sand”, “Sand, 
Loamy”, “Silt”. These enumeration 
values are defined according to the soil 
texture triangle calculator, defined by 
the US Department of Agriculture37.  

AgriParcel 

Added as new property 

irrigationSystemType Describes the type of irrigation system 
applied as a set of possible 
enumeration values: “Surface 
irrigation”, “Localized irrigation”, “Drip 
irrigation” and “Sprinkler irrigation”, 
“Center pivot irrigation”, “Lateral move 
irrigation”, “Sub-irrigation”, and 
“Manual irrigation”. These 
enumeration values are defined by the 
Centres for Disease Control and 
Prevention38.  

AgriParcel 

Added as new property 

 

5.3. Smart Data Models 

5.3.1. Water Quality Predicted Data Model 

                                                           

 

37 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 
38 https://www.cdc.gov/healthywater/other/agricultural/types.html 
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Since the description of the Water Quality Predicted data model in deliverables D4.4 [1] and D4.5 [3] 
we have changed the name of the model from Water Quality Prediction to Water Quality Predicted to 
follow the nomenclature of smartdatamodels.org and added two timestamps datePredicted (the 
timestamp for when the prediction was made) and expiryDate (a timestamp for when the prediction 
is not valid anymore). An example payload of the Water Quality Predicted data model is shown below.  

 { 
    "id": "1024e64a-0283-472c-9b62-dbf77291503e", 

    "type": "WaterQualityPredicted", 

    "dateCreated": { 

     "type": "DateTime",    

    "value": "2021-05-20T14:05:00" 

    }, 

    "datePredicted": { 

     "type": "DateTime",    

    "value": "2021-05-20T14:04:00" 

    }, 

    "expiryDate": { 

     "type": "DateTime",    

    "value": "2021-05-21T14:05:00" 

    }, 

    "location": { 

    "type": "geo:json", 

    "value": { 

      "type": "Point", 

      "coordinates": [48.9159, 2.21228] 

    } 

  }, 

    "predictionValues": { 

      "value": [ 

        { 

            "percentile": "2.5", 

            "prediction": 0.3 

        }, 

        { 

            "percentile": "50", 

            "prediction": 0.3 

        }, 

        { 

            "percentile": "90", 

            "prediction": 0.3 

        }, 

        { 

            "percentile": "95", 

            "prediction": 0.3 

        }, 

        { 

            "percentile": "97.5", 

            "prediction": 0.3 

        } 

    ] 

}, 

    "waterQualityPredictionValue": { 

        "value": "excellent" 

} 

} 

 

5.3.2. WaterObserved Data Model 

The properties waterDischarge and waterLevel have been added to the WaterObserved data model.  

{ 

  "id": "some-identifier", 

  "type": "WaterObserved", 

  "source": "URL to EDEN", 
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  "dateCreated": "2000-01-01T01:01:01Z", 

  "dateObserved": "2021-01-01T01:01:01Z", 

  "location": { 

      "type": "Point", 

      "coordinates": [38.84, 0.105] 

  }, 

  "flow": 8, 

  "waterLevel": 2.4, 

  "waterDischarge": 3 

} 

 

5.3.3. WaterQualityObserved Data Model 

The properties “enterococci” and “escherichiaColi” have been added to the WaterQualityObserved 
from Digital-Water.city. Values for these is shown below. 

{ 

    "id": "some-identifier", 

    "type": "WaterQualityObserved", 

    "source": "[URL to Fluidion´s server]", 

    "dateCreated": "2000-01-01T01:01:01Z", 

    "dateObserved": "2021-01-01T01:01:01Z",   

    "location": { 

        "type": "Point", 

        "coordinates": [38.84084, 0.10513] 

    },    

    "enterococci": 100, 

    "escherichiaColi": 100 

} 

 

5.3.4. Weather Observed Data Model 

Observed weather is relevant in Digital-Water.city and the WeatherObserved data model can be 
reused as is without the need for any extensions. A sample payload of this data model is shown below.  

