

D4.7 Semantic interoperable

middleware - final

version

Deliverable N°4.6 Semantic interoperable middleware

Related Work Package WP4

Deliverable lead 21-SINTEF

Author(s) Bård Johan Hanssen

Peter Haro

Audun Vennesland

Contact for queries bard.hanssen@sintef.no

Grant Agreement Number n° 820954

Instrument HORIZON 2020

Start date of the project 01 June 2019

Duration of the project 42 months

Website www.digital-water.city

License

This work is licensed under a Creative Commons Attribution
4.0 International License

Abstract

D4.7 describes and outlines the semantic interoperable
middleware developed for the DWC project. It introduces the
concepts and components that are utilized in order to build
the middleware and discusses how these are used in the Paris
case in DWC. It also outlines the process and smart-data input
to the SAREF ontologies.

This document will also detail the implementation and usage
of the middleware and possible future opportunities within
the DWC project consortia.

Dissemination level of the document

X PU Public

 PP Restricted to other programme participants

 RE Restricted to a group specified by the consortium

 CO Confidential, only for members of the consortium

http://www.digital-water.city/

3

Versioning and contribution history

Version* Date Modified by Modification reasons

D1 23.11.2020 Peter Haro First draft of document deliverable

D2 27.11.2020 Bård Johan Hanssen Sent draft version to reviewers

R1 08.12.2020 Peter Haro Changed document according to reviews

R2 08.12.2020 Nico Caradot Review by coordinator

S1 08.12.2020 Peter Haro Final version for submission

D3 15.06.2022 Peter Haro Sent draft of final deliverable for review

R3 29.06.2022 Bård Johan Hanssen Changed document based on review
feedback

D4 18.07.2022 Peter Haro Final version for submission

S2 15.08.2022 Nico Caradot Final check before submission

R4 03.01.2023 Audun Vennesland Added section 3.3 addressing comments
from external review

V 13.01.2023 Peter Haro Final revision for final submission

* The version convention of the deliverables is described in the Project Management Handbook (D7.1). D for draft,

R for draft following internal review, S for submitted to the EC (under external review) and V for approved by the
EC. Note that previous version to V are draft since they are not yet approved by the EC.

4

Table of content

1. Introduction .. 8

1.1. Summary of DWC and objectives of work package 4 and subtask 4.3.3 8

1.2. Structure of this document ... 9

2. Overall Approach .. 9

2.1. Link between D4.4 and D4.7 ... 10

2.2. Introduction to Containerization .. 10

2.3. Introduction to Docker ... 11

2.4. Introduction to FIWARE .. 11

2.4.1. Core Context Management ... 12

2.4.2. Interface with IoT ... 15

2.4.3. Context Processing, Analysis and Visualisation ... 15

2.5. Introduction to the DWC semantic interoperability development methodology 16

3. Utilization and development of interoperability software ... 17

3.1. Initial development ... 17

3.2. Data management middleware .. 18

3.3. Extending the middleware with additional semantic functionality 19

3.3.1. Overall systems architecture for the Semantic Interoperability Middleware 20

3.4. Future developments .. 21

4. Semantic interoperability for the ALERT system for in situ e.coli and enterococci measurements
and machine learning based early warning system for bathing water quality 22

5. Input to Standardised Data Models .. 23

5.1. Procedures for submitting requirements to smartdatamodels.org 23

5.2. List of required extensions from DWC .. 24

5.3. Smart Data Models ... 25

5.3.1. Water Quality Predicted Data Model .. 25

5.3.2. WaterObserved Data Model .. 26

5.3.3. WaterQualityObserved Data Model .. 27

5.3.4. Weather Observed Data Model ... 27

5.3.5. AgriParcel Data Model ... 27

6. Input to SAREF ontologies ... 28

References ... 31

Annex A: Introduction to semantic models / ontologies .. 32

5

List of figures

Figure 1. FIWARE Framework .. 11
Figure 2. NGSIv2 .. 13
Figure 3. NGSI-LD ... 13
Figure 4. NGSIv2 example.. 15
Figure 5. NGSI-LD example .. 15
Figure 6. An example compose file for a Generic Enabler and Context Broker 17
Figure 7. FIWARE Draco data flow from Orion to MySQL ... 18
Figure 8. Overall component view of Semantic Interoperability Middleware. 20
Figure 9. Overall sequence view of Semantic Interoperability Middleware. .. 21
Figure 10: Shows the data flow from EDEN to the middleware.. 23
Figure 11. Workflow for proposing change requests in SAREF ... 29
Figure 12. Example from the SAREF4WATR ontology ... 33

List of tables

Table 1. Summary of change requests submitted to SAREF. .. 29

Table 2. Proposed DWC Extensions……………………………………………………………………………………………………27

Glossary

Term Description

API Application Programming Interface

CAP Operator of Greater Milan wastewater treatment

CoP Community of Practice

DWC Digital Water City

Environment system The environment (system) includes everything that is not a part of the
target system, and which interfaces the target system directly. This
includes both stakeholders and other systems.

EWS-BWQ Early Warning System for Bathing Water Quality to be developed in
Paris.

EWS-SWR Early Warning System for Safe Water Reuse to be developed in Milan.

FIB Fecal Indicator Bacteria

FIWARE FIWARE is an initiative that defines reusable open-source components
and standardised specifications for context data management.
https://www.fiware.org/

JSON JavaScript Object Notation. A lightweight data interchange format.

KWB Kompetenzzentrum Wasser Berlin

6

NGSI Next Generation Service Interface. A protocol to manage context
information.

OWL Web Ontology Language. A Semantic Web language designed to
represent rich and complex knowledge about things, groups of things,
and relations between things.

IoT The Internet of Things – The description of a network of physical
‘things’ whos also connected and exchanging data over a network or
internet.

HTTP Hypertext transfer protocol: the standard protocol for transferring
hypertext documents on the World Wide Web.

RDF Describes data by defining relationships between data entities
expressed using URIs (Uniform Resource Identifiers) and related via
triples in the form (subject-predicate-object).

CQRS Command Query Responsibility Segregation - Separates read and
update operations for a data store

SOTA State Of The Art

REST Representational State Transfer. A software architectural style that
defines constraints to be used for creating web services.

SIAAP Syndicat Interdepartmental pour L'Assainissement de l'Agglomeration
Parisienne, Operator of greater Paris wastewater treatment

SPARQL A query language that can be used to express queries across diverse
data structures following the RDF specification.

Target system The system for which the architectural description is created. This
includes both stakeholders (human, organisation) and systems.

UAV Unmanned Aerial Vehicle

YAML YAML Ain't Markup Language - YAML is a human friendly data
serialization standard for all programming languages.

UML Unified Modelling Language, a modelling language for describing
system- and software architecture.

View A representation of a whole system from the perspective of a related
set of concerns.

Viewpoint A specification of the conventions for constructing and using a view. A
pattern or template from which to develop individual views by
establishing the purpose and audience for a view and the techniques
for its creation and analysis.

WWTP WasteWater Treatment Plant

XML eXtensible Markup Language. A markup language that defines a set of
rules for encoding, storing and communicating data.

