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Executive summary 

This report describes the development and implementation of Early Warning Systems (EWSs) 
to support a decision-making process and to assure health protection in water reuse practices 
and during recreational activities in bathing water.  

Particularly, this document presents: (1) the planning and design phase of the early warning 
systems, (2) the rationale for the implementation choices, and (3) the outcomes of the 
demonstrations.  

The first section of the document (section 1) gives an introduction to risk management within 
an integrated urban water system.  

Section 2 describes the rationale for the implementation of a Machine-learning based Early 
Warning System (DS2) for bathing water quality in the city of Paris. For the development of 
this EWS, two different models were used to simulate faecal bacteria indicators (FIB) 
concentration in the bathing sites: a deterministic model (ProSe), and a statistical model. 
Particularly, data produces by ProSe model were used as input for the statistical model to 
predict FIB concentration in bathing water. Produced outputs define the sanitary quality of 
the bathing site according to the Bathing Water Directive thresholds and help managers to 
decide whether to open or close a bathing site to the public. 

Section 3 describes the rationale, design, and implementation of the EWS for safe water reuse 
(DS3) at Peschiera-Borromeo Wastewater Treatment Plant (WWTP) in Milan. First, the 
operational framework for the EWS implementation (i.e., technologies applied to treat 
wastewater, wastewater quality, agricultural practices, legislative boundaries) was described. 
Then, a semi-quantitative risk analysis (i.e., risk matrix elaboration by WHO indication) and a 
quantitative risk analysis was performed to detect relevant hazards. Finally, the digital 
architecture of the Early Warning System was explained, including the development of 
machine learning algorithms (i.e., soft sensors) for the prediction of target parameters related 
to relevant hazards. Predictions by soft sensors were demonstrated and validated using real 
sensors data and laboratory analyses. 

The conclusions are reported in section 4. 

Key innovative elements presented in the report include: i) the development of machine 
learning models, which were fed by real probe data integrated by data simulated by 
deterministic model to predict water quality; ii) the contextualization of the developed digital 
solutions into the framework of risk assessment and management according to the European 
Regulation for Water Resue and to the Bathing Water Directive; iii) the development of 
communication tools to share outputs of the EWS and to support decision making in the 
framework of risk management.        

 

Note: the preparation of this report has been impacted by the COVID-19 pandemics. Due 
to work restrictions, the supply of the technical material, the installation of the sensors and 
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the field activities have been stopped or delayed of several months. These facts have 
impacted the implementation and validation of the designed EWSs for health protection in 
bathing water and water reuse.   

This deliverable represents the final version of the interim version submitted in M18 (D1.2). 
Compared to the previous version it brings additional input regarding:  

• Updates related to the development of Early Warning System for bathing water 
quality (chapter 2) 

• Risk assessment and digital architecture of the EWS for water reuse, including soft-
sensors development (chapter 3) 

Finally, the conclusions (chapter 4) have been revised and updated. 
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1. Risk management framework within the integrated urban water system as 
the basis of safe water reuse and recreational water safety plan 

1.1. Introduction to risk management  

Risk management is a crucial task, especially in water-related applications, to ensure health 
and environmental protection. Risk management consists of a continuously evolving process 
that allows providing the most appropriate measures and procedures to control and minimise 
negative outcomes. For risk calculation, all the aspects that potentially may affect human 
health should be considered to ensure an appropriate level of safety. Risks should be 
identified and managed proactively in order to minimise the risks to the environment and 
human or animal health.  

The risk management approach is increasingly acquiring more importance, and its 
development is addressed by many research programs, guidelines and standards (Goodwin et 
al., 2015). The current European bathing water directive (BWD) (EU 76/160/EEC, 2006) 
demands the implementation of reliable early warning systems for bathing waters. The 'New 
Bathing Water Directive' was adopted in 2006 and updates the measures of the 1975 
legislation and simplifies its management and surveillance methods. Particularly it provides a 
more proactive approach to informing the public about water quality using four quality 
categories for bathing waters — 'poor', 'sufficient', 'good' and 'excellent'. 

Even the recent European Regulation 741/2020 on minimum requirements for water reuse 
(EU Regulation, 2020) defines key elements for risk management for the safe water reuse in 
the context of integrated water management. Particularly, the new European Regulation 
741/2020 highlights the need to consider additional requirements depending on specific site-
conditions or situations that necessitate particular attention. It could be required to include 
heavy metals or compounds of emerging concern (CECs), such as pharmaceuticals or 
microplastics (MPs) in risk assessment. Increasing attention is paid on substances of emerging 
concern since their impact on health and environment is not yet clearly defined. Risk 
management should account for potential risks related to CECs, considering additional quality 
targets other than regulatory standards, but specific procedures are still missing.  

Water reuse guidelines encourage the application of Water Safety Plans (WSP) or Water Reuse 
Safety Plan (WRSP) for both potable and non-potable water reuse schemes.  

Water Safety Plans deserve particular attention since they are internationally recognised and 
well-established approaches. They provide structured methodologies that can be followed by 
different water schemes. The framework for WSPs should be applied to an integrated system-
wide, considering the entire integrated urban water and reuse system from the catchment to 
the final destination or use. 

For this purpose, a superstructure that covers all the urban wastewater cycle, from catchment 
to its final use, is defined, in order to represent the framework on which the early warning 
system will be applied. The superstructure considered is the integrated urban water system, 
which schematises the wastewater cycle in an urban background and includes catchment, 
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sewer network, wastewater treatment plant and final destination. The description of the 
integrated system is performed in order to obtain a characterisation of each component, 
defining boundaries and interconnections. Outputs coming out from a step represent inputs 
to feed the following one. Moreover, multi-barrier systems can address single-stage failure, 
considering the progressive risk minimisation along the sequence of treatment stages. 
Available data, assumptions and modelling influence the level of detail and accuracy 
achievable. Data collected are used to validate the system description. Historical data can be 
used to estimate system variability. At the first level of analysis, diagram flow schematisation 
can be used to perform mass balances in steady state. In a further step, real-time data should 
be integrated, since their use is preferred to represent the real case-study better, whereas 
models can run dynamic simulations to get the missing information.  

Once the system has been defined, all the hazards and the related hazardous events that 
potentially occur should be individuated along with its structure. Concerning surface water 
and wastewater, their characterisation and the definition of the possible hazards are strictly 
dependent on the conditions present in the catchment area and the sewers network. 
Nonetheless, the expected impacts vary depending on the specific condition of the final 
environment or destination.  

Operational monitoring defines and evaluates the efficiency of control measures applied, and 
thus needs to consider regulatory requirements, detection limits and data quality, in order to 
evaluate the effectiveness of control measures in risk minimisation.  

Risk management should consider the efficiency of each treatment technology in a multi-
barrier approach. Validation of process log reductions is a crucial aspect for the 
characterisation of microbial risks, in order to define system performance and removal 
efficiency against pathogens. Stated procedures and clear requirements for the validation of 
treatment technologies are not always well defined, also considering the wide variety of 
treatment technologies that could be applied in a system and the technological progress that 
is always providing innovative solutions not yet standardised. 

Risk analysis also introduces some uncertainties, related to the subjective nature of 
assignment weights and scores, but also concerning the wide variability range of operational 
conditions, as well as lack of information or poor quality of the data. Even if the presence of 
those uncertainties is known, there is no specific guidance on how to manage them in the 
practical applications. Models and analysis, such as multi-criteria decision analysis, fuzzy and 
stochastic analysis or Monte Carlo based models can help to deal with uncertainty, but their 
application requires specific skills. Simpler models, such as Failure Mode and Effects Analysis 
(FMEA) can also be used to assess water systems. Clear guidance on how to assess 
uncertainties for decision making is required in risk management, but nowadays in current 
WSPs, it is still missing.  

Risks characterisation and prioritisation are fundamental in the development of decision 
support tools since they allow the identification of the most urgent interventions and facilitate 
decision-making. Risk assessment is usually conducted by a WSP team, made up by different 
stakeholders involved and specific expertise, allowing the identification of hazards and 
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hazardous events, characterisation of related risks, the definition of control measures, 
verification and development of plan’s improvements and integrations. Risk management 
managers, which are the main responsible for the development of the plans, are usually water 
utilities or irrigation infrastructure managers, often characterised by an operative but a 
sectoral approach, but have to face with public authorities, which follow a health-based 
approach.  

Finally, the development of supporting programs, stakeholder engagement and 
communication activities are demonstrated to benefit for risk management. Periodic reports 
and surveillance to verify the effectiveness of the plan contribute to the continuous upgrade 
and improvement of the plan. Operative personnel training, research and emergency 
procedures and manuals can optimise risk management. Communication and public 
information can help improving confidence in water system, especially in case of sensible 
applications such as water reuse. 

1.2. Early Warning System design: approaches and relationship between 
risk management and digitalisation 

Early Warning Systems (EWSs) combine risk management with digitalisation to ensure safe 
practices in an automatized and continuous control. Two different approaches can be 
followed in the design of an EWS. A risk management planning approach can be followed 
defining, firstly, the risk assessment with the definition of all the hazards, the health target to 
achieve and the corresponding control measures, and subsequently, integrate digital solutions 
to control and minimise risks. Alternatively, starting from available data, EWS can be 
developed as decision support tools, which elaborate data by predefined algorithms and 
predictive analyses. In this case, risk analysis is implemented in a second moment, providing 
thresholds for warnings and alarms. 

Water management sector usually relies on treatment processes and removal efficiencies, 
using a huge number of sensors and meters, alarms and automatic control tools. In recent 
years, technological progress allowed the digitalisation of the water sector providing new 
sensors, always more precise and reliable, and tools for decision support. On the other hand, 
health authorities need to rely only on standardised methodologies and certificated data. 

Innovative sensors, such as ALERT technology for bacteria measurement, allow more rapid 
detection of pathogens, decreasing the response time from the 24-48 hours needed for 
laboratory analysis to 6-12 hours. Moreover, sampling can be automatised in order to perform 
periodic measurements, even without the presence of operative personnel.  

To analyse microbiological risks, health-based targets could be based on indicator organisms, 
such as E. coli, that are easier to measure than specific classes of bacteria, pathogens and 
viruses. The use of faecal surrogate indicator organisms, such as E. coli, is considered in water 
safety plans when the measurements of microbiological hazards are challenging or expensive. 
However, the management of data from alternative surrogate indicators is not always well 
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defined in the WSP guidelines. Moreover, it is not clear how to validate data from innovative 
sensors that do not use standard methods to measure pathogens concentration. 

One of the main lacks on the risk management approach is the absence of a common 
procedure to treat non-standardised data, such as real-time and on-line measurements from 
sensors or model simulations results. The main difficulty consists in the validation and in the 
evaluation of the reliability of non-standard data for their utilisation to calculate risks.  

1.3. Early Warning Systems available in the market or tested in the 
literature 

EWSs are generally integrated systems consisting of monitoring tools able to analyse and 
interpret results in real-time (Grayman et al., 2001; US EPA, 2005). The goal of an EWS is to 
identify the occurrence of low-probability/high-impact contamination events in real-time to 
make possible the safeguard of public health. EWSs should provide a fast and accurate system 
to distinguish between typical operational conditions in wastewater treatment plants 
(WWTPs) and the occurrence of anomalous events or system malfunctions. EWS tools need 
to be reliable, with few false positives and negatives, not too expensive, easily maintainable, 
and easily integrated into network operations (Brussen, 2007).  

EWSs are currently employed in monitoring systems for drinking water and freshwater quality. 
Technological advances in instrument development have produced several reliable on-
line/real-time monitoring systems able to detect chemical or biological contaminants, 
treatment malfunctions rapidly, and to assure an optimal water quality management in water 
treatment and distribution systems. Their application in WWTPs is increasing in recent years, 
thanks to several technological signs of progress.  

Within the water reuse sector, EWSs are mainly applied to control pathogens contamination. 
For instance, AquaBio analyser is one of the several advanced monitoring solutions tested 
under the R3Water European project (R3WATER, 2017). AquaBio analyser can quantify 
Escherichia coli and total coliform automatically in water using the defined substrate 
technology (DST®), which uses measurements of fluorescence and absorbance for bacteria 
quantification. The consortium Costa Brava uses AquaBio at their Water Reclamation Plant 
(WRP) to monitor Escherichia coli and total coliform in both the raw influent and the final 
effluent of the plant to optimise the inactivation of pathogens (R3WATER, 2017). 

In a completely different scenario, the SWIM-Sustain Water MED project promoted water 
reuse for agricultural purposes in Tunisia (Bedoui, 2014). Particularly, the Médenine WWTP 
was equipped with a computerised system, which allows the regular sharing of water quality 
data with stakeholders as well as the early warning notification via SMS in case of quality 
problems.  

Other existing EWSs for wastewater treatment are used for toxic events detection. Toxic 
contaminants in the influent to the plant can cause inefficiencies in the activated sludge 
process leading to a reduced removal of organic carbon and nutrients. Chow and colleagues 
demonstrated the potential usefulness of a detection system equipped with an on-line UV 
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absorbance spectrophotometer to give early warnings of the anomalous operational status at 
Whyalla WWTP (Australia) (Chow et al., 2018).The on-line spectrophotometer is used for 
wastewater characterisation, and the acquired spectral data together with other information 
like rainfall and temperature are managed via the web to detect anomalies. Similarly, in Korea, 
it was developed an innovative system based on the measurements of dissolved oxygen (DO) 
and pH to identify potential nitrification inhibition (Hong et al., 2012).In this case, probes were 
placed in a laboratory scale oxidation/nitrification tank for screening wastewater 
characteristics, and to early detect toxicity issues due to chemicals flowing into the aeration 
basin. If the system detects any potential toxicity effect in the incoming wastewater, a WWTP 
operator can divert the wastewater into a reservoir tank and prevent the inhibition of the 
biological process. In another study, Du and colleagues assembled an on-line early-warning 
system to detect toxic loads from industrial wastewaters (Du et al., 2019). The proposed 
system relies on the measurement of the Relative Oxygen Uptake Rate. It consists of a 
wastewater tank, a sludge tank, a filter, an aerator, a water pump, a sludge pump, a batch 
reactor for DO measurement, a DO probe, and a programmable logic controller (PLC). In 
another work, microbial fuel cell-based biosensor was applied as an early warning device for 
real-time and in situ detection of Cr(VI) in industrial wastewaters (Zaho et al., 2018) 

In addition, there are examples of EWSs that monitor wastewater characteristics in the sewers 
network before entering the WWTP. It is the case of Lodz WWTP and Wroclaw WWTP in 
Poland. The advantage is that the warning event is detected early enough to allow WWTP 
operators to undertake corrective actions. In Wroclaw WWTP, the EWS aims to identify 
wastewater toxicity level through the measurements of the Oxygen Uptake Rate (OUR) (Jurga 
et al., 2017). It is possible using few measurement points placed at selected locations of the 
sewage collection system. Similarly, Black and colleagues presented results from a pilot-scale 
study using an early warning system able to detect nitrous oxide gas emitted by nitrifying 
bacteria naturally present in sewer biofilm (Black et al., 2014). In Lodz, instead, a more 
complex system was realised (Sakson et al., 2019). In this case, the EWS manages different 
data coming from an existing pluviometry system, an existing flowrate measurements system 
installed in sewers and placed close to eighteen combined sewer overflows, and from four 
new stations for monitoring the wastewater quality in sewers. In each of these stations were 
installed on-line sensors measuring pH, conductivity, organic substances, ammonium 
nitrogen, suspended solids/turbidity, chlorides, BTX, hydrogen sulphide. The designed EWS 
aimed to provide quantitative and qualitative information on the wastewater to treat at the 
receiving WWTP. It allows undertaking corrective actions in advance, and to avoid 
malfunctions of biological processes.  