{ 

  "id": "some-identifier", 

  "type": "WeatherObserved", 

  "dateObserved": "2016-11-30T07:00:00.00Z", 

  "location": { 

    "type": "Point", 

    "coordinates": [38.84084615227421, 0.10513277488217158] 

  }, 

  "precipitation": 0, 

  "source": "EDEN", 

  "temperature": 3.3, 

  "windDirection": 135, 

  "windSpeed": 2 

} 

 

5.3.5. AgriParcel Data Model 

The AgriParcel data model is relevant in the Milan case, and the properties SoilTextureType and 
irrigationSystemType have been added to this model. A sample payload of this data model is shown 
below. 

{ 

  "id": "urn:ngsi-ld:AgriParcel:72d9fb43-53f8-4ec8-a33c-fa931360259a", 
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  "type": "AgriParcel", 

  "dateCreated": "2021-01-01T01:20:00Z", 

  "dateModified": "2021-05-04T12:30:00Z", 

  "location": { 

    "type": "Polygon", 

    "coordinates": [[[45.5791, 9.2921], [45.5695, 9.3021], [45.5616, 9.2764], [45.5620, 

9.2620], [45.5791, 9.2552]]] 

  }, 

  "area": 200, 

  "description": "Corn", 

  "category": "arable", 

  "belongsTo": "urn:ngsi-ld:AgriFarm:f67adcbc-4479-22bc-9de1-cb228de7a765", 

  "ownedBy": "urn:ngsi-ld:Person:fce9dcbc-4479-11e8-9de1-cb228de7a15c", 

  "hasAgriCrop": "urn:ngsi-ld:AgriCrop:36021150-4474-11e8-a721-af07c5fae7c8", 

  "cropStatus": "seeded", 

  "lastPlantedAt": "2021-04-23T10:18:16Z", 

  "hasAgriSoil": "urn:ngsi-ld:AgriSoil:429d1338-4474-11e8-b90a-d3e34ceb73df", 

  "hasDevice": [ 

    "urn:ngsi-ld:Device:4a40aeba-4474-11e8-86bf-03d82e958ce6", 

    "urn:ngsi-ld:Device:63217d24-4474-11e8-9da2-c3dd3c36891b", 

    "urn:ngsi-ld:Device:68e091dc-4474-11e8-a398-df010c53b416", 

    "urn:ngsi-ld:6f44b54e-4474-11e8-8577-d7ff6a8ef551" 

  ], 

  "soilTextureType": "Clay, Sandy", 

  "irrigationSystemType": "Sprinkler irrigation" 

} 

 

6. Input to SAREF ontologies 

To suggest extensions to the SAREF ontology or its extensions (e.g., SAREF4WATER), a change request 
must be submitted to the committee responsible for maintaining the ontologies. The workflow for 
submitting change requests is shown in Figure 11. To propose a change request, you must possess a 
Contributor role in ETSI. A new change request is submitted by creating a new issue that describes the 
change request in the issue tracker in the ETSI Public Forge39.  The interaction with SAREF will continue 
until the project end and beyond to finalize the task based on the feedback of SAREF. Updates will be 
described in D4.8 at M42. 

 

                                                           

 

39 https://labs.etsi.org/rep/saref/saref-core/-/issues 
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Figure 11. Workflow for proposing change requests in SAREF40 

The proposed changes to SAREF4WATR, SAREF Core, and SAREF4AGRI are also described in deliverable 
D4.5 [3] but are repeated here along with a justification of the change which has been appended to 
the change request.  

At the time of writing this deliverable report, these change requests have been submitted to the 
technical committee and we are awaiting the next steps of the process (either “Needs Clarification”, 
“Approved” or “Proposed Closing”). 

Table 1. Summary of change requests submitted to SAREF. 

Change request / Issue Title Description of the change request / issue Relevant ontology 

Water Quality Predicted “In the Digital-Water.city project, a use case 
is using statistical models for predicting the 
water quality in the river. The predicted 
measurements should be associated with 
different percentiles with cardinality 1..* 
(e.g., a predicted value of 0.3 (in the range 0-
1) at percentile 50, another prediction of 0.4 
at percentile 97.5) and it should be possible 
to describe a conclusion from the prediction 
stating the overall water quality using an 
enumerated value ("Excellent", "Good", 
"Sufficient", "Poor"). “ 

SAREF4WATR 

Sampling Device as a subclass of the 
existing Device 

“In the project Digital-Water.city there is a 
need for specifying automated sampling 
devices and their measurements. A 
description of such devices is provided here: 
Automatic Water Samplers. As this might be 
relevant in other domains besides water 

SAREF Core 

                                                           

 

40 http://www.etsi.org/deliver/etsi_ts/103600_103699/103673/01.01.01_60/ts_103673v010101p.pdf 
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management, the change request is added 
here.” 