7

Executive summary

Deliverable (D) 4.7 is the fifth out of five deliverables, produced by Work Package (WP) 4 of the DWC
projects, which pertains to managing data and systems in an interoperable way. This document builds
upon D4.4 which details the semantic interoperability design requirements and D4.1, which outlined
an interoperable and secure flow of information. Within the water sector, there exist a myriad of
under- or un-utilized data within both the consortium and the domain in total. Therefore, we proposed
the development of a middleware framework consisting of generic components for semantic
alignment and matching to be able to utilize existing and novel data, across multiple systems and
software components.

This report describes the development of a microservice structured middleware that provides data
transformation from different file formats such as CSV, TSV, JSON into the FIWARE NGSIv21 format
across multiple protocols, allowing stakeholders to easily integrate their systems and data sources into
the DWC FIWARE ecosystem without having to write their own data converters. The middleware has
been implemented following the requirements described in D4.4 [1]. While the original idea of
developing a microservice framework with generic components was changed to utilizing FIWARE
instead, the implementation is still using a microservice architecture albeit as a part working in tandem
with FIWARE and exposes an OpenAPI2 endpoint for users.

Following the implementation details, the report also describes how the middleware is applied in one
of the project pilots in the Paris Case Study, which monitors bathing water quality using data from
multiple data sources, detailing how the middleware handles data sources with different access levels
and authorizations.

The report also describes the development and changes to the smart data models used in the project,
as well as the proposed inputs to the existing SAREF ontologies, and the process for doing so.

1 https://fiware.github.io/specifications/ngsiv2/stable/
2 https://swagger.io/specification/

8

1. Introduction

1.1. Summary of DWC and objectives of work package 4 and subtask 4.3.3

DWC aims at creating digital solutions to link water management in the physical world to the digital
spheres such as sensor networks, real-time monitoring, machine learning, etc.

24 partners from 10 countries work together in the case study cities Berlin, Copenhagen, Milan, Paris
and Sofia and support the utilities and municipalities in improving water quality, return on investment
and public information about water-related issues.

Core of work package (WP) 4 is to ensure that the digital solutions are designed, developed and
deployed in a way in which data and information are exchanged with the utility systems in a cyber-
secure and interoperable way. This includes a risk analysis and proposition of risk reduction measures
to protect data and systems from unauthorized access as well as the description of semantic models
and interoperability design guidelines. The tasks focus on the digital solutions and their impacts on the
existing infrastructures, but not on general cyber-physical risks.

As the DWC project progressed, the nature of subtask 4.3.3 of WP4 changed. The subtask was originally
aiming to create a reusable microservice framework providing generic components for
communication, data management and semantic interoperability. However, in the early stages of the
Digital-Water.city project these objectives changed and it was decided at project management level
that the existing FIWARE framework should be used instead. This decision was primarily made based
on that other collaborating research projects in the DigitalWater 2020 and ICT4Water clusters were
also implementing digital solutions based on FIWARE and FIWARE already offered an architecture and
a set of open-source components that could support interoperability in the sector. Furthermore,
multiple stakeholders in the project identified use cases, which aligned with FIWARE. Thus, 4.3.3 has
changed character where we provide pluggable components interoperable with the FIWARE
ecosystem as well as creating data transformers for the standardized data models and ontologies
create in 4.3.1 and 4.3.2 as well as contribute to develop standardized data models and ontologies for
the water management domain to facilitate semantic interoperability. These components can be
placed within existing data pipelines and FIWARE instances as middleware. As a result, the original
development on the framework was stopped in favor of this solution, and development was aligned
with subtask 4.3.1 (Semantic interoperability design requirements) and 4.3.2 (Developing the DWC
reference ontology) and how the partners are utilizing FIWARE, with an initial focus on the
implementations created in Milan and Paris.

The subtasks 4.3.1 and 4.3.2 have mapped out several use-case scenarios for the digital solutions in
the DWC project where they will require some middleware to perform semantic interoperability. These
use-case scenarios are described in D4.1 [2], D4.4 [1] and D4.5 [3]. Due to the changing requirements
of the middleware described above, we decided to focus on some specific use cases instead of focus
on generic functionality. Thus, we have in this work focused on mapping requirements related to the
physical and logical architecture of the Paris case so that we can better support interoperability
through the means of standardized data models and middleware components. We focused on the
Paris case as it brought up interesting challenges in aspects regarding data ingestion, interoperability
and use. Therefore, the output from these subtasks is a key driver for this subtask providing both the
design requirements but also providing key insights into the existing solutions and how we can interact
with those. With collaboration with the partners in 4.3.3 we have also received feedback on our
solution and how they wish to utilize it to achieve semantic interoperability across their solutions.

9

As part of the development of the semantically interoperable middleware the work described in this
report targets three objectives: (1) introduce the software components that will be used in order to
create the semantic middleware, including FIWARE and the surrounding architecture; (2) document
how the development of the middleware component(s) have been done so far, as well as the future
plans for development; (3) document the requirements as generically as possible in order to support
reusability in other deployments taking place in the DWC project. With respect to the latter objective,
the structuring and notation used in this report is guided by the ARCADE Framework3, a domain- and
technology independent architectural description framework for software intensive systems.

1.2. Structure of this document

D4.7 consists of 5 main chapters, starting with the overall approach in chapter 2, describing the link
between other deliverables and an overview outlining the core technologies and general ICT
components utilized to realize development of the DWC middleware.

Chapter 3 outlines the development process and software architecture for the DWC semantic software
solution, how it interacts with FIWARE and how it can be used by the DWC solutions. It gives a brief
overview of containerization, how it’s used in D4.7 and how it enables us to create coordinating
components. Furthermore, it details the core context management in FIWARE and how it can interact
with other systems. Chapter 4 subsequently details its usage in the Paris case and its interaction across
multiple systems by multiple vendors. It also shows both technical and semantic interoperability
between systems, services, and data.

Chapter 5 describes how D4.7 assists in standardizing data models and how it extends and creates new
data models for DWC. It details the procedures for submitting requirements to smartdatamodels.org
and the extensions for those models for use in DWC. Whereas chapter 6 details our input to the SAREF
ontologies and proposed extensions from the DWC project.

New in this report from the previous D4.6 report is the more detailed description of how the
middleware solution has been implemented, as many of the future developments mentioned in
D4.6 have now been implemented. Additionally, it details the changes made to the Smart Data
Models since the previous deliverable as well as the change requests made towards the SAREF
ontologies used in DWC.

Following external review, section 3.1 has been clarified and a new section 3.3 has been added to
provide details on how the semantic middleware actually uses OWL data models.

2. Overall Approach

We decided to create novel components working in tandem with the FIWARE ecosystem based on the
sketches outlined in the 4.4 deliverable. D4.4 [1] describes design requirements for implementing a
semantic interoperability middleware architecture and will outline how we implemented these
requirements.

3 http://arcade-framework.org/assets/documents/ARCADE-Example.pdf

10

We will follow the development processes as outlined utilizing a microservice architecture where we
compose our components into reusable containers, based on Docker4. This chapter begins with a brief
introduction to the most relevant concepts from both Docker and the FIWARE
framework before we denote how we will move all developed code from the existing microservice
framework into the ecosystem.