EWS systems have been also proposed for monitoring bathing water quality providing a 
surveillance tool for recreational activities. In this context, an interesting EWS was developed 
in Denmark, where an integrated real-time control and warning system improved the hygienic 
water quality of the surface waters receiving combined sewer overflows in the city of Aarhus 
The EWS was operated to reduce the frequency of combined sewer overflows (CSO) (German 
Water Partnership, n.d.).  
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Furthermore, the current European bathing water directive (BWD) (Bathing Water Directive, 
2006) demands the implementation of reliable early warning systems for bathing waters. To 
address this issue, Seis and colleagues proposed an EWS based on multivariate regression 
modelling, which takes into account the probabilistic character of the European bathing water 
legislation for both alert levels and model validation criteria (W Seis et al., 2018). The system 
was implemented using information and data collected at a river-bathing site in Berlin. 
Precipitation, river flowrates and wastewater discharges were used as key explanatory 
variables to construct the model. The outputs of this latter study represented the starting 
point for the development of an Early Warning System for Bathing Wating Monitoring in the 
city of Paris in DWC project. Table 1 summarizes all the studies and prototype systems realized to 

provide an EWS tool for wastewater reuse and bathing water monitoring 

Table 1: Technological/solution benchmark of proposed EWS for wastewater reuse and bathing water monitoring 

Proposed EWS 
Project/Refere

nce 
Monitored 
parameters 

Application Goals and comments 

AquaBio 
analyzer 

R3Water 
European 

project 

E. Coli and 
total coliform 

Wastewater 
reuse 

The device provides fast 
measurements of pathogen 
concentration in wastewater 

effluents. The EWS is limited to the 
measurement of microbiological 

parameters 

Sensors for 
water quality 
monitoring 

and 
computerised 

system for 
sharing 

information 

SWIM-Sustain 
Water MED 

project 

Typical water 
quality 

parameters 

Wastewater 
reuse 

Notification via SMS or via internet 
when non-compliance of 

wastewater quality occurs. The EWS 
is restricted to the measurements of 

conventional wastewater 
parameters in the effluent  

Installation of 
sensors for 
monitoring 
parameters 
related to 
biomass 
activity 

Literature 
studies based 
on laboratory 
experiments 
(Hong et al., 

2012; Jurga et 
al., 2017) 

Oxygen 
Uptake Rate 
(OUR), pH, 
dissolved 
oxygen 

Wastewater 
reuse 

Detection of industrial discharges 
and toxic contamination events. The 
application is restricted to laboratory 

studies 

Sewer network 
monitoring 

systems 

Literature 
studies 

(Sakson et al., 
2019; Chow et 

al., 2018) 

Water quality 
parameters 

measured by 
sensors 

installed in the 
sewer network 
or at the inlet 

of a WWTP 

Wastewater 
reuse 

Research studies have 
conceptualized/investigated the use 
of sensors and modelling approaches 

to detect anomalous load of 
wastewater entering the WWTP.  

However, these systems have never 
been realized at pilot/full-scale  

EWS for CSOs 
control 

Case study in 
the city of 

Aarhus 
(Denmark) 

Modelling of 
CSO based on 
hydrologic and 

hydraulic 
parameters 

Bathing water 
The models aim to predict and 
reduce CSOs events that affect 

bathing water quality 
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2. DS2: Machine-learning based Early Warning System for bathing water 
quality 

2.1. Planning and design: description of the solution 

The Early Warning System (EWS) for bathing water is, as shown in Figure 1, a system that 
includes three tools that will target different audiences. 

 

Figure 1 General concept of the Early Warning System 

The general concept of the EWS is that the prediction tool will simulate the bathing water 
quality (E. coli concentration) including uncertainties at a specific site. This prediction along 
with additional technical information will be sent to the “expert” app that targets the bathing 
site managers. The expert app is a dashboard which gathers all relevant information to 
support their decision about opening or closing a bathing site. The “public” app, which targets, 
as its name shows, the public and any stakeholder group interested in bathing water quality 
(potential bather, boat owners…), will provide the status of the bathing site of their choice as 
well as additional practical information about the site, bathing safety, technical information… 

A Community of Practice (CoP) gathering relevant stakeholders and the future bathing 
managers has been created in order to determine the requirements for the development of 
both the “public” and “expert” apps. The aim is to determine the settings and set of 
information needed (1) by the managers to support informed decision and (2) by the public 
to foster the use of recreational water in the Paris region. 

In parallel, any in situ measurement tools that have been installed in a bathing site will be 
providing water quality data. These data can be used (1) to validate the predictions of the tool 
(2) to help the manager to make decision on the bathing site status and (3) to inform the 
citizens on the quality of the water they want to bath in.  
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The originality of the prediction tool for the Paris region resides in the combination of both a 
statistical and deterministic model. Both models enable to simulate E. coli concentration at 
the bathing sites.  

The motivation of combining the two modeling type where based on multiple reasons. First, 
the combination allows for using the statistical model for daily predictions. ML based 
modelling approaches are computationally less demanding and allow for faster prediction. 
Moreover, online deployment is far easier and requires less resources. Second, the major 
advantage of the ProSe model is that it allows for accounting for future changes in the sewer 
network system. While there is plenty historical data available in the Paris case, which 
generally would allow for training a machine learning model, these data become unusable as 
new measures for improving water quality are implemented (e.g. UV disinfection at upstream 
WWTP). This aspect is especially relevant for Paris since under status quo conditions, water 
quality not suitable for swimming. Thus, the ProSo model is used to identify periods of future 
good water quality, which the ML model seeks to reproduce. In many cases, where ML models 
are used  for bathing water quality prediction, problems arise due to the limited number 
of  data collected under contamination episodes. In Paris it is currently the opposite, meaning 
that data availability does not allow for identify periods of good water quality with the 
required degree of certainty. Third, predictions of the statistical model are site specific, 
whereas the deterministic model simulates water quality along the river involving a global 
calibration of the model. Therefore, ProSe allows us to create this kind of data at any place of 
the river and thus allowing any bathing site to be able to use the prediction tool. 

Last, the ProSe model is currently not built to simulate in real time the water quality; it is 
however, an improvement that is in the work at SIAAP right now. It will take time because it 
needs a modification of the code of the model in order to be able to process the data in real 
time.  

 

Figure 2 Functioning of the prediction tool 

For the daily use of the prediction tool, the statistical model is fed continuously with specific 
data such as flowrates of CSO, WWTP and rivers as well as rainfall gauges. The model creates 
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a correlation between these data, allowing it to simulate the E. coli concentration. This 
concentration will then be compared to measured data in order to validate the quality of 
prediction of the model.  

The relevance of using both a statistical and a deterministic model lies in the future evolution 
of the infrastructure. Indeed, while the statistical model allows to predict water quality on a 
daily basis, it cannot take into account the evolution of the network.This is where the SIAAP’s 
expertise is put forth. A hydraulic model developed by a provider will simulate the different 
flowrates (CSO and WWTP) taking into account the evolution of the sewerage network. These 
data will be used as input of the deterministic model ProSe allowing it to produce the water 
quality at any point of the Marne and Seine rivers. 

These new data can be used to re-calibrate the statistical model, which can now take into 
account the future development of the infrastructure and the impact on the future bathing 
water quality.  
The Early Warning System will be able to monitor bathing water quality at bathing sites, to 
detect pollution peaks and then alert in case of potential risk for swimmers’ health. The FIB 
concentration and uncertainties predicted by the models will be used to define the sanitary 
quality of the bathing site considering the Bathing Water Directive thresholds. In parallel with 
the EWS, regular FIB measurements at bathing sites are necessary to control water quality in 
real-time. Fluidion’s ALERT system could be deployed for this purpose. Moreover, in-situ 
probes, measuring parameters like turbidity, can be deployed to detect pollution peaks and 
confirm EWS alerts. These probes can detect punctual pollutions due to involuntary and/or 
unplanned discharges in rivers that can have a large impact on the water quality of the bathing 
sites. 

2.2. Early Warning System integration in FIWARE 

FIWARE will be used to ensure the interoperability of the solution for further replication of 
the solution. FIWARE will act as a central middleware for data transmission, using FIWARE 
context brokers and the NGSI-v2 API standard, which makes the setup “powered by FIWARE”. 
Its implementation is realized in close collaboration with Work Package 4. Real-time data will 
be sent periodically from database (EDEN) and data sensors (Fluidion or others) to the Context 
Broker. From the Context Broker the data will be used by the statistical model, also referred 
as open-source software (OSS), for updating prediction as well as the operator to the expert 
application. The expert and public applications will be connected through FIWARE in order to 
communicate the predictions of the EWS with the public (Figure 3). 

If the user decides to use the model for continuous predictions, the open-source software 
(OSS, https://github.com/wseis/swim-ai ) will be compatible to FIWARE data model standards 
and FIWARE Orion Context Broker for data transmission. New data, which are needed for 
updating the predictions will be transferred between the local data providers and the OSS 
using the Context Broker. The Context Broker will also be used to publish updated predictions 
generated by the OSS. The 17 processes of continuous prediction are also illustrated in Figure 
3, where the OSS is referred to as “statistical model”. The application is being tested in Paris 

https://github.com/wseis/swim-ai
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and will be connected to the FIWARE interoperability software to predict bathing water quality 
alongside ProSe (Figure 3). 

Considering the fact that the data coming from the database will have a specific format, the 
purpose of the middleware component (in pink) will be to standardize all of the data in specific 
data models proposed by FIWARE.  

Another important information is that in its current implementation, the Context Broker only 
stores the last observation, i.e. measurement, from a specific entity (rain gauge, flow 
measurement). The different apps (e.g. OSS, Expert App) are connected to the context broker 
using a publish/subscribe implementation. That means that anytime there is a change in a 
specific entity, e.g. when a new measurement of a rain sensor is published in the context 
broker, the individual apps receive a notification for that particular change. 

The full time series is subsequently stored in app specific databases. For example the OSS uses 
a SQL database for long term storage, in which the context broker ID is mapped to the ID of 
the SQL database. For long term storage in the SQL database, existing open standards for data 
storage based on the “observational data model (ODM)” are used. This architecture ensures 
FIWARE comparability of the OSS on the one hand, but make the tool more flexible to be 
transferred other situations where potential other modes of data transfer are used. 
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Figure 3: Architecture diagram for the integration of EWS in FIWARE 

2.3. WHO Guidelines for safe recreational water environments 

Edited in 2003, the WHO Guidelines for Safe Recreational Water Environments describe the 
state of knowledge regarding the potential impact on human health of the recreational use of 
coastal and freshwater environments. The main issues addressed were drowning and injury, 
exposure to cold, heat and sunlight, water quality with particular regard to the exposure to 
sewage-contaminated water and free-living pathogenic microorganisms, beach sand 
contamination, exposure to algae and their products, exposure to chemical and physical 
agents, and dangerous aquatic organisms. The purpose of the Guidelines was to evaluate all 
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monitoring and control measures to protect public health in order to ensure the maximum 
possible benefit for the bathers and to stimulate the development of international and 
national procedures (i.e., standards and regulations) to control health risks from hazards that 
may be encountered in recreational water environments. The application and the 
implementation of the Guidelines should take into account social, cultural, environmental and 
economic characteristics, as well as knowledge of routes of exposure, the nature and severity 
of hazards, and the effectiveness of control measures. Moreover, WHO recommends the 
conversion and adaptation of the Guidelines “into locally appropriate and applicable 
standards to ensure a safe, healthy and aesthetically pleasing environment”. The conversion 
of the guidelines into regulations adapted to local circumstances needs the consideration of 
several arguments for each type of hazard. In the case of recreational water, the main 
requirements for a quality classification due to faecal pollution should include: i) the 
establishment of a water quality classification system; ii) the obligation upon the national or 
appropriate regulatory authorities to maintain a list of all recognised recreational water areas 
in a publicly accessible location; iii) the definition of responsibility for establishing a plan for 
recreational water safety management and its implementation; iv) independent surveillance 
and provision of information to the public; v) the obligation to act, including the requirement 
to immediately consult with the public health authority, and inform the public as appropriate 
on detection of conditions potentially hazardous to health; vi) a general requirement to 
ensure the safest achievable recreational water use conditions. The process leading to the 
application and adaptation of local standards and guidelines needs the involvement of 
multiple stakeholders. To achieve this objective, the establishment of a coordinated 
management system for recreational marine and freshwater areas based on an Integrated 
Coastal Area Management (ICAM) is crucial. This involves a comprehensive assessment, the 
setting of objectives, the planning and management of coastal systems and resources. It 
should also take into account traditional, cultural and historical perspectives and conflicting 
interests and uses. In an ICAM program, the exact package of management options to reduce 
or eliminate health hazards and risks related to recreational water uses will be driven by the 
nature, frequency and severity of the public health impacts. 

2.4. Case Studies of Risk Management Plan for bathing waters 

Exposure to contaminated recreational waters can lead to diseases, especially for susceptible 
people with reduced immune function. Water quality highly depends on the anthropic 
pressure (especially in heavily populated areas located in the proximity of industries and 
agricultural activities). Particularly, wastewater discharges can vehicle contaminants (e.g., 
pathogens and chemicals) increasing the risk for humans to contract water-related diseases. 
Even though several pieces of evidence have shown some correlations between adverse 
effects on human health and poor quality of recreational water, there are still difficulties to 
identify the actual cause (pollution) - effect (disease) relationships. Most of the scientific 
investigations in this field have been focused on infections associated with recreational waters 
resulting in minor, self-limiting symptoms. Indeed, the attribution of severe illness to 
recreational water exposure is challenging to establish due to the great number of 
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transmission routes for pathogens. Furthermore, it seems that some microorganisms or their 
products may be directly or indirectly associated with secondary health issues. Nevertheless, 
it exists some rare evidence that the risk to get some potentially fatal disease can be related 
to the quality of recreational water. The first assessments of the incidence of recreational 
water related diseases were published in the early 1920s in the US Public Health Association. 
Other epidemiological studies on the relationship between bathing waters and illness were 
conducted between 1948 and 1950 by the US public health Service. Extensive studies in five 
years on 43 beaches, which were conducted in the UK from 1959, concluded that there was a 
“negligible risk to health” of bathing marine water polluted by sewage, even though the 
investigated beaches were classified as “aesthetically very unsatisfactory”. The study stated 
that a serious risk would only exist if water were so fouled as to be revolting to the senses. 
The issue remained controversial for many years until the United States Environmental 
Protection Agency (US EPA) established in 1972 that there was a lack of valid epidemiological 
data to set guideline standards for recreational waters. The Guidelines for Safe Recreational 
Water Environments edited by WHO (WHO, 2003) concluded that the most frequent adverse 
health outcomes from recreational waters are gastroenteritis and acute febrile respiratory 
illness (AFRI). The guidelines confirm the association between gastrointestinal symptoms, 
AFRI and indicator-bacteria concentrations in recreational waters. The need for stronger 
recreational water monitoring programs to reduce the development of related illness has 
been acknowledged by several institutions worldwide. In 1999, The US EPA introduced the 
Beach Action Plan (US EPA, 1999) to describe actions to improve and assist in the state, tribal, 
and local implementation of recreational water monitoring and public notification programs. 
The primary objective was to enable consistent management of recreational water quality 
programs to identify the needs and deficiencies of recreational water quality monitoring. The 
second objective was to improve the knowledge in support to recreational water monitoring 
programs addressing three broad arguments: (i) Water Quality Indicators Research, including 
rapid analytical methods to identify risk before exposure occurs; (ii) Modelling and Monitoring 
Research, a joint estimation between computer models and laboratory tests to generate a 
reliable determination of health risk; (iii) Exposure and Health Effects Research, to determine 
pathogen occurrence and indicator relationships associated with wet weather when sewer 
overflows are combined with discharges of stormwater. The plan was implemented within a 
workgroup comprising expertise in water monitoring leading to the development of guidance 
for public health professionals on when, where, and how to set up and conduct an appropriate 
monitoring program for typical beaches. An example of a risk management plan on inland 
waters is the “Isar plan”, which is a water management action for the restoration of a stretch 
of the Isar River in Munich, Germany. Main aims of the Isar Plan were directed to the 
improvement of flood control by increasing the water retention capacity of the river stretch; 
to protect habitats for wild species, biodiversity and water quality; to the improvement of the 
water quality of the recreational scope. About this latter point, the plan aimed to find a 
suitable solution for the growing need for recreational space in a densely populated urban 
area. Actions to improve the recreational use of the river water consisted of widening the 
riverbed and developing banks and flat ramps with intermediate pools using natural solutions. 
The plan was developed within an interdisciplinary working group including the State Office 
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of Water Management Munich, the City of Munich and the “Isar-Allianz” (an alliance of NGOs). 
The working group examined the flood risk, the need for recreational areas at the riverside 
and the area’s animal and plant worlds and their habitat. Based on their findings, the 
development goals were defined.  