IrrigationSystemType “There exists a class WateringSystem. 
However, it could be useful to be able to 
specify the type irrigation system being used, 
such as "channel", "drip", "pivot" and "reel". 
Furthermore, the definition of the 
WateringSystem class could be made more 
informative.” 

SAREF4AGRI 

FarmTypology “It should be possible to specify different 
types of farms. Examples could be 
CropFarm, LivestockFarm, MixedFarm 
according to the typology suggested here: 
https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Glossary:Farm_ty
pology” 

SAREF4AGRI 

LandMeasurement “There should be a type of property that 
specifies that a measurement specifies the 
size of a parcel, a farm or another 
agricultural entity. For example, when 
specifying the hectare size of a farm, a 
measurement could be related to (using the 
relatesToProperty OP) an instance of a new 
LandMeasurement class which would then 
be a subclass of the class Property.”  

SAREF4AGRI 

Soil Type “It could be useful to specify different types 
of soil, at least at a high level (e.g., whether 
it is sandy, stony, clay, etc.). Existing 
classifications of soil types can be found in 
AgroVoc: 

https://agrovoc.fao.org/browse/agrovo
c/en/page/?uri=http%3A%2F%2Faims.f
ao.org%2Faos%2Fagrovoc%2Fc_7204” 

and/or according to the soil texture triangle 
calculator at USDA: 
https://www.nrcs.usda.gov/wps/portal/nrcs
/detail/soils/survey/?cid=nrcs142p2_05416
7 

SAREF4AGRI 

Crop Type “It should be possible to specify the type of 
crops in the ontology. A source of inspiration 
can be: 
https://agrovoc.fao.org/browse/agrovoc/en
/page/c_1972” 

SAREF4AGRI 

 

https://agrovoc.fao.org/browse/agrovoc/en/page/?uri=http%3A%2F%2Faims.fao.org%2Faos%2Fagrovoc%2Fc_7204
https://agrovoc.fao.org/browse/agrovoc/en/page/?uri=http%3A%2F%2Faims.fao.org%2Faos%2Fagrovoc%2Fc_7204
https://agrovoc.fao.org/browse/agrovoc/en/page/?uri=http%3A%2F%2Faims.fao.org%2Faos%2Fagrovoc%2Fc_7204
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Annex A: Introduction to semantic models / ontologies 

This section provides a minimal and practical description of some key aspects related to ontologies to 
prepare for the remainder of this report. For a more detailed explanation of ontologies and their 
application, the reader is referred to e.g., the book Handbook on Ontologies41 and the W3C 
Recommendation on the OWL 2 Web Ontology Language42. 

An ontology is a formal definition of the concepts, properties and interrelationships of the entities that 
exist in some domain of discourse. It provides a shared vocabulary that can be used to describe the 
domain, classifying and categorising the elements contained within it. Typically, an ontology is 
formalised using the Web Ontology Language (OWL). OWL is a part of the W3C suite of Semantic Web 
standards43, which includes among others Resource Description Format (RDF)44, a framework for 
representing web data using subject-predicate-object triples, and the Resource Description Format 
Schema (RDFS)45 which provides a data-modelling vocabulary for RDF data. While both OWL and RDFS 
offer a vocabulary for describing RDF data, OWL allows for greater expressibility than RDFS.   

In an ontology, classes represent sets of individuals (also called 
instances or objects) with similar characteristics and are organised in 
a specialisation hierarchy (this hierarchy is also called a subsumption 
hierarchy). This is illustrated in the figure to the right which depicts 
the specialisation hierarchy of classes in the SAREF4WATR ontology46.  
Here, a WaterMeter is a subclass of (specialisation of) Meter, 
Meter is a subclass of Sensor, and Sensor is a subclass of 
Device. This also means that the individuals associated with a 
particular class are specialisations of those individuals belonging to 
classes higher in the specialisation hierarchy.  