2.1. Link between D4.4 and D4.7

The requirements captured in D4.4 [1] will serve as the basis for the development of the semantic
interoperability software outlined in this document. It serves as a classic requirement engineering
process where requirement elicitation is the first natural step. This basis will allow us to create a more
complete ontology for the DWC project as we will be able to design a more semantically relevant
model. However, some information is also backported as the initial development performed in D4.6
[4] could be showcased for the partners in meetings w.r.t the virtual workshops performed in D4.4 [1]
so that we could collect feedback as early as possible.

The decision to create a containerized application that works either within FIWARE or as a standalone
component(s) also comes from the elicitation process performed in D4.4 [1] as not all partners fully
understand how to utilize FIWARE and elect to perform processes more familiar to them. Therefore,
the process is performed in iterations where we continuously seek to gather requirements as we
develop so that we can change the software across releases until the final delivery.

2.2. Introduction to Containerization

Containerization is an approach to software development in which an application or service, its
dependencies, and its configuration (abstracted as deployment manifest files) are packaged together
as a container image. The containerized application can be tested as a unit and deployed as a container
image instance to the host Operating System (OS)5.

Software containerization enables developers and IT professionals to deploy them across
environments with little or no modification. Importantly, this also allows them to isolate applications
from each other on a shared OS, cloud system or with segregated networks. Containerized applications
run on top of a container host that in turn runs on the OS (Linux or Windows). Containers therefore
have a significantly smaller footprint than classical virtual machine (VM) images.

Another benefit of containerization is scalability. You can scale out quickly by creating new containers
for short-term tasks. From an application point of view, instantiating an image (creating a container)
is like instantiating a process like a service or web app. This is also very beneficial for reliability, as it is
quick and easy to spin up a new container should one crash, and they can be run in parallel on different
hosts or VM, across domains. In short, containers offer the benefits of isolation, portability, agility,
scalability, and control across the whole application lifecycle workflow. The most important benefit is
the environment’s isolation provided between Dev and Ops.

4 https://www.docker.com/
5 https://aka.ms/microservicesebook

11

2.3. Introduction to Docker

Docker is an open-source project for automating the deployment of applications as portable, self-
sufficient containers that can run on the cloud or on-premises. To support this functionality Docker
provides a generic platform on demand for running these containers. Docker containers differentiate
themselves from Virtual Machines because it uses only OS-level virtualization to run a container,
without the developer having to think about the underlying platform. This means that multiple
containers run on only a single OS kernel.

Therefore, Docker containers can run anywhere, on-premises in the customer datacenter, in an
external service provider, on a research lab or local machine, or in the cloud. Developers can use
development environments whether on Windows, Linux, or MacOS as such making Docker suitable in
interdisciplinary projects with cross-cutting concerns.

2.4. Introduction to FIWARE

FIWARE is a framework of open-sourced software components targeted towards digitalisation and
smart application of data across multiple application domains. The focal point of FIWARE is
interoperable solutions for context management. This includes the ability to source data from
measurement devices (e.g., sensors), represent these source data in a wider context representation,
and provide the means for accessing these context data by end-user applications. The five architectural
perspectives of the framework are illustrated in Figure 1. In the following sections, we will focus on
the three in the middle, namely Core Context Management, Interface with IoT, and Context Processing,
Analysis and Visualisation, as these are the ones that are most relevant for the middleware being
developed.

Figure 1. FIWARE Framework6

6 Illustration taken from https://www.fiware.org/developers/

12

2.4.1. Core Context Management

The Core Context Management part of FIWARE represent the ability to produce, gather, publish and
consume context data and turn this into actionable information to be applied by end user applications.

The context data are represented through values assigned to attributes that contribute to define the
entities and are managed by a Context Broker. A Context Broker is a core and mandatory component
of the FIWARE framework that allows for storing, updating and subscribing to the entities representing
the context via a standardised REST API (NGSIv2 or NGSI-LD as described below). Orion7 is a Context
Broker that has been released by FIWARE. Orion provides an NGSI v2 API. In addition, the following
Context Brokers providing NGSI-LD APIs are under incubation: Orion-LD Context Broker8, the Scorpio
Broker9, and the Stellio Context Broker10.

In addition to the Context Broker the Core Context Management also include Generic Enablers11 that
enable to store context data persistently, such as STH-Comet12, Cygnus13, Draco14 and QuantumLeap15.

The context itself is defined by means of the FIWARE NGSI16 API. NGSI defines a data model for
describing context information; a context data interface for exchanging information via queries,
subscriptions, and updates; and a context availability interface for exchanging information on how to
obtain context information. There are basically two NGSI versions that are relevant, NGSIv2 and NGSI-
LD. The main elements in the NGSIv2 model are entities, attributes, and metadata, as shown in Figure
2. An entity represents a physical or logical object (e.g., a sensor, a person, an issue in a ticketing
system) defined by an identifier and a type definition, an attribute represents some property of the
entity (e.g., a measurement value), while the metadata describes additional “data about the data”,
such as the accuracy of the measurement value or the location of a sensor.

7 https://fiware-orion.readthedocs.io/en/master/#welcome-to-orion-context-broker

8 https://github.com/FIWARE/context.Orion-LD

9 https://github.com/ScorpioBroker/ScorpioBroker

10 https://github.com/stellio-hub/stellio-context-broker

11 A Generic Enabler is a component that is considered general purpose and independent of any particular usage area.

12 https://github.com/telefonicaid/fiware-sth-comet

13 https://fiware-cygnus.readthedocs.io/en/latest/

14 https://github.com/ging/fiware-draco

15 https://github.com/smartsdk/ngsi-timeseries-api

16 https://fiware.github.io/specifications/ngsiv2/stable/

13

Figure 2. NGSIv217

The other version of NGSI, NGSI-LD, where LD stands for Linked Data, has a different underlying data
model than NGSIv2. Here, data are described in triples in a subject-predicate-object pattern resulting
in a graph representation of the context data. Furthermore, in NGSI-LD the ID of an entity should be
a Uniform Resource Identifier (URI) ensuring a consistent representation of the identifier of an entity.

Figure 3 shows the underlying model of NGSI-LD. As the figure shows, there is no metadata element,
and the Attributes element in NGSIv2 now refers to either Property or Relationship where the former
represents literal values (strings, decimals, etc.) while the latter represent relationships between
different entities.

Figure 3. NGSI-LD18

17 Illustration taken from https://www.fiware.org/developers/

18 Illustration taken from https://www.fiware.org/developers/

14

Figure 4 and Figure 5 illustrate how data are formatted using NGSI v219 and NGSI-LD20. These JSON
snippets, which both represent an extract of the WeatherObserved data model21, shows how
temperature and precipitation is represented along with a timestamp and information about the
weather station providing the measurements.

As these examples show, there are some notable differences in how data are represented. First,
NGSIv2 is represented as basic JSON format22, while NGSI-LD is represented using JSON-LD23. Further,
in NGSI-LD the ID shall be represented using a URI, not a simple string value as in NGSIv2. Each attribute
in NGSI-LD shall contain two fields, a property and a value, whereas in NGSIv2 an attribute can be
represented by just a value. In NGSI-LD, a context element is added to provide fully qualified names
(URIs) associated to terms. This is like how namespaces are used in XML.