2.5. Local deployment of the solution – Paris case study 

2.5.1. Deterministic Model 

For the city of Paris, the modelling of the natural environment processes is a relevant research 
topic of the PIREN-Seine programme (Interdisciplinary Research Programme on water and the 
Environment of the Seine basin), and the development of ProSe modelling is part of it.  

The deterministic model ProSe was developed in the context of the PIREN-Seine programme 
(Interdisciplinary Research Programme on water and the Environment of the Seine basin) for 
the study of Seine and Marne rivers in Paris. It includes hydraulic modules, as well as modules 
for the simulation of Faecal Indicator Bacteria (FIB) (Servais et al., 2007). In fact, ProSe includes 
different sub-models to simulate several physical and chemical parameters of water in the 
Seine and Marne rivers in order to have a better understanding of water quality variations 
related to chronic or accidental pollution. In this context, a module for the simulation of Faecal 
Indicator Bacteria (FIB) has been implemented in ProSe over the period 2007-2010 (Servais et 
al., 2010) and serves as a starting point for the elaboration of the EWS for bathing water 
quality in Paris. Moreover, a wide amount of data is available for Paris area, and it represents 
a great opportunity for the development and calibration of data driven models. The four major 
types of data collected from different providers are flowrates; chemical parameters (such as 
NH4, Dissolved Organic Carbone, Chemical Oxygen Demand…); FIB concentration; and rainfall. 
The association of a large water quality dataset and a robust modelling approach are key 
factors to improve the rationality of the decision-making process. ProSe simulates the 
evolution of water quality along the Seine and Marne Rivers. The river state at each simulated 
point is defined by physical variables (like water speed, water level…) and biochemical 
variables, which might be influenced by other factors like temperature. In order to simulate 
these variables, the model uses different modules such as the hydraulic module or the water 
quality module describing FIB variation dynamics (Servais et al., 2011). The model allows 
linking the river’s metabolism with the anthropogenic pressure due to urban discharges. 
Figure 4 presents a flowchart of how ProSe works. 
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Figure 4 ProSe modelling 

The deterministic model can be adapted to simulate infrastructure changes in the sewer 
network or future scenarios for CSOs and WWTPs discharges. In fact, since it is connected to 
different sub-models, each of them specialised to investigate a definite aspect from hydrology 
to bacteria contamination, ProSe includes the representation of the physical system and thus 
is suitable to evaluate different scenarios, including future designs and infrastructure changes.  

On the other hand, the accurate description of the real field conditions requires a high level 
of complexity, with long calculation time. The process workflow implies first to run simulations 
from each sub-model, then the simulated intermediate outputs must be fed manually as 
inputs to the ProSe. Moreover, since the interest was focused on the urban city of Paris, efforts 
were required to reduce the extension of the simulated area. ProSe provides hourly values of 
bacteria concentration, but results do not include information about accuracy or sensitivity 
analysis yet, even if new upgrades are going to be implemented to take into account 
uncertainties. Among technical and operative issues, one of the main obstacles to the 
exclusive use of ProSe as EWS is that, due to its structure and the complex mechanism for 
feeding input data, sensors cannot be directly connected to the model to provide predictions, 
making ProSe not suitable for real-time simulations. Nevertheless, its strong connection with 
the physical system and the possibility to perform different scenarios on future configurations, 
make ProSe a highly valuable tool to obtain a robust dataset of bacteria concentration trends, 
that could take into account different environmental conditions and system configurations.  

Simulations with ProSe require large efforts in terms of time and expertise and thus it could 
be not suitable for real-time evaluations and EWS. However, its flexibility in representing 
different site conditions and its ability in providing a robust set of data were valorised to 
calibrate a statistical model, that is easier to use, time saving and feasible for real-time EWS, 
but that alone would be not flexible to system changes and has to be trained with a dataset 
that include as many variabilities as possible to provide reliable results. 

2.5.2. Statistical Model 

The digital approach taken in Paris is complemented with experiences and methodologies 
developed in Berlin under the project FLUSSHYGIENE. The approach is based on readily 
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available data, like rainfall, river flow and WWTP discharges and uses probabilistic forecasting 
for predicting FIB concentrations after heavy rainfall. The approach, moreover, implements 
risk-based decision making as outlined in WHO guidelines and the EU bathing water directive 
by extending the probabilistic approach for bathing water quality assessment (“percentile-
approach”) to short-term decision making.  

Water quality at the bathing site might be impaired concurrently by both rain events that 
occurred just recently and rain events that happened several days ago. The transit time of a 
contamination from its point of rejection to any bathing site depends on the river flow Q. In 
order to account for these kinds of variations, different explanatory variables are to be 
constructed. From WWTP discharges as well as from flow data Q, daily sums (WWTP) and 
averages (Q) are calculated up to seven days before sampling for each individual day (Q1, Q2, 
... Q5 and WWTP1, WWTP2, ... WWTP5). Moreover, variables are constructed which 
summed/averaged over multiple days before sampling, e.g., Q1-3, WWTP 1-3 as the 
average/sum over three days before sampling. Cyterski et al. (2012), Herrig et al. (2015), and 
Seis et al. (2018) have already successfully applied a similar approach. Rain variables are 
created analogously including a log-transformation. A value of 1 is added before taking the 
logarithm. The rationale for log-transformation is that while discharges of CSO and storm 
water may increase FIB concentration by orders of magnitude in the first instance, a further 
increase in rain and consequently discharge volume will not increase the concentration 
linearly on a log10 scale. By log-transformation, the effect of higher rain levels is weakened. 
The sampling day will not be included in the averaging, since precipitation might have started 
after sampling in the case of historical data, creating artefacts of wet weather conditions, 
when the sample might actually have been taken under dry weather conditions. Due to the 
lognormality assumption, given by the BWD, E. coli data were log10-transformed. Thereby, 
fitted models will be able to predict the lognormal distribution (mean and standard deviation) 
of faecal indicator bacteria and will be in line with current European Bathing Water legislation. 
The latter uses the percentiles of a lognormal distribution for probabilistic long-term bathing 
water quality classification. The applied approach translates the thresholds from the European 
bathing water directive to short-term predictions 

In digital-water.city (DWC), this approach is applied into an open-source software that 
supports decision-making by training and validating probabilistic prediction models based on 
readily available data. The user will be able to upload paired datasets (i.e., FIB data + time-
series data predictor variables). These datasets represent historical data and are used for 
model calibration (supervised learning). The open-source software (OSS) evaluates multiple 
machine learning algorithms for automatic variable selection and model validation on the 
provided dataset. The OSS provide the user with information about the quality of the different 
learning algorithms. Moreover, it returns historical bathing water quality predictions based on 
the provided data. These historical predictions allow the user to assess how the model would 
have predicted bathing water quality in the past and thus, provided information about the 
practical implication of implementing the model. 
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2.6. Data collection 

The study period for the development of the EWS covers four years from 2016 to 2019. The 
mandatory data for Prose simulations are flowrates and quality in WWTP and stormwater 
overflows. These data are collected at high frequency (5 minutes time step) when available. It 
represents a high amount of data, as there are around 115 combined sewer overflows or 
separated stormwater overflows in the simulated area (see figure 5). These data were 
collected for the main discharges in the Seine and Marne rivers, which included the 
Wastewater Treatment Plant (WWTP), the rain gauges, and some river water samples located 
at the potential bathing sites in Paris. Other data of interest are river quality and microbiology 
analyses. Those last two can be used to compare the simulation with measured data at some 
key locations in the river. In addition, measurement campaigns using the ALERT System have 
been conducted to provide FIB data in strategic bathing sites such as the Alma Bridge, which 
is close to the bathing site of the 2024 Olympic and Paralympic Games. On a wider scale, the 
routinely measured FIB concentration data from grab samples at several locations in the Ile-
de-France region were collected from various partners involved in the water sector. This data 
collection will also serve as the foundation for the statistical model developed by KWB. 

Complementary to the data collection, measurement campaigns have been conducted in 
order to improve our knowledge of the water quality in urban discharges and rivers. The 
location of the monitoring sites of 2019 and 2020 is presented in Figure 4. 
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Figure 5 Measurement campaign 

The 2019 campaign focused on the Seine and Marne rivers. More specifically on two bathing 
sites (Alma Bridge and Marne) and two major discharges points (Fresnes-Choisy in the Seine 
River and Ru Saint Baudile in the Marne River). In addition to a temporal variability campaign 
on the four sites, which included microbiological and physic-chemical monitoring, a low scale 
spatial variability campaign (100 to 200 meters long for 12 spaced-apart samples) was 
conducted at the shores and middle of the rivers at the two bathing sites (Alma Bridge and 
Marne). This last campaign was especially realized to compare the difference between the 
shore and the middle of a river as a sampling point. Both the laboratory and Fluidion’s ALERT 
system V1 carried out the analysis of the temporal variability campaign. However, only 
Fluidion provided drones dedicated to the spatial variability campaign.  

The 2020 campaign focused on smaller rivers that are tributaries of the Seine and Marne 
Rivers. The “Yerres” and “Orge” Rivers were monitored as the Seine’s tributaries and the 
“Morbras” as the Marne’s. The objective was the determination of FIB contributions from 
upstream tributaries during dry weather and rainy weather. As the hydrographs were quite 
long for these tributaries (from 1 to 3 days), it has been decided to monitor the rainy events 
over two days. Which represented 12 samples averaged over 4 hours. An external provider 
installed automatic samplers at each of the sites, triggered by means of a GPRS 
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telecommunication box allowing the control of a relay via SMS. Once these samples delivered 
to the SIAAP, a certified laboratory realized the E. coli, intestinal enterococci and 22 physico-
chemical parameters measurements. In addition, the same provider installed in-situ probes 
near the samplers to monitor conductivity and turbidity. 

The 2021 campaign focused on the Seine River upstream of Paris right before the dam of 
Ablon-sur-Seine. The ALERT System V2 was installed for two whole months (June and July) in 
order to study the water quality during dry and wet weather. In parallel, a technician from 
SIAAP did a manual sampling once a week at the same time as the ALERT System V2 in order 
for the data to be compared.  

The summer of 2021 was a peculiar one. Indeed, it was raining a lot so getting water quality 
data during wet weather was not difficult, the ALERT System was set to analyse a sample every 
6 hours on a 48 hours timeline. As for the dry weather, a sample was taken every day at the 
same time however, considering the amount of rain, it was decided as soon as real dry 
weather appeared to do a 24 hours sampling every 3 hours.  

In addition to that, the weekly sample analysed by the certified laboratory also allowed us to 
get NH4 concentration and total organic carbon.  

This last campaign allowed us to get additional data from a site upstream of Paris that would 
be used to help calibrate better both the deterministic and statistical model.  

Additional FIB data are being collected every year by different stakeholders during the 
summer in the Seine and Marne rivers to improve our knowledge of the water quality in wet 
and dry weather 

2.7. Monitoring program and model calibration 

2.7.1. Model calibration - PROSE  

Current simulations consider a perimeter around Paris with a start in Choisy for the Seine River 
and Neuilly for the Marne River and an ending at the Suresnes dam, downstream of Paris. The 
initialization sites will be shifted farther upstream during this project to increase the 
geographical coverage of the model. ProSe requires input data to start a simulation.  
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Figure 6: Study zone for the ProSe model 

For a better understanding of the study zone, it was divided into sections: 

On the Marne River: 

- From Neuilly to Champigny 

- From Champigny to Alfortville 

On the Seine River upstream of Paris 

- From Choisy to Ivry 

On the Seine River in Paris 

- From the confluence to the Quai Saint Bernard 

- From the Quai Saint Bernard to the Pont of Iéna. 

The main inputs are flowrates and quality at the different upstream rivers. Then, there are the 
discharges in the rivers with on one side the WWTP, and on the other side, the stormwater 
overflows that mainly occur during rainy weather. Once these data entered into ProSe, the 
simulation can start, and the model solves the different equations of each module to 
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determine the flow and quality all along the selected river section. First simulations results 
describing FIB dynamics during the summer of 2010 showed good agreement between 
measured and simulated FIB with, however, some notable differences during wet weather 
events (Poulin et al., 2013). Other actions are being conducted to improve simulation 
accuracy. It includes a better estimation of the input FIB concentrations in stormwater and 
combined sewer overflows and increasing the simulation frequency to provide a better 
representation of short-term pollution events. Finally, it involved the improvement of the 
modelled phenomena by refining the determination of the variables used for the growth and 
mortality of FIB in the ProSe model as well as their distribution in the different layers of the 
river (water, total suspended solids and sediment). The quality of the simulation will be further 
improved by achieving the on-line integration of data measured in real-time. The generated 
simulation output will allow the creation of data series to calibrate the statistical model 
considering different development scenarios of the sewer network and WWTP. Indeed, the 
deterministic model allows the modification of the study area according to future changes. 
ProSe allows simulating the evolution of discharges in the near area, while smart integration 
of deterministic and statistical model leads to an adaptable Early Warning System that is able 
to consider the ongoing changes of the urban water infrastructure. The first action in progress 
is to determine the optimal time-step for input data. Indeed, current simulations are done 
using 24h average values for input data of discharges. This low frequency results in an overly 
smoothed discharge profile and is not appropriate to assess the variability of FIB 
concentration in the river during rain events. Therefore, it is necessary to define the optimal 
time-step by assessing the sensitivity of the model to various time steps. 

2.7.2. Model calibration - Statistical model 

Machine learning (ML) models need to be calibrated and validated using large datasets. In the 
field of supervised learning, which is used for the specific application in DWC, paired data of 
the target variable and suitable predictor variables have to be collected. For this 
implementation, the concentration of faecal indicator bacteria is used as the target variable. 
To do so, SIAAP, KWB, and the University of Sorbonne agreed on using an existing data model 
(Water ML, ODM2) as a template to organize the data exchange between Berlin and Paris. 
Note, this data exchange refers only to the transfer of historical data used for model 
calibration. For setting up the real-time data transfer, which is used for regular predictions, 
the FIWARE Orion Context Broker is used, as described in section 2.2. An overview of the 
different data sources is given in Figure 7 (Rainfall stations are not shown to allow readability 
of the map). From the collected data, multiple features were engineered. Subsequently, a 
variety of ML modelling approaches were fitted and tested to the collected data sets, 
including:  

- Multivariate Bayesian regression modelling  

- Penalised regression approaches (Lasso, Ridge)  

- Tree-based modelling approaches (Random Forest, Bayesian Additive Regression 

Trees)  
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As a first approach, model validation will be based on internal cross-validation approaches. In 

the future, the simulations realized with both models will have to be validated by real on-site 

measurments. 