In addition to classes and individuals, ontologies also describe 
properties, of which there are two fundamental types: object 
properties and data properties. Object properties define 
relationships between individuals whereas data properties define literal values associated with 
individuals. For example, the object property hasMeasurement is a relationship that allows for stating 
various types of measurements of a particular water sample. In the example shown in Figure 9 a 
sample of water (here, ex:DTSample335632 is an individual of the class Water) has a certain 
concentration of cadmium and e.Coli. The object property relatesToProperty allows for defining 
different types of measurements. The data properties hasTimestamp and hasValue allows for 
defining the actual time of measurement and concentrations of cadmium and e.Coli in the  water 

                                                           

 

41 Staab, Steffen, and Rudi Studer, eds. Handbook on Ontologies. Springer Science & Business Media, 

2013. 
42 https://www.w3.org/TR/owl2-overview/ 

43 https://www.w3.org/standards/semanticweb/ 

44 https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ 

45 https://www.w3.org/TR/rdf-schema/ 

46 https://saref.etsi.org/extensions.html#SAREF4WATR 
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sample respectively, while the object property isMeasuredIn enables a definition of which unit of 
measurement is applied. 

 

Figure 12. Example from the SAREF4WATR ontology 

As revealed by the figure there are two ontologies involved in this example, SAREF4WATER (using the 
s4watr prefix) and SAREF (using the saref prefix). SAREF is a suite of ontologies47 where SAREF itself is 
the core ontology, while there are many extensions (modules) for different application domains. 
SAREF4WATR is the extension of SAREF for the water management domain. Using SAREF together with 
one or more of the extension ontologies allows for extending the scope, possibly integrating data from 
multiple domains into a single knowledge base.  

An ontology can be used to uniformly define classes (types), properties (relationships and attributes) 
and axioms (semantic rules and assertions) of data entities in a knowledge base (aka triple store or 
knowledge graph). Here, data are described in the triple format (subject-predicate-object) such that 
according to the example in Figure 12 you would have the following three linked triples stating the 
measurement of cadmium in a water sample:  

 

                                                           

 

47 An overview of the SAREF suite of ontologies is available at: https://saref.etsi.org/index.html 

 

Subject Predicate Object

DTSample335632 (type Water) hasMeasurement DTSMeasurement106 (type Measurement) 

DTSMeasurement106 (type Measurement) relatesToProperty Cadmium (type ChemicalProperty)

DTSMeasurement106 (type Measurement) hasValue 0.005 (datatype float)
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Provided that NGSI-LD is used as format for expressing entities in the context broker (e.g., Orion-LD) 
and associated data storage, quite powerful queries as well as learning techniques can exploit both 
the explicit (as in the example above) and latent semantics expressed in the ontology.  

One example of using latent semantics from knowledge bases is knowledge graph embedding. In the 
works of Myklebust el al. (2019)48 knowledge graph embedding techniques are used to model eco-
toxological effects of various compounds in the water environment. The idea is that based on the 
known eco-toxological effects declared in the knowledge graph, the knowledge embedding model will 
compute/learn the probability of unknown eco-toxological effects. This is also known as link 
prediction. For example, the knowledge graph states that compound X affects (e.g., has a lethal effect) 
on species Y. How the compound X affects species Z is not known. But based on the learned vector 
positions of X, Y and Z, and the quantified effect (relationship) X has on Y, the model also predicts that 
X affects Z. The quantified effect (relationship) can for example be represented by some computed 
distance/offset between X and Y. The vector space representation of all entities in 
the knowledge graph is generated by a so-called knowledge graph embedding model (e.g., based on 
neural networks). The objective of these models is to learn an optimal vector representation for each 
entity in the knowledge graph and the intuition is that these vectors capture some latent 
(unexpressed) semantics from the context of each entity in the knowledge graph. Here, context is 
represented by for example the structural characteristics of the knowledge graph (e.g., which entities 
are neighbors to entity E in the graph) or ontological definitions (e.g., entity E is a member of the class 
Arsenic).  
  
 
  

                                                           

 

48 Myklebust, Erik B., et al. "Knowledge graph embedding for ecotoxicological effect prediction." International Semantic 

Web Conference. Springer, Cham, 2019. 
 



 

 