19 https://fiware.github.io/specifications/ngsiv2/stable/

20 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf

21See https://github.com/smart-data-models/dataModel.Weather/blob/master/WeatherObserved/README.md

22 https://www.json.org/json-en.html

23 https://json-ld.org/

15

Figure 4. NGSIv2 example

Figure 5. NGSI-LD example

2.4.2. Interface with IoT

In order to interface with devices and systems providing context data to the Context Broker and its
NGSI API, the IDAS Generic Enabler provides a set of IoT Agents supporting different IoT protocols.
Currently IoT Agents for the following protocols are provided: JSON (over HTTP/MQTT), Lightweight
M2M (LWM2M), Ultralight, LoRaWAN, OPC-UA and Sigfox.

2.4.3. Context Processing, Analysis and Visualisation

This architectural layer provides Generic Enablers that aim to enable processing, analysis and
visualisation of context information. Examples of Generic Enablers in this area are: Wirecloud24 for
visualisation of integrated data, Knowage25 for business analytics and Kurento26 for real-time
processing of media streams.

24 https://wirecloud.readthedocs.io/en/stable/

25 https://knowage.readthedocs.io/en/latest/

26 https://kurento.readthedocs.io/en/stable/

16

2.5. Introduction to the DWC semantic interoperability development methodology

The DWC digital solutions are developed by various stakeholders with differing experience with
regards to DevOps. The IT/OT operations are placing their primary importance of adamant security,
ensuring that additional software being installed does not weaken or expose the security of the
existing solutions, as well as to provide robust software, which the different teams, with their different
constrains can use. We decided to utilize containerization to support their production operations, so
that the IT/OT team(s) can decide within which network segregation they want the software deployed.
Ensuring that the local experts have control over their software will allow them to configure only the
parts they require to reduce the attack surface.

We originally planned to use a microservice oriented architecture which would orchestrate and
coordinate multiple services, interfacing with multiple types of databases while supporting different
communication protocols. To fulfil these requirements in a generic manner each microservices
supported CQRS communicating primarily using either HTTP(s) or AMQP as between client apps and
the microservices, using asynchronous communication for data updates. These were propagated
based on Integration Events and an Event Bus. However, since FIWARE supports this type of
architecture we changed our building blocks to an interoperable container based on HTTP
communication which can leverage the DRACO broker from FIWARE for intersystem communication
like a distributed event bus, i.e., a distributed software bus that interconnects multiple disparate
systems.

The development of the semantic interoperability software has used a design science approach based
on a framework developed for R&D and the development of information systems [5]. The approach
facilitates an agile development process, which focuses on user-centric design, early validation and
reusing existing software. This process is especially applicable in multidisciplinary projects like DWC.
The following methods have been selected to ensure close collaboration with industry and that the
results are planned for usage in active operations:

• both the design and development processes were conducted in close collaboration between
all actors involved in the system so that we could quickly start prototyping architecture and
logical units.

• qualitative studies of the various prototypes developed throughout the project was evaluated
with multiple facets so that we could understand user-interactions, the ramifications to their
existing infrastructure and the movement throughout the supply chains. The project adopted
multiple iterations using an agile approach. The semantic interoperability prototype was
developed based on SOTA open-source frameworks, e.g., OWL. We have enhanced it and
added missing features of the platform.

17

3. Utilization and development of interoperability software

The semantic interoperability software has been developed as container(s) that can run either inside
the FIWARE ecosystem or as a stand-alone component translating and matching resources using either
FIWARE or SPARQL or another generic linked datastore. We do this to support a standalone application
while being interoperable with the future semantic work ongoing in the FIWARE project and
SAREF4WATR27.

3.1. Initial development

During the initial developments on the interoperability software, the FIWARE components and other
applications that were to be used were tested and deployed as separate Docker images. Building upon
this, the “dockerized” FIWARE components were then added to a compose file which could then be
used to set up and deploy all included images without any additional input, excluding any local
configurations like changing passwords and which ports to use.

Figure 6 shows an example of a minimal docker compose file28, which is a YAML file defining services,
networks, and volumes, to set up docker images for a FIWARE Orion Context Broker and FIWARE Draco
Generic Enabler as well as their dependencies. Both these are compliant with NGSI v2. Note that while
ports and passwords are hard coded in this example, they can just as easily be read from a config file
or passed as environment variables at runtime.

Figure 6. An example compose file for a Generic Enabler and Context Broker

27 https://saref.etsi.org/saref4watr/v1.1.1/
28 https://docs.docker.com/compose/compose-file/

18

Since a Context Broker does not store historical data, it is useful to set up third-party storage of some
kind. Figure 7 shows how a FIWARE Generic Enabler can be set up to subscribe to the data stream of a
Generic Enabler and store updates values to a MySQL database. This is done using a set of processors
that handle the tasks required to write the data to more persistent storage. First, the initial processor
establishes an HTTP connection and sets up a subscription in the Context Broker, specifying which
events it should be notified of. The second processor handles the task of reading the new data and
storing it to the database. While not required, the third processor does the work of logging the actions
of the other processors if configured to do so.

Figure 7. FIWARE Draco data flow from Orion to MySQL

3.2. Data management middleware

To facilitate all digital solutions in the DWC project with a semantic interoperability software, we
needed to ensure that we developed something that was applicable to the implementors. As the
development must work in conjunction with FIWARE without the partner developers having to adapt
their solutions to integrate the software, we decided to deliver the software as standalone
components. Therefore, we leverage both the DRACO generic enabler and the Origin broker as
described in 3.1 and 2.4.

As there are multiple levels of network segregation between the different IT/OT teams in the project
consortia, they use a multitude of protocols and methods for publishing data from their SCADA or
other types of secure systems. Although HTTP is a close to ubiquitous protocol, multiple partners utilize
other methods for data transfer, especially in push configurations, meaning that data is pushed from
the secure system(s) to FIWARE through our middleware. Furthermore, the systems work on differing

19

logical levels, such as on file systems and FTP/SFTP/SCP using files as transmission medium. To support
the different modes of operations we’ve created a data management component which acts as
forwarder and conversion agent to the other FIWARE components.

This system implements a physical filesystem provider, working on both Windows, Linux, Samba, NTFS,
and UNC to monitor a filesystem hierarchy detecting new, changed, deleted, or appended files and will
perform necessary file conversion(s) to the data which support semantic data in FIWARE. Thus,
allowing the various stakeholders to interact with FIWARE without changing existing workflows by
converting the different files and datums into NGSI v2 so that the other components can interact with
semantically enriched data.

Using the methodology outlined in 3.1 for data storage in combination with traditional data ingestion,
either through HTTP/MQTT or other IoT protocols, allows us to combine the persistent data with
semantic models, linked data, and ontologies. This means we can use the stored sensor- and
operational data in combination the semantic data structures, both static and dynamic. This is
beneficial because it's impossible to create an all-inclusive ontology, therefore we use local domain
ontologies and databases which allows us to create new ontology elements automatically using a
reasoner [6]. This process is what enables us to create a standalone microservice, which can also be
used within the FIWARE ecosystem. Using a simple API gateway or an orchestrator allows the
application to be “context-independent” i.e. it uses HTTP with a configured persistent storage (such as
configured in the compose file), to provide both intra- and intercommunication.