 

Figure 7 Overview of used predictor variables for calibrating ML models in Paris 

2.8. Firsts outcomes and validation results 

First tests were carried out using the simulated data provided by ProSe, in order to evaluate 
the level of agreement between the two models and verify the calibration performances using 
simulated data.  

As part of its sanitation master plan, SIAAP constructed different scenarios putting forth the 
multiple changes that need to occur on the sewerage network in order to reach the water 
quality for bathing. Those scenarios include among other things the disinfection of the WWTP, 
the correction of some connection that led to CSO and the construction of collecting basins. 
The impact of 3 scenarios (SC4, SC6 and SC7) were studied and simulated using the 
deterministic model ProSe.   

Outputs from statistical model are shown in Figure 8 as median trend (blue line), coupled with 
the uncertainty range (grey area), while ProSe data (represented as light blue dots) were not 
provided with their uncertainty.  

Results showed in general a good agreement between ProSe and the statistical model. 
However, some discrepancies can be detected. It has to be noticed that, however, in 
correspondence of biggest discrepancies, the uncertainty range of the statistical model also 
increased, meaning that the model was able to understand that in correspondence of those 
periods its results could have been affected by bigger errors. 

The differences between the two models’ outputs are focused on specific time periods and 
could be probably attributed to extra-ordinary maintenance interventions, that could have 
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caused anomalous discharges. It has to be noticed that currently the statistical model is using 
data from WWTP discharges, river flows and rain flows, since they are data that are more 
often available and that could be easily collected. However, for the future implementation of 
the statistical model, CSOs discharges will be included in the analysis, in order to get all the 
relevant information that could affect the results.  
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Figure 8: E. coli trends for scenario SC7 in summer period of years 2016-2019 

From the analysis of the most common statistical indexes, summarised in Table 2, it can be 
observed that, even if graphically the data seems to have a good agreement, some indices, 
such as R2, seem to suggest bad correlation. It has to be noticed that those indexes are highly 
affected by single extreme values. In fact, by removing a single data on 10th July 2017, that 
was particularly high (5 log10) and thus could be considered as an outlier, R2 increased up to 
0.2. Moreover, even if the statistical model did not provide the exact value, it wouldn’t have 
anyway allowed bathing. In fact, observing the index of correctly predicted contaminations 
(true positive rate), good performances can be noted.  

Table 2: Evaluation of statistical model performances using simulated data from ProSe 

  SC4 SC6 SC7 

R2 0.86 0.04 0.87 0.09 0.87 0.09 

Mean squared error 0.06 0.38 0.06 0.4 0.06 0.45 

Sample size 404 202 404 202 404 202 
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% below 95th percentile - 93.0 - 91.0 - 92.0 

% below 90th percentile - 90.0 - 85.0 - 85.0 

% in 95% prediction interval - 94.0 - 95.0 - 95.0 

Correctly predicted 
contaminations 

 (True-positive rate) 

- 0.99 
(70/71) 

- 0.92 
(54/59) 

- 0.91 
(48/53) 

Unpredicted contaminations 
 (False-negative rate) 

- (/71) - (/59) - (/53) 
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3. DS3 Early Warning System for safe water reuse 

The EWS for safe water reuse is a tool conceived within the risk-based management 
framework of sanitation systems. It aims at preventing bacterial and toxic contamination 
linked to the reuse of treated wastewater for agricultural irrigation based on: 

• A comprehensive network of multi-parameter sensors at a WWTP  

• New sensors for real-time and in-situ measurements (e.g., E. coli measurement - Digital 

Solution DS1) 

• Machine learning and statistical correlation to assess contamination risk 

The EWS that was developed for safe water reuse at Peschiera Borromeo WWTP was designed 
on the basis of a Risk Assessment and can be integrated with the real data acquired and 
processed at the plant by a dedicated SCADA system and control room, so as to potentially 
deliver dynamic risk management and decision support for risk minimization. 

In this work, the risk assessment was performed in a semi-quantitative mode by the 
construction of a risk matrix to understand the main components of risk in the WWTP. 
Furthermore, a quantitative microbial risk assessment (QMRA) was performed for a better 
characterization of the microbial risk. Hence, outcomes of the risk analysis as well as 
regulatory limits were considered for the selection of the parameters that are needed to 
monitor to assure a safe wastewater reuse. Hence the monitoring network constituted by 
sensors and soft sensors was defined. Particularly, the EWS can be defined as an integration 
of sensors and soft-sensors able to generate warning and alarm (when specific thresholds for 
selected parameters are exceeded) to allow facility staff to react promptly and take preventive 
actions that will assure a safe wastewater reuse.  

3.1. Planning and design: description of the solution based on WSP and SSP 

The EWS developed for Peschiera Borromeo water reuse system relies on the concepts and 
principles typical of a Water Safety Plan (WSP) and/or a WHO Sanitation Safety Plan (SSP). 
WSPs provide a systematic approach towards assessing, managing and monitoring risks from 
catchments to drinking-water consumers. At the same time, SSP applies the same conceptual 
and procedural approach from sanitation waste generation to the waste’s final use and/or 
disposal – both reclaimed water and treated sludge.  
In the case of reuse/recycled waste streams in agriculture, which produce a food product, SSP 
goes from “toilet to the farm to table”, or eventually to waste streams which are released to 
the environment, from “toilet to the environment”. 
There are, however, critical differences in the two approaches: SSP typically operates in a less 
defined regulatory environment, has multiple objectives, has more stakeholders and 
addresses risks to multiple exposure groups. 
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3.1.1. Structure and methodology of Water Safety Plans and Sanitation Safety Plans 

Risk management requires a description of the system defining its main components and 
boundaries. Usually, the system is schematised in a flow diagram, in order to get a clear but 
complete overview of the global picture and all the parts involved. The system is then 
contextualised considering the regulatory framework of standards and requirements, 
together with the geographic, climatic and socio-economic conditions of the local area. Once 
the system is defined, the next phase consists of the identification of all hazards and hazardous 
events, the characterisation of their likelihood, and the severity of the related consequences. 
Risk assessment is performed following a semi-quantitative approach, attributing weights and 
scores in order to quantify the considerations and the evidence emerged. Possible exposure 
routes and exposed groups are defined, with particular attention to vulnerable subjects. 
Preventive and control measures are evaluated, considering their effectiveness on risk 
minimisation. Treatments, technologies and behavioural measures are taken into account, 
considering a multi-barrier approach. Monitoring level, procedures, maintenance programs 
and emergency plans are implemented in the evaluation.  

3.1.2. Case Studies of Water Reuse Risk Management Plan 

In this chapter, some case studies about the application of Water Reuse Risk Management 
Plans (WRRMPs) are presented. 

The first case study presented was inspired to the WSP manual provided by WHO for the 
drinking water system and was applied for reuse of treated wastewater in green areas at the 
“Universidad Nacional Autonoma de Mexico (UNAM)” (campus University City) (R3WATER, 
2017). The main objective was to ensure human health protection. The health-based target 
was identified by the “Norma Oficial Mexicana, NOM 003 SEMARNAT 1997”, which establishes 
the maximum contaminant limits for reuse of treated wastewater in public services. The 
system was schematised in eight major components, and critical control points were 
determined considering wastewater treatment processes, reception and storing practices, 
accidental or deliberated contamination events, maintenance of the distribution system, 
protection practices and variations due to weather conditions. As a final result of the WSSP 
implementation, an upgrade of the WWTP and an improvement of the physical conditions of 
storage tanks were performed to ensure the safety of human health. At the same time, a 
monitoring and maintenance program was established. 

As an intermediate step of a Water Reuse Safety Plan, four case-studies within the European 
research project DEMOWARE (2013) (i.e., El Port de la Selva, Braunschweig, Olf Ford and 
Sabadell) have been investigated for health risks caused by pathogens via quantitative 
microbial risk assessment (QMRA). This approach calculates the probability of infection, 
combining the calculated concentration of pathogenic microorganisms with available dose-
response relationships and end-use specific exposure scenarios. The final step consists of 
calculating the disability-adjusted life years (DALYs), used as an indicator of disease burden. 
Particularly, two-thirds of the Braunschweig WWTP effluent (ca. 15 million m³ per year) is used 
for the irrigation of 2700 ha of agricultural area. Therefore, in Braunschweig quantitative 
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microbial risk assessment (QMRA) was conducted in order to quantify the probability that the 
planned reuse system would be able to meet the WHO health-based target of 10-6 DALYs per 
person per year (Bedoui, 2014). The selected reference pathogens were identified in 
Rotavirus, Campylobacter jejuni, Cryptosporidium and Giardia; while for exposure assessment 
three different scenarios were assessed: i) exposure of fieldworkers, ii) exposure of 
local/nearby residents and iii) children ingesting soil irrigated with reclaimed water. The risk 
assessment shows that the current measures for risk reduction are sufficient to meet the WHO 
benchmark for water reuse for residents (including children), and all target pathogens. 
However, fieldworkers have an increased work-related risk of infection, which exceeds the 
WHO benchmark. The WHO requirement may be satisfied by combining UV disinfection and 
irrigation on demand.  

The Australian Guidelines for recycled water management reports a real case of a risk 
management plan for agriculture reuse of treated wastewater (Chow et al., 2018). 120 million 
of raw sewage from domestic and industrial activities enter daily the WWTP that consists of 
secondary treatment followed by about 20 days of lagoon storage and polishing. In order to 
use the effluent for irrigating commercial food crops, treatment was expanded to include 
coagulation, dissolved air flotation and filtration (DAFF), and disinfection. From the risk 
assessment, it appears that human health is mainly affected by microbial hazards, while 
chemical aspects of recycled water (such as chloride, sodium and nutrients concentration, and 
salinity) produce a risk to the environmental performance. To reduce the risks, preventive 
measures are implemented, and critical points are identified.  

To ensure the application of best practices in water reuse, the new Portuguese policy focuses 
on the adoption of projects supported by a risk management framework and quality standards 
defined according to a fit-for-purpose approach. Rebelo and colleagues (Rebelo et al., 2018) 
proposed a methodology based on ISO standards 16075 that allows validating appropriate 
quality standards for water reuse practices and helps authorities on the decision-making 
process. At the same, the application of the risk assessment methodology was demonstrated 
in a case study, namely a vineyard irrigated with reclaimed water from an urban wastewater 
treatment plant (Hong et al., 2012) 

3.1.3. Role of Early Warning Systems in WSPs and SSPs 

According to WHO’s WSPs and SSPs, EWS is a control measure used to reduce risks due to 
unforeseen hazardous events and keep the water chain production for potable use or reuse 
under control. Once validated, EWS is used for operational monitoring of treatment processes. 
Typically, it is a fully automated tool using on-line calibrated instruments connected to a 
SCADA system (that is, a control system architecture comprising computers, networked data 
communications and graphical user interfaces), where alarm levels are typically set to provide 
an early warning as well as an emergency trigger. Alarms usually recall system operators’ 
attention to attend the plant and often start automated processes to stop supplying water 
into the treated water storage or directly to reuse. 
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In practice, automated monitoring systems require much work due to problems with selecting 
reliable instruments and control systems. Most utilities will persevere in improving these 
systems until they are sufficiently reliable and suitable for their WSPs and SSPs. Most systems 
are designed to have multiple triggers to avoid supplying untreated water. For instance, 
systems often automatically shut systems down or switched them to standby, and usually, 
there are early warning alarms that would provide time for problems to be fixed before they 
affect customers. 

In the Milan case study, the risk based EWS has been developed on the basis of the evidence, 
and the outputs emerged from risk assessment. According to the new EU Regulation 741/2020 
on minimum requirements for water reuse, “risk management shall comprise identifying and 
managing risks in a proactive way to ensure that reclaimed water is safely used and managed 
and that there is no risk to the environment or to human or animal health. For those purposes, 
a water reuse risk management plan shall be established”.  

3.2. Local deployment of the solution - Milan case study 

In order to plan and design a suitable Risk management for safe water reuse in Peschiera 
Borromeo WWTP, background information was collected and elaborated in different steps, 
including: 

1. Definition of the operational framework for the implementation of the solution 
(section 3.2.1) 

2. Choice of the water quality class to be produced (section 3.2.4) 
3. Analysis and assessment of the WWTP efficiency and resilience (section Analysis and 

assessment of the WWTP efficiency and resilience 
4. Risk analysis (SSP) of the production chain (section 3.2.4)  
5. Quantitative risk assessment 

3.2.1. Definition of the operational framework for the implementation of the solution 

The definition of the operational framework of the EWS for a safe wastewater reuse at 
Peschiera-Borromeo WWTP was conducted considering the characterises of the WWTP, 
including technologies applied to treat wastewater, wastewater quality, and the agricultural 
practices applied in the surrounding fields.   

The foundation of the rationale for the development of EWS started from the existing 
monitoring programs defined by the national and European Regulation on water reuse and by 
the selection of some specific aspects to focus on in order to stress test the reuse mechanism. 
In particular, the choice of on-line sensors and probes which were implemented is directly 
linked to the idea of stopping wastewater reuse before it may affect the health safety of 
exposed people.  
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3.2.1.1. Treatment trains at Peschiera-Borromeo WWTP 

The plant selected for the deployment of the solution is located in the municipality of 
Peschiera Borromeo, in Via Roma - Cascina Brusada (Figure 8). The plant serves a large urban 
area (Milan and neighbouring municipalities) and the Lambro River is the water body receptor 
of the discharged wastewater. The WWTP has a treatment capacity of 566000 P.E. and treats 
an average flow rate of 216.000 m3/day. 

The plant includes two treatment lines receiving wastewater from different urban areas:  

• Line 1: Municipalities of Brugherio (MB), Carugate, Cassina de' Pecchi, Cernusco sul Naviglio, 
Cologno Monzese, Peschiera Borromeo, Pioltello, Segrate and Vimodrone.  

• Line 2: Municipality of Milan and Linate district of Peschiera Borromeo  

 

Figure 8: Location of Peschiera Borromeo WWTP 

The schematic of the treatment process is reported Figure 9. Below is reported a brief 
description of the treatment trains of Linea 1 and Linea 2.  Figure 9.  

Line 1: Biological Wastewater Treatment with Activated-Sludge Process followed by tertiary 
treatment. The process includes the following steps:  

- Coarse screening, fine screening and odour treatment;  

- Grit and oil removal system;  

- Primary sedimentation with two circular settlers;  

- Biological oxidation in an activated sludge unit;  
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- Secondary sedimentation with 4 circular settlers;  

- Tertiary treatment for nitrogen removal in BIOFOR reactors;  

- Final chemical disinfection with peracetic acid.  

Line 2: Biological oxidation and nitrogen removal in BIOFOR reactors 

- Coarse screening, fine screening and odour treatment;  

- Sand separation and oil extraction in a compact SEDIPAC combined with primary 
sedimentation; 

- BIOFOR reactors for organic carbon and nutrient removal combined with filtration. There are 
10 BIOFOR modules, including 5 dedicated to pre-denitrification and 5 voted to organic 
removal and nitrification. 