There were two primary reasons for selecting this method. The first being that it would allow us to
place the container within or outside of the FIWARE ecosystem while still supporting both systems and
it allows industrial partners or other stakeholders to utilize private datasets, which can be, but does
not have to be shared in a global network. Utilizing a combination of public and private data enables
us to provide more sophisticated matchmaking in conjunction with the Ontology, which can result in
better data quality. The increased quality comes from having more instance data in the ontology, which
allows us to do interference and exchange data more accurately between the entities registered, thus
increasing the quality of the middleware. For new entities that are not registered in the ontology, we
can possibly infer its property and perform matching by utilizing a reasoner based on the ontology and
existing instance data. This means we can better match resources (registered entities in the software
i.e., IoT-sensor) based on their semantic properties due to having access to more data.

The second reason was that for many operations, the stakeholders IT/OT team(s) do not want to
manage any more dependencies than necessary. Deploying the container as a FIWARE component
allows the software to be managed as a part of their existing FIWARE management, reducing the
overhead for operations. Although, for stakeholders who do not need FIWARE and simply interacts
with it, a standalone module will provide less configuration and management overhead. This allows us
to interact with multiple data stores without necessarily having permission access to the same
networks or ecosystem.

3.3. Extending the middleware with additional semantic functionality

In complex and dynamic data exchange scenarios, multiple data providers and consumers may be
involved in the data exchange, and the data integration process will likely have to deal with complex
data formats, possibly describing data from other domains but water management. The goal of the
semantic interoperability middleware is to employ semantics to support mediation between different
data providers/consumers and a FIWARE Context Broker. Here, semantics refer to the DWC Reference
Ontology and techniques for inferring the underlying meaning of concepts in order to map different

20

formats. Preparing for such data integration in a fully manual fashion will require significant resources
when mapping the syntax and semantics of these different data exchange, hence, semi-automated
methods should be explored. The system architecture of the semantic interoperability middleware
prepares for such semi-automated data integration scenarios. Here, different types of syntactic and
semantic matching algorithms can be applied to identify mappings between data exchange formats to
the DWC Reference Ontology (see D4.5 [3] for more details), effectively supporting ontology-based
data integration (OBDI) [7]. The mapping between the ontology concept (to which elements in the
different source data schemas are mapped to) and the corresponding element in the appropriate
standardised data model used to store data in the FIWARE Context Broker is supported by the context
references provided by the Smart Data Models initiative29.

3.3.1. Overall systems architecture for the Semantic Interoperability Middleware

Figure 8 depicts the core software components needed to enhance the middleware as described
above. The DWC Reference Ontology will be used as a mediator between the formats used by data
consumers / providers interacting with the FIWARE Context Broker. The Syntactic Matching Services
and the Semantic Matching Services implemented as micro services will employ techniques from the
research areas of schema- and ontology matching [8] to match elements of the data exchange formats
to concepts defined in the DWC Reference Ontology.

Figure 8. Overall component view of Semantic Interoperability Middleware.

From the DWC Reference Ontology these techniques can employ both concept names, associated
properties (and hence structural characteristics) and textual annotations associated with both
concepts and properties. Here, we define Syntactic Matching Services as basic string-matching
techniques, such as variants of Edit distance30, while Semantic Matching Services use techniques that
aim to capture the underlying meaning of words and identify similarity despite differences in word
compositions. In the latter category of techniques, we also include external sources of background

29 https://github.com/smart-data-models/data-models/tree/master/context
30 https://en.wikipedia.org/wiki/Edit_distance

21

knowledge, such as WordNet31 and BabelNet32. Natural Language Processing (NLP) services, such as
such as those included in Laser Translation Toolkit33, can support the Semantic and Syntactic Matching
Services by e.g., parsing natural language definitions associated with the data exchange formats and
concepts in the DWC Reference Ontology. The value of such an approach will self-reinforce as the
number of element-to-concept mappings increase. In this case the element-to-concept mappings can
be employed in the matching process.

Figure 9 shows a high-level sequence view involving the middleware. Here, data exchange formats
used by the Target System (i.e., the FIWARE Context Broker in our case) and the Source System (i.e.,
the system that will provide / consume data to/from the FIWARE Context Broker) are mapped to the
DWC Reference Ontology. The mappings, containing element-wise alignment between the data
exchange formats and the DWC Reference Ontology, are returned to the respective systems and stored
within the middleware. Of course, the automatically generated mappings must be verified by human
interaction before they are stored within the middleware. This way, whenever a Source System will
interact with the FIWARE Context Broker, it may continue to use its original data exchange format.

Figure 9. Overall sequence view of Semantic Interoperability Middleware.

The benefit of using such an approach is when there are multiple Source Systems using different data
exchange formats that map to a single ontology or multiple ontologies.

3.4. Future developments

As the system matures and more instance data is added to the system the semantic middleware can
benefit from combining its reasoning capabilities with machine learning on the semantically enriched
data for a hybrid system. One of the main advantages of the ontologies created for DWC is the ability
to add new data to the system which can be reasoned upon automatically. Given the implemented
properties and triplet representation, a major improvement to the capabilities of the system would be

31 https://wordnet.princeton.edu/
32 https://babelnet.org/
33 https://engineering.fb.com/2019/01/22/ai-research/laser-multilingual-sentence-embeddings/

22

Knowledge Graph Embedding (KGE), which would support services such as search, ranking and
inference in hierarchical relationships.

KGE would allow for advanced analytics on the data facilitating a host of new operations available to
the different pilots in the project, not only in the traditional graph-analytics sense, but also for artificial
intelligence operations such as link-prediction and within the scope of DWC, most importantly
recommender systems, to overcome the limitations of reinforcement learning. This would allow use
to the graph to map a priori knowledge in combination with the embedded data to infer new
knowledge.

4. Semantic interoperability for the ALERT system for in situ e.coli and

enterococci measurements and machine learning based early warning

system for bathing water quality

The semantic interoperability software with the accompanying smart data models as described in
chapter 5, has been deployed and tested in the two pilots in Paris. The pilots are both trying to solve
different needs and are thus relying on different types of data, formats, and protocols. The early
warning software for bathing water quality is an open-source software interface that enables real-time
bathing water quality assessment34.

The middleware in this pilot will coordinate multiple data sources in both a push and pull configuration,
interacting with different types of communication protocols and formats. The system relies on real-
time data from the SIAAP EDEN system (Environmental Data Exchange), however, for security reason,
this data can only be acquired in a push configuration i.e., data can only be pushed from EDEN to
whichever system needs to utilize their data. Furthermore, the system also requires real-time
freshwater, river flow and other data from different companies and Paris municipality, fetched on
demand through different APIs servicing data in CSV, TSV and JSON formats. These data sources must
be coordinated and converted to NGSIv2 formatted ‘smart’ data models supporting semantics, which
can enrich the data and thusly provide additional value than the raw data. Therefore, the middleware
acts as a coordinator receiving data from EDEN using SFTP protocol, simultaneously fetching other data
from various APIs and converting these on the fly, before pushing it into the FIWARE Orion broker,
with valid converted smart models. Since the data from the SFTP protocol should support the regular
REST calls in FIWARE: GET, POST, PATCH, DELETE verb, the middleware contains a file system hook
which detects changes in the file system using a physical file system provider (thus also working in
containers), which can detect new files, changes or appends to files and the deletion of said files. These
events are thus propagated to the FIWARE instance to ensure that the semantic data is consistent with
the data pushed from SIAAP.