- Final disinfection through UV lamps.  
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Figure 9: Detailed scheme of Line 1 and Line 2 treatment trains of Peschiera Borromeo WWTP 

3.2.1.2. Monitoring Programs   

At Peschiera Borromeo WWTP, monitoring of wastewater quality is performed by sensors 
installed at the plant and by laboratory analyses.  

The digital monitoring of wastewater quality at Peschiera Borromeo WWTP is performed by a 
remote control and a SCADA system for the continuous acquisition of online data measured 
at the WWTP by sensors. Laboratory analyses are also performed periodically for influent and 
effluent characterization to control specific processes.  

Equipment status and related alarms on electro-mechanical units are continuously monitored. 
Offline data about cumulative energy consumptions, chemicals supply, sludge and waste 
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production and disposal are stored in internal management systems. Maintenance 
operations, internal report and emergency procedures follow specific and documented 
protocols. 

At Peschiera Borromeo WWTP, a network of sensors and probes (Figure 10) is installed at the 
plant. It provides on-line and real-time data to monitor the wastewater quality in the influent, 
during the treatment process, and in the final effluent.  

 

 

Figure 10: Layout of the treatment trains of Peschiera Borromeo WWTP 

Since Line 2 was selected for the experimental activities in DWC project, below is reported a 
synthetic description of the main operational controls and management systems installed in 
this treatment line. 

Screening and pumping units are equipped with level radars, and alarms in case of malfunction 
of the electromechanical equipment. Energy meters are installed to measure dynamically the 
real energy consumption. Sensors for pH, ORP, conductivity, TSS, NH4, PO4 are installed before 
the SEDIPAC unit, which is also provided with flow meters. All the equipment for sludge 
extraction, oil removal system and sludge conveyor are equipped with alarms. Energy meters 
measure the electricity consumption. On the internal back-flush, that is sent back to the 
SEDIPAC, chemicals are dosed for phosphorus precipitation, and the related 
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electromechanical equipment is provided with alarms. BIOFOR reactor for biologic and 
nutrient removal combined with filtration is divided into 10 modules, 5 dedicated to pre-
denitrification and 5 voted to organic removal and nitrification. In the aerobic compartments 
REDOX, Temperature and Dissolved Oxygen are measured online with sensors, while the 
anoxic zones are provided with REDOX probes. In the internal recycle a N-NO3 analyser is 
installed and the recycle flow rate is also measured. Backwashing is monitored with a flow 
meter, the flux is activated alternatively by temporization or by pressure signals from sensors 
installed on the filters surface. Energy meters are installed to monitor electricity demand. In 
the UV disinfection unit, sensors are installed to monitor the UV light intensity. Maintenance 
operations are supported by a counter system with a threshold of maximum 10000 working 
hours for each lamp. Specific energy meters are installed to monitor the UV disinfection unit. 
In the final effluent, a set of probes are installed to monitor in real time several parameters 
and a flow meter is installed to control the amount of treated water. Key Performance 
Indicators (KPIs) are automatically calculated and correlated with historical data to detect 
anomalies. In the final effluent, are installed sensors for the monitoring of TSS, NH4, PO4, TOC 
and UV absorbance at 254 nm in real-time.  

In particular, the choice of monitoring TOC as a potential control parameter to assess the 
efficiency of the disinfection treatment derives from its typical use in the potable water sector, 
and specifically for the control of water quality in drinking water wells. 

TOC analyser purchased and installed at Peschiera-Borromeo WWTP in the framework of the 
digital-water.city project is the model BioTector 3500 from Hach Lange. Similarly to what is 
commonly done in laboratory scale machines, the BioTector 3500 first analyses TIC (Total 
Inorganic Carbon) through sample acidification, which leads to CO2 desorption. On a second 
quota of the withdrawn sample, the instrument measures TC (Total Carbon) via a chemical 
oxidation catalysed by hydroxy radicals, generating again a consequent flow of CO2. The two 
CO2 flows, quantified via Infrared spectroscopy, are subtracted to obtain the TOC value.  

TOC along with UV absorbance at 254 nm (UV254) is an indicator of organic content of the 
water and can provide indications to assess the performance of disinfection processes as well 
as risk for possible microbial regrowth (Chien et al., 2009; Masaaki K, 2014). In addition, both 
TOC and UV254 are measurements correlated to COD concentration in wastewater, and the 
COD to TOC ratio can give hints about characteristics of the organic matter present in the 
water.   

Sampling and periodical laboratory monitoring  

The sampling and the periodical laboratory monitoring at Peschiera Borromeo WWTP is 
carried out for the two wastewater lines: Line 1 and Line 2. The laboratory, which is accredited 
according to the UNI CEI EN ISO/IEC 17025:2018, is located inside the WWTP. Analytical results 
are typically available within 24h (5 days for BOD5) and are stored by a software for data 
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management (Water LIMS). The same software allows to send emails and alerts for any 
parameters that exceed the regulation limits. 

The monitoring program foresees the accomplishment of the analyses of several parameters, 
including BOD5, COD, SST, TP, TN e NH4, in 24 hours composite samples taken from the raw influent 
and the final effluent. These analyses are aimed to verify the compliance of the treated water with 
standard limits.  

The wastewater treated in Line 2 has to be in compliance with D.M. 185/ 2003 to perform 
wastewater reuse. Hence, at Peschiera-Borromeo WWTP samples are analysed for the 
determination of parameters defined in D.M. 185/ 2003. Particularly, the outlet treated water 
is analysed for: COD, BOD5, NH4, TP, TN, TSS, metals (Al; As; Cd; Cr; Ni; Pb; Cu; Zn; Fe), pH, 
conductivity, chlorides, Boron, Sulphate, SAR (Sodium Adsorption Ratio), aromatic organic 
solvents, organic nitrogenous solvents, total surfactants. Furthermore, weekly E. coli 
concentration is measured. The list of the Chemical-physical parameters analysed at Peschiera 
Borromeo Laboratory is reported in Table 3. 

Table 3: Chemical-physical parameters analysed at Peschiera Borromeo WWTP Laboratory 

Parameter LOD LOQ Accredited Method  

Conductivity at 25°C  150 mS/cm YES 

BOD5  5 mg/L YES 

COD  15 mg/L YES 

TSS  5 mg/L YES 

Total nitrogen (TN) 0.03 mg/L 0.1 mg/L YES 

Ammonium nitrogen (NH4) 0.043 mg/L 0.44 mg/L YES 

Ammonium nitrogen (N)  0.5 mg/L YES 

Nitric nitrogen (as N) 0.002 mg/L 0.049 mg/L YES 

Nitrous nitrogen (as N)  0.1 mg/L NO 

Total phosphorus (TP) 0.01 mg/L 0.313 mg/L YES 

Phosphates (PO4) 0.002 mg/L 0.023 mg/L YES 

Aluminium (Al) 0.005 mg/L 0.112 mg/L YES 

Arsenic (As)  0.03 mg/L NO 

Barium (Ba)  0.1 mg/L NO 

Boron (B)  0.1 mg/L NO 

Cadmium (Cd) 0.0004 mg/L 0.010 mg/L YES 

Total chromium (Cr) 0.0016 mg/L 0.045 mg/L YES 

Hexavalent chromium (Cr 
VI) 

 0.003 mg/L NO 

Iron (Fe) 0.0029 mg/L 0.041 mg/L YES 

Manganese (Mn) 0.0035 mg/L 0.115 mg/L YES 

Mercury (Hg)  0.0005 mg/L NO 

Nickel (Ni) 0.0009 mg/L 0.050 mg/L YES 

Lead (Pb) 0.0023 mg/L 0.024 mg/L YES 

Copper (Cu) 0.0003 mg/L 0.010 mg/L YES 

Zinc (Zn) 0.0011 mg/L 0.055 mg/L YES 

Chloride (Cl-) 0.018 mg/L 3.478 mg/L YES 
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Sulfate (SO4) 0.023 mg/L 2.292 mg/L YES 

Sulphite (SO3)  0.5 mg/L NO 

Sulfide (S)   NO 

Cyanides (Cn)  0.01 mg/L NO 

Fluoride (F)  0.25 mg/L NO 

Phenols   NO 

Total hydrocarbons  0.05 mg/L NO 

Animal/vegetable fats and 
oils 

 10 mg/L NO 

Non-ionic surfactants 
(MBAS) 

 0.5 mg/L NO 

Non-ionic surfactants (BIAS)  0.2 mg/L NO 

Total surfactants  0.2 mg/L NO 

Chlorinated solvents  1 mg/L NO 

Organic Aromatic Solvents  0.1 mg/L NO 

Sedimentable solids  0.1 mg/L NO 

COD after filtration 0.45 
microns 

 15 mg/L NO 

Dry residue at 105 ºC   NO 

Suspended solids 105°C  5 mg/L NO 

Total solids at 105 °C  5 mg/L NO 

3.2.1.3. Agricultural practices in the surrounding areas 

In the Po valley, the agricultural irrigation systems are highly dependent on freshwater 
diverted mainly from rivers. Particularly, in the plain of the Lombardy region irrigation has 
been developed since the Middle Age, as witnessed by the extensive network of historical 
channels, which convey water for irrigating an area of about 550 000 ha. The irrigated area 
represents about 85% of the total utilised agricultural area, demonstrating the relevance of 
irrigation to sustain the agricultural sector of Lombardy, one of the most important in Europe, 
both in terms of quantity and quality of agricultural and food production. Given its 
geographical context, agriculture plays a key role in the economy of the region. In this area 
the most employed agriculture activities are fodder crops, such as maize. The most common 
irrigation techniques rely on border irrigation, implying a water demand of about 3000-4500 
m3/(ha*month) during the irrigation season.  

Crop quality impacts both the quantity and quality of the required irrigation water because 
different types of crops need different amounts of water and are sensitive to different water 
characteristics. Furthermore, the amount of water for irrigation and the frequencies of the 
irrigation events vary according to the period of the year. Crop quality also implies numerous 
risk considerations, which depend on harvesting practices, processes accomplished to obtain 
the final product, and the final use of the product itself (e.g., consumed cooked or raw, 
consumed by humans or animals). 
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At present the most common sources of water for irrigation are rivers. Water is diverted from 
rivers and then distributed by gravity through a network of open, unlined canals and is 
supplied to farmers under rotation. The irrigation network of canals and the related water 
delivery systems are supervised by the consortium Est Ticino Villoresi, one of Italy’s most 
important irrigation consortia.  

Irrigation water availability has been traditionally adequate, but competition for water 
resources access in the area has been increasing in the last years and it is expected to further 
escalate, mostly due to a decreasing trend in summer water availability and to a reinforcement 
of the ecological flow requirements. Therefore, the identification of additional water 
resources, along with the improvement in irrigation efficiency, represent key issues for the 
next years. Alternative sources of water, such as reclaimed wastewater, are drawing attention 
as innovative solutions. 
In the context of Digital Water City – Horizon 2020 project, a study aiming at demonstrating 
the potential of a smart reuse of treated wastewater was carried out. The study considers one 
of the two treatment lines (“Line 2”), that provides an average discharge of 1 m3/s 
 
The study was carried out in the agricultural season 2021 in two fields adjacent to the WWTP. 
Both fields are cultivated with the same agronomic practices, but one field is irrigated using 
the most common irrigation method (i.e., border irrigation), while in the second one an 
attempt to implement a “smart” irrigation practice was performed (Figure 11). 

The fields are cropped with maize during the summer season, while during autumn and winter 
mustard is cultivated as a cover crop. In 2021 maize was sown at the beginning of April (April 
8th) and harvested on September 29th. The fields have been irrigated in past years using 
border irrigation with a centrifugal pump that lifts the water from a canal and spreads it over 
the field. In one of the fields a new drip irrigation system was installed for the purpose of the 
DWC experimentation. The main pipe starts from the outlet of WWTP Line 2 and reaches the 
field boundary where a manifold is connected. 

The field is divided into four different sectors where drip irrigation can be activated 
autonomously through four remotely controlled electro-valves. Each sector was irrigated for 
approximately 12 hours every two days during the agricultural season. At the beginning of the 
season, laterals, connected to the manifold, were installed in the crop inter-row with a spacing 
of 1.4 m and were partially buried; the emitters’ distance and discharge are 30 cm and 1.14 
l/h, respectively. 
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Figure 11: Overview of demo site (left), drip irrigation system installation (centre), electro-valve regulating irrigation in 

each sector (right) 

To obtain information about soil water status, two multilevel humidity probes (Figure 12) 
located at two different points along the drippers line (yellow triangles in Figure 11) and a 
piezometric well (blue dot) with a sensor (Figure 12) to monitor the ground table depth were 
installed. 

The same sensor configuration was used in the border irrigated field. 

In addition, a weather station (Figure 12) was installed near the demo site to measure the 
local weather agrometeorological variables that are required to estimate the crop 
evapotranspiration; for security reasons, the station was installed inside the WWTP, about 
500 m from the field (red star in Figure 11). 

  

Figure 12: Sensors and devices installed: piezometer, water content probe + GSM modem (left); agro-meteorological 

weather station (right) 
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3.2.2. Choice of the water quality class to be produced 

3.2.2.1. Legislative boundaries  

Before the entry into force of European Regulation 2020/741 (hereinafter also referred as 
“Reuse Regulation”), the reuse of water was regulated at European level by Directives: 
2000/60/EC, Art. 11 and 91/271/EEC, Art. 12, while at the Italian National level by the Decrees: 
12/6/2003, n. 185 of the Ministry of the Environment, and by the Legislative Decree 3 April 
2006, n. 152, art. 99. Particularly, with the decree n.185 on regulation on technical standards 
for the reuse of wastewater, Italy has been among the 7 EU countries with ad hoc legislation 
since 2003.  
 
The main four issues to be resolved in the EU context were: 

1. the lack of uniform EU legislation 
2. the perceived lack of consumer protection 
3. the presence of obstacles to the movement of agricultural products linked to health and 

environmental risks 
4. the high cost of the wastewater reuse system.  

 
The EU’s response to these needs has been a detailed European framework with minimum 
requirements for the reuse of water for irrigation, and with the following objectives: circular 
economy, environmental sustainability, qualitative and quantitative protection of water. 
 
The choice of the Regulation as a regulatory act over the Directive has had the greatest 
advantage in that it is an immediately enforceable act, with an entry into force on 
26.06.2020 and an application from 26.06.2023. The Reuse Regulation provides a special 
flexibility in terms of: 
  

1. Application is foreseen three years after entry into force 
2. Substantive rules laid down in the EU Regulation 
3. Administrative procedures and measures to ensure the effectiveness defined by the 

Member States 
4. Discretion of the member states on the application of re-use; criteria laid down in the 

Regulation; decision to be communicated to the EC and to be reviewed every 6 years in 
line with the Management Plans, the climatic conditions, the pressures on the water 
bodies from which the water is taken and the wastewater receiving bodies and the 
environmental and resource costs 

5. The competent authority may lay down any other additional minimum requirements, 
including those relating to monitoring 
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The main pillars of EU Regulation 2020/741 are the two Annexes: the first one relevant to the 

uses of reclaimed water and minimum requirements (Table 4) and the second one in relation 

to the key elements of risk management that will necessarily have to be site specific.  

According to the field of application, the regulation is mandatory for irrigation in agriculture, 
while it is optional for industrial, civil and environmental use. While according to the 
regulatory framework, reclamation facility operators will have the obligation of monitoring, 
the competent authorities will be responsible for the compliance checks.  
 
Table 4: EU Regulation Table 1 of Annex I on Classes of reclaimed water quality and permitted agricultural use and irrigation 

method  

 

 

The main purpose in risk management (Art.5 and Annex II) is to ensure the proactive and safe 
management of refined wastewater, without risk to human and animal health and without 
environmental risk. The relevant ownership is mainly on the reclamation facility operators 
and, depending on circumstances, on responsible parties as well as on end-users. 
 
What is relevant is that in risk management the utilities and the reclamation facility operators 
have a key role in drawing up the risk management plan on which the permission given by the 
competent authority is based. The Regulation lays down all the elements of the risk analysis 
to be assessed as: waste water sources, treatment stages, technology used, delivery 
infrastructure, distribution and storage, intended use, place, period of use, irrigation 
techniques, type of crop/s, other water sources in case of mixing, treated water volumes to 
be supplied, responsible parties, potential hazards and possible malfunction, environments 
and populations at risk, environmental factors (soil type, ecology, etc.). 
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The risk management plan shall also include additional requirements (necessary to reduce 
risks), preventive measures, obligations also imposed by other EU legislation. 
 
Regarding the obligations concerning the "permit" (Art. 6), the responsible parties apply for 
permission to the competent Authority, that releases it in short time except complexity of the 
appraisal. The permit shall set out the following: obligations of the reclamation facility 
operators and of all responsible parties, quality classes for refined water, intended use of 
crops, place of use, refineries, annual volume of refined water, additional requirements, 
period of validity of the permit, compliance point. 
According to the monitoring and compliance obligations, reported in Art. 4 and Art. 7, the 
reclamation facility operators shall be responsible for monitoring at the point of compliance, 
in accordance with the minimum requirements laid down in the Regulation and any additional 
requirements laid down in the permit. On the other hand, the competent authority will be 
responsible for the verification of compliance carried out on the basis of the permit and the 
findings of the monitoring carried out by the utilities. In case of non-compliance, the 
Competent Authority will: (i) order the Recovery Measures Manager, (ii) inform end-users, (iii) 
suspend the supply of refined water until compliance is restored (in case of significant risk). 
Another important aspect of the Reuse Regulation refers to the Information obligations set 
out in articles 9, 10 and 11. These articles provide for public information on: awareness-
raising, water quantity and quality, water volume, permits, results of compliance checks, 
contact points for cooperation between Member States and information to the European 
Commission, the European Environment Agency and the European Centre for Disease 
Prevention and Control.  

3.2.2.2. Preliminary studies to determine chemical and microbiological characteristics of 
the treated wastewater 

According to the SSP approach and to the new EU Regulation 741/2020, CAP has started for 
some years an investigation on the possible presence of emerging contaminants and emerging 
pathogens in the wastewater treated at Peschiera Borromeo WWTP. It is a precautionary 
measure to deep the knowledge for a safety use of the wastewater in agriculture.  

Emerging Contaminants in raw and treated wastewater 

In order to undertake an investigation on the presence of contaminants of emerging concern 
(CECs) in raw and treated wastewater from both Lines 1 and 2 of the plant of Peschiera 
Borromeo, the analytical laboratory of the Instituto Mario Negri carried out two sampling 
campaigns on three points for each line (i.e., at inlet before grit removal, at inlet before  
disinfection and at outlet after disinfection) as shown in Figure 13.  
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Figure 13:  Sampling points of 2019-2021 campaigns from Line 1 (disinfection process by Peracetic Acid) and Line 2 

(disinfection process by UV irradiation) for determination of emerging contaminants and emerging pathogens in raw and 

treated wastewater 

Originally, two sampling campaigns were scheduled, one in Winter 2019 and one in Spring 
2020. The sampling campaign scheduled in Winter 2019 was regularly accomplished. On the 
contrary, the second sampling campaign was rescheduled for the Summer 2020 due to COVID-
19 pandemic. Particularly, it was accomplished the quantitative determination of 18 different 
molecules among pharmaceuticals (antibiotics, anti-inflammatory, anti-hypertensive, 
cardiovascular, CNS drug, diuretics, gastrointestinal, lipid regulators) and personal care 
products (PCPs). The removal efficiencies of these micropollutants in both the treatment lines 
(i.e., Line 1 and Line 2)  are reported in Figure 14 and in Figure 15 for the first and the second 
sampling campaign, respectively.  
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Figure 14: Comparison of drug removal efficiency of Line 1 (blue/red) respect to Line 2 (green/yellow) during the 1st 

sampling campaign 
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Figure 15: Comparison of drug removal efficiency of Line 1 (blue/red) respect to Line 2 (green/yellow) during the 2nd 

sampling campaign 
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By the analysis of Figure 14 and in Figure 15, it seems that there is not a substantial difference 
in the removal of the monitored micro-pollutants by the treatments processes implemented 
in Line 1 and Line 2 at Peschiera-Borromeo WWTP.  . Among the selected substances, only 
ciprofloxacin and clarithromycin are part of the European Surface water Watch List. To date, 
there are not regulatory limits for all the analysed compounds.  
In addition, according to ISO 16075-1:2020, there is no evidence today of adverse effects of 
these contaminants (i.e., pharmaceuticals and personal care product residuals) on human 
health or environment via irrigation with treated wastewater or via the consumption of crops 
irrigated with reclaimed wastewater.  

Pathogens in raw and treated wastewater 

In order to undertake an investigation on pathogens in raw and treated wastewater from both 
lines 1 and 2, the ISS microbiology laboratory carried out two sampling campaigns in 2021: the 
first was held in May 2021, the second in November 2021. As for the two sampling campaigns 
described in the previous paragraph, in this investigation three sampling points were selected 
for each line: at inlet before grit removal, before disinfection and at outlet after disinfection 
(Figure 13). 

The selected reference microorganisms, including those pathogens belonging to the group of enteric 
bacteria, viruses and parasitic protozoa, were the following:  

• Campylobacter and Salmonella for enteric bacteria (Bonetta et al., 2022; Santiago et 
al., 2018). 

• Giardia and Cryptosporidium for parasitic protozoa (Bonadonna et al., 2002; 
Briancesco & Bonadonna, 2005a; Vernile et al., 2009). 

• Norovirus (Katayama & Vinjé, 2018), Adenovirus (Allard & Vantarakis, 2018) and 
Enterovirus (Betancourt & Shulman, 2017) for enteric viruses;  

• Escherichia coli and coliform bacteria for microbial indicators (J. B. De Souza et al., 
2015; Hassaballah et al., 2019) 

• Somatic coliphages for viral indicators (Lin & Ganesh, 2013; Truchado et al., 2021). 
 
Samples were analysed using the following methods:  
 
Campylobacter and Salmonella: (wastewater: 100 mL; pre- and post-treated/disinfected 
water: 1 L) Membrane filtration technique, enrichment culture, culture and isolation on 
selective solid media, confirmation by biochemical tests, according to ISO 17995:2019 and ISO 
19250:2010 standards, respectively. 
 
Escherichia coli and coliform bacteria: (appropriate sample dilutions until 100 mL): 
Miniaturized MPN Method according to ISO 9308-2:2012 standard. 
 



 

 

62 

Giardia and Cryptosporidium: sampling and analysis were conducted according to ISO 
15553:2006 standard. The sampling was conducted through in loco filtration of variable water 
volumes (wastewater: 2 L; pre-and post-treated/disinfected water: 50 L), using a peristaltic 
pump. 
Filtration was performed using compressed foam filter modules (Filta-Max xpress Filter 
Modules, Idexx) that were eluted at lab by Filta-Max xpress pressure Elution Station (Idexx), 
showed in Figure 16. After concentration by centrifugation, pellets were clarified by 
immunoseparation with Dynabeads anti-Giardia and anti-Cryptosporidium (Dynal, Thermo 
Fisher Scientific). Finally, samples were stained with fluorescent-labeled antibodies (Merifluor 
Cryptosporidium/Giardia kit, Meridian Bioscience) and cysts and oocysts enumerated with an 
epifluorescent microscope (Zeiss), taking into consideration morphology, size and colour of 
the particles with respect to a positive standard. 
 
Somatic coliphages were detected and enumerated by plaque assay, according to ISO 10705-
2:2000 standard. The neutralized eluates from electropositive filters used for virus 
concentration (12–50 L, depending on the type of sample) were spiked on a specific growth 
medium, and lysis plaques were counted on a double-agar layer with bacterial host strain, 
after an overnight incubation.  
Enteric viruses: Human Norovirus (genogroups GI and GII), Adenovirus, and Enterovirus were 
selected among the wide number of enteric viruses commonly found in aquatic environments, 
since they are excreted in large numbers by infected individuals and recognized as important 
waterborne pathogens. Molecular methods were used to detect and/or quantify enteric 
viruses: classical nested/eminested PCR followed by Sanger sequencing for all the studied 
viruses, and real time RT-qPCR limited to samples found positive for Norovirus GI and GII by 
nested PCR. For viral sampling and concentration, electropositive filter cartridges in specific 
housings were connected to a pumping equipment composed by a pump, a volume counter, 
a flow counter and a manometer, according to the EPA Method 1615. Raw/treated sewage 
was collected manually with a sink and poured in a cask from which the liquid was pushed 
through the filtering device. After filtration, the devices were kept at 4°C in thermal bags till 
lab processing. Within 24 hours the cartridges were eluted adding to the housings 400 mL of 
a 3% Beef Extract solution pH 9.5 0.05 N glycine. Filters were then shaken on an orbital shaker 
for 20’ to facilitate viral particles detachment. After neutralization, the eluate was centrifuged 
at 4000 g for 20’ and pellet re-suspended with 5 mL 1N Na2PO4 pH 9. The suspension was then 
neutralized and stored at -20°C. Genome extraction was performed with a protocol based on 
the magnetic beads technology, an enhanced magnetic silica version of the BOOM 
technology, starting from 5 mL suspension to get a final volume of 100 µL of genome extract, 
stored at -80°C for future use. Nested/eminested PCR and real time qPCR were performed 
with protocols available in literature (Jothikumar et al., 2005; Lu & Erdman, 2006; Pina et al., 
1998; UNI EN ISO 15216-2, 2019). 
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Figure 16: Filta-Max xpress system for parasitic protozoa concentration and elution 

 
 

 
 

Figure 17: In situ primary filtration with collecting units for viruses (left) and protozoa (right) 
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Figure 18: Elution and concentration of filtrates from samples collected in Peschiera Borromeo Wastewater Treatment 

Plant 

The results from this microbiological screening were used as preliminary data for the 
validation of the monitoring strategy of the reclaimed water for agricultural irrigation from 
Line 1 and Line 2. Particularly, results were compared with EU Regulation 741/2020 
performance targets for the treatment chain (log10 reduction) (Annex I, Table 4, reported in 
the text as Table 5). The references were the most stringent requirements for reclaimed water 
class (quality Class A, Annex I, Table 4). 
 
Table 5: EU Regulation of Annex I on Validation monitoring of reclaimed water for agricultural irrigation 
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From the following results of microbiological and virological analyses it was possible to obtain 
some preliminary considerations. 

Table 6: Results of microbiological analysis (1st sampling - May 2021) 

 
Table 7: Results of microbiological analysis (2nd sampling - November 2021) 

 
Table 8: Results of parasitic protozoa analysis (1st sampling - May 2021) 
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Table 9: Results of parasitic protozoa analysis (2nd sampling - November 2021) 
 

 

The performance target for E. coli (≥ 5,0 log10 reduction) was achieved only at UV disinfection 
unit (line 2). Campylobacter was never found in samples from both treatment lines. Finally, 
oocysts were always found upstream and downstream of both treatment lines (except one 
case in line 1, where was observed a total removal of Cryptosporidium) but the removal 
achieved was lower than performance targets indicated by the EU regulation on water reuse. 

In one case somatic coliphages were totally removed at the line 2 (UV treatment). This 
condition complies with EU Regulation which states that if a biological indicator is not present 
in sufficient quantity in raw wastewater to achieve the log10 reduction, the absence of such 
biological indicator in reclaimed water shall mean that the validation requirements are 
complied with. On the contrary, this indicator organism was always found upstream and 
downstream at the treatment line 1 (i.e., peracetic treatment) with removal efficiency not 
complying to the required performance targets for somatic coliphages (≥ 6 log10) in class A 
wastewater.  

Table 10: Results of qualitative viral analysis by conventional PCR (presence/absence) in wastewater collected at Peschiera 
Borromeo WWTP during the two collecting campaigns (positive samples were confirmed and characterized by Sanger 
sequencing). EV=Enterovirus; HAdv=Human adenovirus; HNoV=Human Norovirus (1st sampling - Spring 2021) 

 

 

May 10 - 11 2021 Sampling Conventional RT-PCR

Sample Enterovirus Adenovirus Norovirus GI Norovirus GII

Line 1

Raw Wastewater + non polio EV - + HNoV GI.1 HNoV GII.3

Pre-disinfection - - - -

Post-disinfection - - - -

Line 2

Raw Wastewater + non polio EV + HAdV sp. D + HNoV GI.3 HNoV GII.3

Pre-disinfection + non polio EV - + HNoV GI.1 -

Post-disinfection - - - -
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Table 11: Results of qualitative viral analysis by conventional PCR of wastewater collected at Peschiera Borromeo WWTP 
during the two collecting campaigns (positive samples were confirmed and characterized by Sanger sequencing). EV 
=Human Enterovirus; HAdV=Human Adenovirus; HNoV=Human Norovirus (2nd sampling - Fall 2021) 

 
Table 12: Results of viral quantification by RT-qPCR of wastewater collected at Peschiera Borromeo WWTP for Norovirus 
GI and GII positive samples (1st sampling - Spring 2021) 

 
gc=genome copies 

 

Table 13: Results of viral quantification by RT-qPCR of wastewater collected at Peschiera Borromeo WWTP for Norovirus 
GI and GII positive samples (2nd sampling - Fall 2021) 

 
gc=genome copies 

Results on qualitative viral analysis are reported in Table 10 and  

 November 10 - 11 2021 Sampling Conventional RT-PCR

Sample Enterovirus Adenovirus Norovirus GI Norovirus GII

Line 1

Raw Wastewater - - - HNoV GII.3

Pre-disinfection - - - HNoV GII.3

Post-disinfection - - - -

Line 2

Raw Wastewater - - - HNoV GII.3

Pre-disinfection - - - HNoV GII.3

Post-disinfection - - + HNoV GI.1 HNoV GII.3

May 10 - 11 2021 Sampling RT-qPCR

Sample Norovirus GI (gc/L) Norovirus GII (gc/L)

Line 1

Raw Wastewater 3.93E+01 5.20E+02

Pre-disinfection - -

Post-disinfection - -

Line 2

Raw Wastewater 2.28E+01 3.34E+03

Pre-disinfection 6.4E+00 -

Post-disinfection - -

 November 10 - 11 2021 Sampling RT-qPCR

Sample Norovirus GI Norovirus GII

Line 1

Raw Wastewater - 3.26E+04

Pre-disinfection - 1.53E+02

Post-disinfection - -

Line 2

Raw Wastewater - 3.26E+05

Pre-disinfection - 2.77E+04

Post-disinfection 1.94E+01 1.71E+01
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Table 11. Genetic characterization confirmed the presence of genomic traces of viruses in 
untreated wastewater with differences between the two sampling campaigns. Spring samples 
revealed the occurrence of all the investigated pathogens, with a prevalence of Norovirus (GI, 
genotype 1 and 3; GII, genotype 3) and Enterovirus (non-polio enterovirus). Only one sample 
(inlet line 2) was found positive for Adenovirus species D. No serotype has been reported in 
the closest prototype in genebank. No positives were observed in pre- and post-disinfection 
sampling points of line 1, while the pre-disinfection point of line 2 was positive for non-polio 
Enterovirus and Norovirus GI.1. Wastewater samples collected in fall gave positive results only 
for Norovirus with a higher prevalence of genogroup GII.3, which was found in all samples 
with exception of the post-UV disinfection point where Norovirus GI.1 was detected. 