34 https://www.digital-water.city/solution/machine-learning-based-early-warning-system-for-bathing-water-quality/

23

DWC network (DMZ)

SFTP Server

DWC server

SIAAP Network

SD-DWC (VM)

Internet

1

2

1 – File transfer between the SIAAP and SFTP server

Firewall

2 – File transfer between the SFTP server and the DWC server

Firewall

Figure 10: Shows the data flow from EDEN to the middleware

The semantic interoperability middleware contains a map of the physical files and fetched API data,
which is managed through a smart model manager, and not until a proper response has been received
from the FIWARE instance is the in-memory manage updated. This ensure that the manager has the
same state as the FIWARE instance without any polling necessary. This also ensures that the
middleware can serialize a map of the order of operations from the remote partner, and that all parties
observe the same state.

5. Input to Standardised Data Models

5.1. Procedures for submitting requirements to smartdatamodels.org

Smart Data Models35 is an initiative that develops standardised data models for several application
domains, including water management. These data models are compliant with the NGSIv2 and NGSI-
LD formats specified by the standardisation body ETSI, and which are used to represent digital entities
in FIWARE Context Brokers. Standardising the data models that are used to describe data within an
ecosystem is an important step towards interoperability. The procedures for contributing to

35 https://smartdatamodels.org/

24

smartdatamodels.org are specified in a Contributions Manual36. In short, the manual states the
following workflow for making contributions:

According to this workflow, the DWC team followed the recommended path supported by guidelines
in meetings with a member of smartdatamodels.org.

Based on the requirements collected in Deliverable D4.4 [1] in DWC we identified a need for one new
data model (following Option 2 in the workflow) and extensions to existing data models (point 3 in the
workflow).

The new data model, called Water Quality Predicted, is described in Section 5.3.1, while the extensions
required from DWC are listed in Section 5.2.

5.2. List of required extensions from DWC

Data Element Description Relevant Data Model

UVLampIntensity Measures the efficiency of UV lamps as
milliwatts per square centimetre.

Device

Added as Controlled Property
Type

UVOrganicLoad Measures the spectral absorption
coefficient of fluids.

Device

Added as Controlled Property
Type

escherichiaColi Escherichia coli or E. coli is a type of
fecal coliform bacteria that is commonly
found in the intestines of animals and
humans. E. coli in water is a strong

Water Quality Observed

Added as new property

36 https://docs.google.com/presentation/d/e/2PACX-1vTs-
Ng5dIAwkg91oTTUdt8ua7woBXhPnwavZ0FxgR8BsAI_Ek3C5q97Nd94HS8KhP-
r_quD4H0fgyt3/pub?start=false&loop=false&delayms=3000#slide=id.p1

25

indicator of sewage or animal waste
contamination.

enterococci Enterococci are indicators of the
presence of fecal material in water and,
therefore, of the possible presence of
disease-causing bacteria, viruses, and
protozoa.

Water Quality Observed

Added as new property

waterLevel The water level at a certain place in a
reservoir, river, storage tank, or similar.

Water Observed

Added as new property

waterDischarge The amount of water discharged from a
wastewater treatment plant or
stormwater overflows.

Water Observed

Added as new property

soilTextureType Describes the different soil texture
types as a set of possible enumeration
values: “Clay”, “Clay, Sandy”, “Clay,
Silty”, “Loam”, “Loam, Clay”, “Loam,
Sandy”, “Loam, Sandy Clay”, “Loam,
Silty”, “Loam, Silty Clay”, “Sand”, “Sand,
Loamy”, “Silt”. These enumeration
values are defined according to the soil
texture triangle calculator, defined by
the US Department of Agriculture37.

AgriParcel

Added as new property

irrigationSystemType Describes the type of irrigation system
applied as a set of possible
enumeration values: “Surface
irrigation”, “Localized irrigation”, “Drip
irrigation” and “Sprinkler irrigation”,
“Center pivot irrigation”, “Lateral move
irrigation”, “Sub-irrigation”, and
“Manual irrigation”. These
enumeration values are defined by the
Centres for Disease Control and
Prevention38.

AgriParcel

Added as new property

5.3. Smart Data Models

5.3.1. Water Quality Predicted Data Model

37 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167
38 https://www.cdc.gov/healthywater/other/agricultural/types.html

26

Since the description of the Water Quality Predicted data model in deliverables D4.4 [1] and D4.5 [3]
we have changed the name of the model from Water Quality Prediction to Water Quality Predicted to
follow the nomenclature of smartdatamodels.org and added two timestamps datePredicted (the
timestamp for when the prediction was made) and expiryDate (a timestamp for when the prediction
is not valid anymore). An example payload of the Water Quality Predicted data model is shown below.

 {
 "id": "1024e64a-0283-472c-9b62-dbf77291503e",

 "type": "WaterQualityPredicted",

 "dateCreated": {

 "type": "DateTime",

 "value": "2021-05-20T14:05:00"

 },

 "datePredicted": {

 "type": "DateTime",

 "value": "2021-05-20T14:04:00"

 },

 "expiryDate": {

 "type": "DateTime",

 "value": "2021-05-21T14:05:00"

 },

 "location": {

 "type": "geo:json",

 "value": {

 "type": "Point",

 "coordinates": [48.9159, 2.21228]

 }

 },

 "predictionValues": {

 "value": [

 {

 "percentile": "2.5",

 "prediction": 0.3

 },

 {

 "percentile": "50",

 "prediction": 0.3

 },

 {

 "percentile": "90",

 "prediction": 0.3

 },

 {

 "percentile": "95",

 "prediction": 0.3

 },

 {

 "percentile": "97.5",

 "prediction": 0.3

 }

]

},

 "waterQualityPredictionValue": {

 "value": "excellent"

}

}

5.3.2. WaterObserved Data Model

The properties waterDischarge and waterLevel have been added to the WaterObserved data model.

{

 "id": "some-identifier",

 "type": "WaterObserved",

 "source": "URL to EDEN",

27

 "dateCreated": "2000-01-01T01:01:01Z",

 "dateObserved": "2021-01-01T01:01:01Z",

 "location": {

 "type": "Point",

 "coordinates": [38.84, 0.105]

 },

 "flow": 8,

 "waterLevel": 2.4,

 "waterDischarge": 3

}

5.3.3. WaterQualityObserved Data Model

The properties “enterococci” and “escherichiaColi” have been added to the WaterQualityObserved
from Digital-Water.city. Values for these is shown below.