Quantitative viral analysis results are reported in Table 12 and Table 13. They were performed 
only on Norovirus-positive samples found by conventional PCR and revealed up to 1-2 log 
reduction of genome copies along the two treatment lines (proceeding from inlet to final 
disinfection). Despite spring outlet (post-disinfection) samples appeared to be free of viral 
contamination. Samples collected in fall showed still a slight positivity for Norovirus GI. Our 
findings are consistent with previous studies that detected norovirus in treated wastewaters 
(Katayama & Vinjé, 2018). It is known that viruses are ubiquitous and persistent in raw and 
treated wastewater, and that WWTP processes are not completely effective in the reduction 
of viral genomes concentrations for most viruses in wastewater (Corpuz et al., 2020). 
However, it is important to note that only molecular methods have been used in this study. 
These methods are able of detecting only viral genomes and cannot provide information on 
infectivity. Thus, positive results obtained in the present study do not necessarily indicate an 
actual threat to human health. Wastewater is indeed a very hostile environment that 
represents a challenge for viruses to preserve their integrity and infectivity. Results of this 
study have been performed on a small number of samples, and consequently should be 
considered as preliminary results. Indeed, the occurrence of genetic traces of Norovirus GI in 
post-disinfected water, at very low level, do not exclude possible residual genomic 
contamination after disinfection. On the other side, the lack of genomic traces in untreated 
and pre-disinfected wastewater could be explained by the presence of inhibitors that could 
affect the PCR reaction efficiency especially when the viral load is supposed to be low. Further 
studies are therefore needed to investigate fluctuations in viral concentration in raw and 
treated wastewater and the removal efficiency after treatments. 

3.2.2.3. The choice of water quality class at Peschiera Borromeo WWTP 

As explained in paragraph Legislative boundaries, European Regulation 741/2020 on water 
reuse provides the minimum requirements for water reuse in agriculture according to 
different reclaimed water quality classes, agricultural uses and irrigation methods. In the 

district where is located the Peschiera Borromeo WWTP, typical cultivated crops include fodder 
crops and crops for biomass production, while the type of irrigation is almost exclusively 
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surface irrigation. According to EU Regulation Table 1 of Annex I on Classes of reclaimed water 
quality and permitted agricultural use and irrigation method ( Table 4), the quality class to 
select for reuse would be “Class C”. However, as precautionary measure to reduce the health 
risk and due to the preliminary results discussed, CAP holding S.p.A. decided to produce 
wastewater able to guarantee the compliance with standard limits for the water quality class 
B. 

The minimum requirements for class B water quality are set out in EU Regulation Table 2 of 
Annex I, point (a), (Table 14).  

 Table 14: Reclaimed water quality requirements for agricultural irrigation according to EU Regulation 741/2020 

 

Therefore, class B reclaimed water shall be considered to be in compliance with the limits set 
out in Table 14, when the measurements of the indicated parameters meet the following 
criteria:  

— the indicated values for E. coli, Legionella spp. and intestinal nematodes are met in 90 % or 
more of the samples;  

— none of the values of the samples exceed the maximum deviation limit of 1 log unit from 
the indicated value for E. coli and Legionella spp. and 100 % of the indicated value for 
intestinal nematodes;  

In Table 15 are reported the requirements of the Directive 91/271/EEC, Annex I, Table1,  which 
are also required by the EU regulation on water reuse (Table 14). In Table 16 is reported the 
frequency for the accomplishment of the required measurements, which requires at least 24 
determinations for BOD5 and TSS parameters in the case of Peschiera-Borromeo WWTP. 
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Table 15: Directive 91/271/EEC (Annex I, Table1: Requirements for discharges from urban wastewater treatment 

plants subject to Articles 4 and 5 of the Directive. The values for concentration or the percentage of reduction shall 

apply.) 

 
Table 16: Minimum frequencies for routine monitoring of reclaimed water for agricultural irrigation 

 

In addition to the above requirements for class B reclaimed water, it must be said that risk 
assessment for the production chain of water reuse in this project was implemented according 
to part C “Preventive measures” of ANNEX II of EU Regulation. In addition, some references 
were taken from the ISO 16075-1:2020, and supplemented by references taken from 
Quaderno ARSIA 5-2004 (Malorgio, 2004). These guidelines suggest parameters of 
wastewater quality to take into account to implement agricultural reuse, including: 
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• agronomic parameters: nutrients (nitrogen, phosphorus and potassium), salinity 
factors (total salt content, chloride, boron, and sodium concentration) and heavy 
metals' concentration 

• pathogen presence 

Indeed, the above-mentioned parameters can have possible impacts on crops, soil, and public 
health.  

3.2.3. Analysis and assessment of the WWTP efficiency and resilience 

3.2.3.1. Statistical analysis of collected data from laboratory monitoring program 

In order to assess the efficiency and resilience of wastewater treatment Line 1 and Line 2 at 
Peschiera Borromeo WWTP to provide wastewater in compliance with limits for water reuse, 
a series of statistical analyses were carried out on the basis of laboratory data. Lab data were 
collected between 2018 and 2021, before and after the revamping phase of the plant.  
Actually, an improvement of the quality of the final effluent was observed after the conclusion 
of the upgrading of the plant. 

To assess the continuous compliance with the EU Regulation of the treated wastewater, an 
evaluation of the cumulative frequencies of quality requirements achieved in each water 
quality class for E. coli, BOD5, and TSS, for both Lines 1 and 2 of Peschiera Borromeo WWTP 
was conducted. In particular, in the case of the quality class B, it resulted that the quality 
requirement for E. coli was achieved for almost 73% of the analysed samples at Line 1 and for 
70% of the collected samples from Line 2. These results are referred to collections 
accomplished from 2018 to 2021 (Figure 19). For the samples collected from 2020 to 2021, 
and thus, after the revamping of the plant, compliance for E. Coli concentration in class B was 
observed for almost 77% of samples collected in Line 1 and 87% of samples collected from 
Line 2 (Figure 20). On the contrary, the quality requirements for BOD5 and TSS in class B were 
achieved for almost 100% of the samples collected in both Line 1 and 2 regardless of the 
observation period (Figure 21, Figure 22, Figure 23 and Figure 24).  
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Figure 19: Cumulative frequencies from 2018 to 2021 of the quality requirements for E. coli achieved in each water 

quality class, in compliance with the recent EU Regulation on water reuse, both for Lines 1 and 2 of Peschiera Borromeo 

WWTP  

 

Figure 20: Cumulative frequencies from 2020 to 2021 of the quality requirements for E. coli achieved in each water 

quality class, in compliance with the recent EU Regulation on water reuse, both for Lines 1 and 2 of Peschiera Borromeo 

WWTP 
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Figure 21: Cumulative frequencies from 2018 to 2021 of the quality requirements for BOD5 achieved in each water 

quality class, in compliance with the recent EU Regulation on water reuse, both for Lines 1 and 2 of Peschiera Borromeo 

WWTP  

 

Figure 22:Cumulative frequencies from 2020 to 2021 of the quality requirements for BOD5 achieved in each water quality 

class, in compliance with the recent EU Regulation on water reuse, both for Lines 1 and 2 of Peschiera Borromeo WWTP 
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Figure 23: Cumulative frequencies from 2018 to 2021 of the quality requirements for TSS achieved in each water quality 
class, in compliance with the recent EU Regulation on water reuse, both for Lines 1 and 2 of Peschiera Borromeo WWTP  

 

Figure 24: Cumulative frequencies from 2020 to 2021 of the quality requirements for TSS achieved in each water quality 
class, in compliance with the recent EU Regulation on water reuse, both for Lines 1 and 2 of Peschiera Borromeo WWTP 

To assess the resilience of Peschiera Borromeo WWTP, the values of COD, total nitrogen, 
ammonium nitrogen, total phosphorus, BOD5 and total suspended solids measured in the raw 
influent and in the final effluent of the WWTP were plotted against time, to see how much the 
characteristics of the treated wastewaters were affected by the incoming fluctuations. 
According to the graphics reported below, the inlet fluctuations (i.e., seasonal variations, 
occurrence of rain events, etc.) resulted well smoothed by treatments, indicating a good 
resilience of both lines 1 and 2. The WWTP resilience is a strategical characteristic of the plant 
and it has to be taken into account during the formulation of the risk matrix.  
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Figure 25: Influent and effluent fluctuations of COD for Lines 1 and 2 of Peschiera Borromeo WWTP from 2018 to 2021 

 

       

Figure 26: Influent and effluent fluctuations of BOD5 for Lines 1 and 2 of Peschiera Borromeo WWTP from 2018 to 2021 
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Figure 27: Influent and effluent fluctuations of Total Suspended Solids (TSS) for Lines 1 and 2 of Peschiera Borromeo 
WWTP from 2018 to 2021 

 

 

Figure 28: Influent and effluent fluctuations of Total Nitrogen for Lines 1 and 2 of Peschiera Borromeo WWTP from 
2018 to 2021 
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Figure 29: Influent and effluent fluctuations of Ammonium - Nitrogen for Lines 1 and 2 of Peschiera Borromeo 
WWTP from 2018 to 2021 

 

Figure 30: Influent and effluent fluctuations of Total Phosphorous for Lines 1 and 2 of Peschiera Borromeo WWTP 
from 2018 to 2021 

3.2.3.2. Choice of treatment Line 2 

The choice of Treatment Line 2 to perform water reuse is directly linked to its technical configuration: 
indeed, the presence of a final disinfection section based on UV irradiation gives assurance that the 
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limits for residual microbial content of the water sent to reuse could be reached with significant 
effectiveness. 

The comparison with Treatment Line 1, which exploits chemical disinfection through peracetic acid 
dosage, clearly shows that this process is not able to assure adequate disinfection for water reuse 
under the current operational configuration and a process improvement is still needed. However, even 
though the chemical disinfection can be optimized to achieve comparable disinfection performances 
to the UV treatment, a cost comparison will lead to a significant convenience of the UV treatment. This 
last evidence strengthens the choice of Treatment Line 2 as preferable treatment line for the EWS 
implementation 

3.2.4. Risk analysis (Sanitation Safety Plan) of the production chain 

If the analysis of lab data gives information on WWTP performance and resilience for water 
reuse, risk analysis (Sanitation Safety Plan) indicates the need for an improvement of a 
treatment process and give indication of the possible solutions to implement to reach this 
scope  

According to WHO SSP Manual (WHO, 2016b), three different approaches to risk assessment 
are available:  

1. Team-based descriptive risk assessment decision 

2. Semi-quantitative risk assessment, using a matrix of likelihood and severity 

3. Quantitative methods (e.g., QMRA, QCRA, etc.) 

To develop an Early Warning System for safe water reuse in Peschiera Borromeo, a semi-
quantitative risk matrix and a Quantitative Microbiological and Chemical Risk Assessment 
(respectively QMRA and QCRA) were adopted for the risk analysis of the water reuse system. 
In Table 17, the main features of the two approaches are reported, as suggested by the 
Quantitative Microbial Risk Assessment guideline of WHO (WHO, 2016a). 
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Table 17: Comparison of Risk matrices and QMRA (QCRA) assessment approaches 

 

3.2.4.1. Risk Matrix for the agricultural reuse of the wastewater treated at Peschiera 
Borromeo WWTP  

To elaborate a semi-quantitative risk matrix, the main steps suggested by WHO Guidelines 
(WHO, 2016a) and reported in  

Figure 31 were followed. After the description of the system, a process flow diagram (Figure 
32) was drafted by the team members of ISS, CAP, UNIVPM, UNIMI.  
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Figure 31: Steps to elaborate a semi-quantitative risk matrix within a WSP/SSP 
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Figure 32: Process flow diagram of Peschiera Borromeo WWTP Line 2 

Then, for each plant section, which is represented in Figure 32 by coloured and numbered 
boxes named “nodes” that are representative of process unit “P” or transport phase “T”, a 
likelihood and a severity score were assigned for specific hazard events. These hazard events 
were identified by a preliminary checklist analysis (Figure 33) and by several interviews to 
technical operators and stakeholders of the team. The risk score R was calculated through the 
formula:  

 

The scores used to quantify likelihood and severity were based on the scores reported on 
Figure 34, while specific descriptions were defined for Peschiera Borromeo WWTP, as 
reported in Table 18.  

As a result, a semi-quantitative risk assessment for each identified hazardous event (i.e., 
microbiological, chemical, physical, radiological and reuse service interruption) was obtained 
and organized in matrix form. 
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Figure 33: Example of a portion of a typical check list used to acquire information about the main characteristics of each 

treatment unit, connected equipment, its redundancy level and the related maintenance and monitoring system 

The risk assessment was carried out in three stages: a first "preliminary risk assessment" 
(Figure 35), a second "residual risk assessment" (Figure 36) and a third "re-assessment of the 
risk" (Figure 37). 

• In the first stage, a likelihood and a severity score were assigned to each hazardous 
event to obtain a preliminary risk assessment, without taking into account any control 
measures already present in the system. The results of this analysis represented the 
worst-case scenario, and they highlighted the risks to which the reclamation water 
production chain is potentially exposed.  

• In the second stage, a "residual risk assessment" was carried out by identifying all the 
control measures already in place in the system and by evaluating if these measures 
are effective at controlling relevant risks.  

• In the last third stage, namely the "re-assessment of the risk”, in order to reduce 
residual risk scores of each possible hazardous event, supplementary control and 
mitigation measures were identified.   Particularly, the identified mitigation and 
control measure are able to act on the occurrence of different hazardous events 
ensuring at the same time the mitigation of various risks. 

It should be noted that all the mitigation measures reported in the risk matrix aim at 
preventing contamination events or service interruptions. Therefore, these measures act by 
modifying and substantially reducing the probability of occurrence of the hazardous events, 
with a consequent decrease of the correlated risks.  
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Figure 34: Semi-quantitative risk assessment matrix (from SSP Manual by WHO) 

Table 18: Risk definitions for semi-quantitative risk assessment of Peschiera Borromeo WWTP 

Descriptor  Description  

Likelihood (L) 

1 Very Unlikely Has not happened in the past and it is highly improbable it will happen in the next months 
(or another reasonable period). 

2 Unlikely Has not happened in the past but may occur in exceptional circumstances in the next 
12 months (or another reasonable period). 

3 Possible May have happened in the past and/or may occur under regular circumstances in the 
next 12 months (or another reasonable period). 

4 Likely Has been observed in the past and/or is likely to occur in the next 12 months (or another 
reasonable period). 

5 Almost Certain Has often been observed in the past and/or will almost certainly occur in most 
circumstances in the next 12 months (or another reasonable period). 

Severity (S) 

1 Insignificant Hazard or hazardous event resulting in no or negligible health effects compared to 
background levels. 

2 Minor Hazard or hazardous event potentially resulting in minor health effects and/or may lead 
to legal complaints and concern; and/or minimal regulatory non-compliance (downgrading 
of the quality of the refined water of 1 class, distributed for about 1% of the time). 

4 Moderate Hazard or hazardous event potentially resulting in a self-limiting health effects or 
minor illness and/or may lead to legal complaints and concern; and/or minor regulatory 
non-compliance (downgrading of the quality of the refined water of 1 class, distributed for 
about 10% of the time). 