{

 "id": "some-identifier",

 "type": "WaterQualityObserved",

 "source": "[URL to Fluidion´s server]",

 "dateCreated": "2000-01-01T01:01:01Z",

 "dateObserved": "2021-01-01T01:01:01Z",

 "location": {

 "type": "Point",

 "coordinates": [38.84084, 0.10513]

 },

 "enterococci": 100,

 "escherichiaColi": 100

}

5.3.4. Weather Observed Data Model

Observed weather is relevant in Digital-Water.city and the WeatherObserved data model can be
reused as is without the need for any extensions. A sample payload of this data model is shown below.

{

 "id": "some-identifier",

 "type": "WeatherObserved",

 "dateObserved": "2016-11-30T07:00:00.00Z",

 "location": {

 "type": "Point",

 "coordinates": [38.84084615227421, 0.10513277488217158]

 },

 "precipitation": 0,

 "source": "EDEN",

 "temperature": 3.3,

 "windDirection": 135,

 "windSpeed": 2

}

5.3.5. AgriParcel Data Model

The AgriParcel data model is relevant in the Milan case, and the properties SoilTextureType and
irrigationSystemType have been added to this model. A sample payload of this data model is shown
below.

{

 "id": "urn:ngsi-ld:AgriParcel:72d9fb43-53f8-4ec8-a33c-fa931360259a",

28

 "type": "AgriParcel",

 "dateCreated": "2021-01-01T01:20:00Z",

 "dateModified": "2021-05-04T12:30:00Z",

 "location": {

 "type": "Polygon",

 "coordinates": [[[45.5791, 9.2921], [45.5695, 9.3021], [45.5616, 9.2764], [45.5620,

9.2620], [45.5791, 9.2552]]]

 },

 "area": 200,

 "description": "Corn",

 "category": "arable",

 "belongsTo": "urn:ngsi-ld:AgriFarm:f67adcbc-4479-22bc-9de1-cb228de7a765",

 "ownedBy": "urn:ngsi-ld:Person:fce9dcbc-4479-11e8-9de1-cb228de7a15c",

 "hasAgriCrop": "urn:ngsi-ld:AgriCrop:36021150-4474-11e8-a721-af07c5fae7c8",

 "cropStatus": "seeded",

 "lastPlantedAt": "2021-04-23T10:18:16Z",

 "hasAgriSoil": "urn:ngsi-ld:AgriSoil:429d1338-4474-11e8-b90a-d3e34ceb73df",

 "hasDevice": [

 "urn:ngsi-ld:Device:4a40aeba-4474-11e8-86bf-03d82e958ce6",

 "urn:ngsi-ld:Device:63217d24-4474-11e8-9da2-c3dd3c36891b",

 "urn:ngsi-ld:Device:68e091dc-4474-11e8-a398-df010c53b416",

 "urn:ngsi-ld:6f44b54e-4474-11e8-8577-d7ff6a8ef551"

],

 "soilTextureType": "Clay, Sandy",

 "irrigationSystemType": "Sprinkler irrigation"

}

6. Input to SAREF ontologies

To suggest extensions to the SAREF ontology or its extensions (e.g., SAREF4WATER), a change request
must be submitted to the committee responsible for maintaining the ontologies. The workflow for
submitting change requests is shown in Figure 11. To propose a change request, you must possess a
Contributor role in ETSI. A new change request is submitted by creating a new issue that describes the
change request in the issue tracker in the ETSI Public Forge39. The interaction with SAREF will continue
until the project end and beyond to finalize the task based on the feedback of SAREF. Updates will be
described in D4.8 at M42.

39 https://labs.etsi.org/rep/saref/saref-core/-/issues

29

Figure 11. Workflow for proposing change requests in SAREF40

The proposed changes to SAREF4WATR, SAREF Core, and SAREF4AGRI are also described in deliverable
D4.5 [3] but are repeated here along with a justification of the change which has been appended to
the change request.

At the time of writing this deliverable report, these change requests have been submitted to the
technical committee and we are awaiting the next steps of the process (either “Needs Clarification”,
“Approved” or “Proposed Closing”).

Table 1. Summary of change requests submitted to SAREF.

Change request / Issue Title Description of the change request / issue Relevant ontology

Water Quality Predicted “In the Digital-Water.city project, a use case
is using statistical models for predicting the
water quality in the river. The predicted
measurements should be associated with
different percentiles with cardinality 1..*
(e.g., a predicted value of 0.3 (in the range 0-
1) at percentile 50, another prediction of 0.4
at percentile 97.5) and it should be possible
to describe a conclusion from the prediction
stating the overall water quality using an
enumerated value ("Excellent", "Good",
"Sufficient", "Poor"). “

SAREF4WATR

Sampling Device as a subclass of the
existing Device

“In the project Digital-Water.city there is a
need for specifying automated sampling
devices and their measurements. A
description of such devices is provided here:
Automatic Water Samplers. As this might be
relevant in other domains besides water

SAREF Core

40 http://www.etsi.org/deliver/etsi_ts/103600_103699/103673/01.01.01_60/ts_103673v010101p.pdf

30

management, the change request is added
here.”

IrrigationSystemType “There exists a class WateringSystem.
However, it could be useful to be able to
specify the type irrigation system being used,
such as "channel", "drip", "pivot" and "reel".
Furthermore, the definition of the
WateringSystem class could be made more
informative.”

SAREF4AGRI

FarmTypology “It should be possible to specify different
types of farms. Examples could be
CropFarm, LivestockFarm, MixedFarm
according to the typology suggested here:
https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Glossary:Farm_ty
pology”

SAREF4AGRI

LandMeasurement “There should be a type of property that
specifies that a measurement specifies the
size of a parcel, a farm or another
agricultural entity. For example, when
specifying the hectare size of a farm, a
measurement could be related to (using the
relatesToProperty OP) an instance of a new
LandMeasurement class which would then
be a subclass of the class Property.”

SAREF4AGRI

Soil Type “It could be useful to specify different types
of soil, at least at a high level (e.g., whether
it is sandy, stony, clay, etc.). Existing
classifications of soil types can be found in
AgroVoc:

https://agrovoc.fao.org/browse/agrovo
c/en/page/?uri=http%3A%2F%2Faims.f
ao.org%2Faos%2Fagrovoc%2Fc_7204”

and/or according to the soil texture triangle
calculator at USDA:
https://www.nrcs.usda.gov/wps/portal/nrcs
/detail/soils/survey/?cid=nrcs142p2_05416
7

SAREF4AGRI

Crop Type “It should be possible to specify the type of
crops in the ontology. A source of inspiration
can be:
https://agrovoc.fao.org/browse/agrovoc/en
/page/c_1972”

SAREF4AGRI

https://agrovoc.fao.org/browse/agrovoc/en/page/?uri=http%3A%2F%2Faims.fao.org%2Faos%2Fagrovoc%2Fc_7204
https://agrovoc.fao.org/browse/agrovoc/en/page/?uri=http%3A%2F%2Faims.fao.org%2Faos%2Fagrovoc%2Fc_7204
https://agrovoc.fao.org/browse/agrovoc/en/page/?uri=http%3A%2F%2Faims.fao.org%2Faos%2Fagrovoc%2Fc_7204

31

References

[1] A. Vennesland, P. H. Haro, and B. J. Hanssen, ‘D4.4 Semantic Interoperability Design
Requirements’, Digital Water City, 2020.

[2] H. Schwarzmüller, A. Vennesland, P. Halland Haro, and G. Bour, ‘D4.1 Interoperable and secure
flow of information: Cyber-physical sphere and interoperability aspects in the utilities regarding
the DWC solutions’, Digital Water City, Jun. 2020.

[3] A. Vennesland, ‘D4.5: DWC Water Value Chains Ontology’, 2021. [Online]. Available:
https://zenodo.org/record/6497063#.Y8T7TuzMJb8

[4] B. J. Hanssen, P. H. Haro, and A. Vennesland, ‘D4.6: Semantic Interoperable Middleware - Interim
Version’, 2020. [Online]. Available: https://doi.org/10.5281/zenodo.4320597

[5] A. R. Hevner, ‘A three cycle view of design science research’, Scandinavian journal of information
systems, vol. 19, no. 2, p. 4, 2007.

[6] R. B. Mishra and S. Kumar, ‘Semantic web reasoners and languages’, Artificial Intelligence Review,
vol. 35, no. 4, pp. 339–368, 2011.

[7] F. Ekaputra, M. Sabou, E. Serral Asensio, E. Kiesling, and S. Biffl, ‘Ontology-based data integration
in multi-disciplinary engineering environments: A review’, Open Journal of Information Systems,
vol. 4, no. 1, pp. 1–26, 2017.

[8] F. Giunchiglia, M. Yatskevich, and P. Shvaiko, ‘Semantic matching: Algorithms and
implementation’, in Journal on data semantics IX, Springer, 2007, pp. 1–38.

32

Annex A: Introduction to semantic models / ontologies

This section provides a minimal and practical description of some key aspects related to ontologies to
prepare for the remainder of this report. For a more detailed explanation of ontologies and their
application, the reader is referred to e.g., the book Handbook on Ontologies41 and the W3C
Recommendation on the OWL 2 Web Ontology Language42.

An ontology is a formal definition of the concepts, properties and interrelationships of the entities that
exist in some domain of discourse. It provides a shared vocabulary that can be used to describe the
domain, classifying and categorising the elements contained within it. Typically, an ontology is
formalised using the Web Ontology Language (OWL). OWL is a part of the W3C suite of Semantic Web
standards43, which includes among others Resource Description Format (RDF)44, a framework for
representing web data using subject-predicate-object triples, and the Resource Description Format
Schema (RDFS)45 which provides a data-modelling vocabulary for RDF data. While both OWL and RDFS
offer a vocabulary for describing RDF data, OWL allows for greater expressibility than RDFS.

In an ontology, classes represent sets of individuals (also called
instances or objects) with similar characteristics and are organised in
a specialisation hierarchy (this hierarchy is also called a subsumption
hierarchy). This is illustrated in the figure to the right which depicts
the specialisation hierarchy of classes in the SAREF4WATR ontology46.
Here, a WaterMeter is a subclass of (specialisation of) Meter,
Meter is a subclass of Sensor, and Sensor is a subclass of
Device. This also means that the individuals associated with a
particular class are specialisations of those individuals belonging to
classes higher in the specialisation hierarchy.

In addition to classes and individuals, ontologies also describe
properties, of which there are two fundamental types: object
properties and data properties. Object properties define
relationships between individuals whereas data properties define literal values associated with
individuals. For example, the object property hasMeasurement is a relationship that allows for stating
various types of measurements of a particular water sample. In the example shown in Figure 9 a
sample of water (here, ex:DTSample335632 is an individual of the class Water) has a certain
concentration of cadmium and e.Coli. The object property relatesToProperty allows for defining
different types of measurements. The data properties hasTimestamp and hasValue allows for
defining the actual time of measurement and concentrations of cadmium and e.Coli in the water

41 Staab, Steffen, and Rudi Studer, eds. Handbook on Ontologies. Springer Science & Business Media,

2013.
42 https://www.w3.org/TR/owl2-overview/

43 https://www.w3.org/standards/semanticweb/

44 https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

45 https://www.w3.org/TR/rdf-schema/

46 https://saref.etsi.org/extensions.html#SAREF4WATR

33

sample respectively, while the object property isMeasuredIn enables a definition of which unit of
measurement is applied.

Figure 12. Example from the SAREF4WATR ontology

As revealed by the figure there are two ontologies involved in this example, SAREF4WATER (using the
s4watr prefix) and SAREF (using the saref prefix). SAREF is a suite of ontologies47 where SAREF itself is
the core ontology, while there are many extensions (modules) for different application domains.
SAREF4WATR is the extension of SAREF for the water management domain. Using SAREF together with
one or more of the extension ontologies allows for extending the scope, possibly integrating data from
multiple domains into a single knowledge base.

An ontology can be used to uniformly define classes (types), properties (relationships and attributes)
and axioms (semantic rules and assertions) of data entities in a knowledge base (aka triple store or
knowledge graph). Here, data are described in the triple format (subject-predicate-object) such that
according to the example in Figure 12 you would have the following three linked triples stating the
measurement of cadmium in a water sample:

47 An overview of the SAREF suite of ontologies is available at: https://saref.etsi.org/index.html

Subject Predicate Object

DTSample335632 (type Water) hasMeasurement DTSMeasurement106 (type Measurement)

DTSMeasurement106 (type Measurement) relatesToProperty Cadmium (type ChemicalProperty)

DTSMeasurement106 (type Measurement) hasValue 0.005 (datatype float)

34

Provided that NGSI-LD is used as format for expressing entities in the context broker (e.g., Orion-LD)
and associated data storage, quite powerful queries as well as learning techniques can exploit both
the explicit (as in the example above) and latent semantics expressed in the ontology.

One example of using latent semantics from knowledge bases is knowledge graph embedding. In the
works of Myklebust el al. (2019)48 knowledge graph embedding techniques are used to model eco-
toxological effects of various compounds in the water environment. The idea is that based on the
known eco-toxological effects declared in the knowledge graph, the knowledge embedding model will
compute/learn the probability of unknown eco-toxological effects. This is also known as link
prediction. For example, the knowledge graph states that compound X affects (e.g., has a lethal effect)
on species Y. How the compound X affects species Z is not known. But based on the learned vector
positions of X, Y and Z, and the quantified effect (relationship) X has on Y, the model also predicts that
X affects Z. The quantified effect (relationship) can for example be represented by some computed
distance/offset between X and Y. The vector space representation of all entities in
the knowledge graph is generated by a so-called knowledge graph embedding model (e.g., based on
neural networks). The objective of these models is to learn an optimal vector representation for each
entity in the knowledge graph and the intuition is that these vectors capture some latent
(unexpressed) semantics from the context of each entity in the knowledge graph. Here, context is
represented by for example the structural characteristics of the knowledge graph (e.g., which entities
are neighbors to entity E in the graph) or ontological definitions (e.g., entity E is a member of the class
Arsenic).

48 Myklebust, Erik B., et al. "Knowledge graph embedding for ecotoxicological effect prediction." International Semantic

Web Conference. Springer, Cham, 2019.