8 Major Hazard or hazardous event potentially resulting in illness or injury and/or may lead to 
legal complaints and concern; and/or major regulatory non-compliance (downgrading of 
the quality of the refined water of 2 classes). 

16 Catastrophic Hazard or hazardous event potentially resulting in serious illness or injury, or even loss 
of life and/or will lead to major investigation by regulator with prosecution likely. 
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Figure 35: Example of a portion of matrix related to the “preliminary risk assessment” 

 

 
Figure 36: Example of a portion of matrix related to the "residual risk assessment" 

 

 
Figure 37: Example of a portion of matrix related to the "re-assessment of the risk" 

The entire Risk Matrix, consisting of 102 rows, is reported in Appendix A, while below are reported 
selected rows of the Matrix that are related to different nodes of the process flow diagram of 
Peschiera-Borromeo WWTP (Figure 34): All section, T0 - Sewer Network, P1 - WWTP inlet, P2 - WWTP 
treatments, P3 - Treated wastewater use in agriculture. 
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Moreover, since research activities of the DWC project took place during the pandemic SARS-
cov-2, a special paragraph dedicated to the elements of risk analysis during “Pandemic 
Emergency” is also reported. 

Elements of risk analysis common to all sections 

Among the different elements of risk common to all sections, here it is reported the rows of 
the Matrix related to “Flood events”. The part of preliminary risk assessment is shown in 
Figure 38, while the residual risk assessment and the part of the matrix related to the re-
assessment of the risk are shown in Figure 40, where are also indicated possible integrative 
control measures to implement at Peschiera Borromeo WWTP.   

 
Figure 38: Preliminary Risk Assessment of row 7 (first part of the matrix) 



 

 

86 

 
Figure 39: Residual Risk Assessment of row 7 (second part of the matrix) 

Elements of risk analysis in T0 [Sewer Network] and T1 [Interconnection between line 1 and 
Line 2] 

For sections T0 and T1 of the flow diagram of the wastewater reclamation system (Figure 32), 
are reported as examples the rows of the Risk matrix related to the occurrence of “Accidental 
and Illicit discharges” (Figure 40and Figure 41) and to the occurrence of “unexpected load in 
Line 2” (Figure 42, Figure 43). For both the hazardous events different DSS are listed among 
the integrative control measures to reduce the risk. 

 
Figure 40: Preliminary Risk Assessment of row 21 (first part of the matrix) 
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Figure 41: Residual Risk Assessment of row 21 (second part of the matrix) 

 
Figure 42: Preliminary Risk Assessment of row 23 (first part of the matrix) 
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Figure 43: Residual Risk Assessment of row 23 (second part of the matrix) 

Elements of risk analysis in P1 - WWTP inlet 

The most important element of risk in P1 section is the entrance to the WWTP of hazardous 
pathogens (Table 19) and hazardous substances (tab 3/A, Part III all.5 Italian Legislative Decree 
152/06).  

Table 19: Concentration of microbial contaminant in wastewater  

 RAW WASTEWATER CONCENTRATION REFERENCE 

bacteria Total coliform CFU/100ml 3.9E+07 (Kay et al., 2008) 

CFU/100ml 1.96e+07 - 4.36E+07 (WERF, 2004) 

CFU/100ml 5.15e+08 (Thwaites et al., 2018) 

MPN/100ml 10^7 - 10^9 (Metcalf & Eddy, 2014) 

MPN/100ml 1.1E+08 (Howard et al., 2004) 

Fecal coliforms MPN/100ml 10^6 - 10^8 (Metcalf & Eddy, 2014) 

MPN/100ml 8.2E+06 (Howard et al., 2004) 

MPN/100ml 2.1E+06 - 5.3E+06 (Oakley & Mihelcic, 2019) 

CFU/100ml 1.7E+07 (Kay et al., 2008) 

CFU/100ml 2.09e+06 - 5.31e+06 (WERF, 2004) 

E.coli MPN/100ml 10^5 - 10^7 (Metcalf & Eddy, 2014) 

MPN/100ml 5.37E+03 - 3.47E+07 (Oakley & Mihelcic, 2019) 

logMPN/100
ml 

6.42±0.28  
(5.99 - 7.28) 

(Bailey et al., 2018) 

CFU/100ml 3.6e+06 (Marín et al., 2015) 

CFU/100ml 5.31e+07 (Thwaites et al., 2018) 

https://context.reverso.net/traduzione/inglese-italiano/Legislative+Decree
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N/l 10^5 - 10^10 (NRMMC-EPHC-AHMC, 
2006) 

Salmonella MPN/100ml 10^2 - 10^4 (Metcalf & Eddy, 2014) 

MPN/100ml 266.7 (Howard et al., 2004) 

MPN/L 3-1100 (Lemarchand & Lebaron, 
2003) 

logMPN/100
ml 

4.08±0.99  
(2.88 - 5.88) 

(Bailey et al., 2018) 

n/l 10^3 - 10^5 (NRMMC-EPHC-AHMC, 
2006) 

n/l 1-10^5 (WHO, 2006) 

N/l up to 10^5 (US EPA, 2012) 

protozoa 
parasites 

Cryptosporidium MPN/100ml 10 - 10^3 (Metcalf & Eddy, 2014) 

n/l 1-10^4 (WHO, 2006) 

n/l up to 10^4 (US EPA, 2012) 

oocysts/L 0 - 10^4 (NRMMC-EPHC-AHMC, 
2006) 

oocysts/L 2.5 - 277 (Hamilton et al., 2018) 

oocysts/L 4.5±0.8 (Carraro et al., 2000) 

oocysts/L 1-87.13 (Lemarchand & Lebaron, 
2003) 

oocysts/L 96±105 (Ramo et al., 2017) 

oocysts/L 6–350 Montemayor et al., 2005;  
Castro-Hermida et al., 2008, 

2010; Galván et al., 2014 

oocysts/L 22 - 456 (Oakley & Mihelcic, 2019) 

oocysts/L 6.5 - 37.8 (Oakley & Mihelcic, 2019) 

oocysts/L 6.55 - 37.8 (WERF, 2004) 

oocysts/L 0.3 - 5e+04 (Soller et al., 2017) 

oocysts/L 30±5 (Briancesco & Bonadonna, 
2005b) 

oocysts/L 371±24 (64.6 - 955) (Bailey et al., 2018) 

Giardia MPN/100ml 10^3 - 10^4 (Metcalf & Eddy, 2014) 

N/L 10^2 - 10^5 (WHO, 2006) 

N/L up to 10^5 (US EPA, 2012) 

cysts/L 10^2 - 10^5 (NRMMC-EPHC-AHMC, 
2006) 

cysts/L 764 - 6606 (Oakley & Mihelcic, 2019) 

cysts/L 3247±2039 (Ramo et al., 2017) 

cysts/L 61.2 - 794 (Oakley & Mihelcic, 2019) 

cysts/L 61.2 - 794 (WERF, 2004) 
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cysts/L 89-8305 Montemayor et al., 2005;  
Castro-Hermida et al., 2008, 

2010; Galván et al., 2014 

cysts/L 3.2 - 1.0E+04 (Soller et al., 2017) 

cysts/L 7000 ± 2000 Briancesco et al. 2004 

cysts/L 302 ± 24 (45 - 1122) (Bailey et al., 2018) 

viruses Enterovirus MPN/100ml 10^3 - 10^4 (Metcalf & Eddy, 2014) 

MPN/100ml 4.64E+02 - 9.37E+03 (WERF, 2004) 

MPN/L 4.6 - 93.7 (Oakley & Mihelcic, 2019) 

N/L 10^5 - 10^6 (WHO, 2006) 

N/L up to 10^6 (US EPA, 2012) 

PFU/L 10^2 - 10^6 (NRMMC-EPHC-AHMC, 
2006) 

Norovirus PFU/L 10 - 10^4 (NRMMC-EPHC-AHMC, 
2006) 

copies/L 10^3.76 ±10^0.93 (Soller et al., 2017) 

Norovirus GI copies/L 1.12 E+03 - 5.75E+05 (Oakley & Mihelcic, 2019) 

Norovirus GII copies/L 6.46e+02 - 2.19e+06 (Oakley & Mihelcic, 2019) 

Generally, the wastewater coming to a WWTP is composed by different streams, which 
include domestic wastewaters (P1A), stormwater (P1B), industrial wastewater (P1C), hospital 
wastewater (P1D) and supernatant from sludge line (P1E). Different pathogens are present in 
these streams, which are then mixed together before entering the WWTP. The parts of the 
matrix related to the presence of hazardous pathogens in the influent wastewater are 
reported in Figure 44 and Figure 45.  
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Figure 44: Preliminary Risk Assessment of row 31 (first part of the matrix) 

 

 
Figure 45: Residual Risk Assessment of row 31 (second part of the matrix) 
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Elements of risk analysis in P2 - WWTP treatments train 

One of the most important elements of risk in P2 section, that represents the treatments train 
of Line 2 at Peschiera-Borromeo WWTP (Figure 10) is the “Malfunctioning of UV disinfection 
system” (i.e., P9 subsection in Figure 32). The related rows of the Risk Matrix are reported in 
Figure 47 and 48.  

Concerning the UV disinfection unit, a specific literature review was conducted to find 
information about expected pathogens concentrations in the wastewater before and after the 
treatment along with the observed removal efficiencies (Table 20). It can be observed that in 
most of the literature studies, Log removals for pathogens during UV treatment are in the 
range 2-4. At Peschiera-Borromeo WWTP, after the revamping of the plant, E. coli 
concentrations in the final effluent is often lower than 10 CFU/100ml (58.8% of the 
measurements in 2020-2021), and thus in compliance with the limit for the quality class A of 
EU regulation on water reuse. 

Table 20: Pathogens removals observed during UV treatment 

 MICRORGANISM PRE UV POST UV LOG 
REMOVAL 

REF. 

bacteria Bacteria       2 - > 4 (WHO, 2006) 

E. coli       2 - > 4 (NRMMC-EPHC-AHMC, 
2006) 

      1.8 - 4.7 (DEMOWARE project, 
2013) 

CFU/ 
100ml 

860 - 24000 1 - 2 2.63 - 4.38 (Francy et al., 2012) 

CFU/ml (31±6)-
(82±16) 

0 - 14±2   (Anastasi et al., 2013) 

Salmonella MPN/ 
100ml 

45     (Howard et al., 2004) 

      5.6 (Hijnen et al., 2006) 

CFU/L   6   (Soller et al., 2017) 

protozoa 
parasites 

Cryptosporidiu
m  

      > 3 (WHO, 2006) 

      > 3 (NRMMC-EPHC-AHMC, 
2006) 

      3 (Chahal et al., 2016) 

N/l 6 - 23 2 - 8 0.45 - 0.48 (Liberti et al., 2003) 

oocysts/L - 3.6   (Deng et al., 2019) 

      2 - 3.5 (Soller et al., 2017) 

virus Virus       1 - > 3 (WHO, 2006) 

      2.9 - 4.2 (DEMOWARE project, 
2013) 

      4 (Chahal et al., 2016) 
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Enterovirus       > 3 (NRMMC-EPHC-AHMC, 
2006) 

Log 
copies/L 

(3.71±0.43)-
(4.13±0.31) 

(3.47±0.49) 
- 

 (3.82±0.32) 

  (Qiu et al., 2018) 

copies/l 6.8 - 250 36 - 67 - (Francy et al., 2012) 

Norovirus       0.5 - 1.5 (Soller et al., 2017) 

RT-qPCR 
(GC/mL) 

- 3.30-3.80   (Deng et al., 2019) 

Norovirus GI Log 
copies/L 

0.84 - 2.4 1.56 - 1.83 - (Francy et al., 2012) 

Log 
copies/L 

(4.19±0.49)-
(4.35±0.53) 

(4.02±0.52) 
- (4.18±0.6) 

  (Qiu et al., 2018) 

Norovirus GII Log 
copies/L 

(4.96±0.36)-
(5.23±0.29) 

(4.86±0.36) 
- 

(5.12±0.31) 

  (Qiu et al., 2018) 

 

According to the studies reported in the paragraph Analysis and assessment of the WWTP 
efficiency and resilience, it was observed that the cumulative frequency of quality 
requirements for E. coli in class B was achieved for 87.2% of the measurements in the period 
2020 - 2021. To increase this percentage and reduce the risk to have high concentration of 
pathogens in the final effluent, integrative control measures were reported in the Risk Matrix 
(Figure 46). 

 
Figure 46: Preliminary Risk Assessment of row 74 (first part of the matrix) 
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Figure 47: Residual Risk Assessment of row 74 (second part of the matrix) 

Elements of risk analysis in P3 – Use of treated wastewater in agriculture 

As already mentioned in Section Agricultural practices, the pilot field in DWC project was 
cultivated with maize (for animal fodder and for energy production) in spring-summer and 
mustard (as cover crop) during winter. These crops were irrigated by Class B treated water 
using drip irrigation. The location of the experimental field is shown in Figure 48. 

 

Figure 48: Position of the experimental fields in relation to Peschiera Borromeo treatment plant  

One of the most insidious elements of risk in this context is the “Uncontrolled microbial 
regrowth due to discontinuous use (temporary and ad-hoc use) of class B treated wastewater” 
(Figure 49). Foreseen integrative control measures to avoid pathogens regrowth along the 
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irrigation infrastructures due to intermittent water supply include procedures of cleaning, 
washing, sanitizing, etc. during the reuse service interruption.  

 

Figure 49: Preliminary Risk Assessment of row 85 (first part of the matrix) 

 

 

Figure 50: Residual Risk Assessment of row 85 (second part of the matrix) 
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Elements of risk analysis during “Pandemic Emergency”  

During the recent pandemic emergency, several relationships and risks related to the SARS-CoV-2 
virus, responsible for the cases of COVID-19 (Coronavirus Disease), were found in connection with 
water and sanitation infrastructures (Gruppo di lavoro ISS Ambiente Rifiuti, 2020). Considering the 
impressive number of infections by SARS-CoV-2, it results highly important to investigate and identify 
all the potential routes of transmission of the virus. 

Viruses are responsible for a wide range of diseases, such as gastroenteritis, upper and lower 
respiratory tract syndromes, conjunctivitis, hepatitis, central nervous system infections, 
cardio-circulatory system infections, and chronic diseases. From the excretion of viruses with 
faeces, urine and other body secretions, sometimes in high concentrations, it follows that in 
urban wastewater and, consequently, along the integrated water cycle they can be detected 
in high concentrations. 
Figure 51 illustrates the fate of viruses in the integrated water cycle and the stages in which 
potential contact with the virus by exposed individuals can occur. Possible contact pathways 
are also listed below: 
 

 
Figure 51: Fate of viral pathogens in the integrated water cycle and potential human exposure points (modified by: 

Wigginton et al. Environ Sci Water Res Technol 2015;1:735-46)  

 

https://www.reverso.net/traduzione-testo#sl=ita&tl=eng&text=Figura 1. Destino dei patogeni virali nel ciclo idrico integrato e punti di potenziale esposizione umana
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A) Viruses excreted with faeces, urine, vomiting, saliva or respiratory secretions enter the 
sewage system. Indoor water discharges to buildings can generate virus-laden aerosols 
leading to a risk of exposure.  

B) Viruses are transported through the sewerage system to the wastewater treatment 
plant, where exposure through aerosols is limited to professional operators 
adequately protected by personal protective equipment (PPE). 

C) Viruses entering the purification plant are generally inactivated by physical, biological 
and chemical treatment processes. 

D) Wastewater treatment generates biosolids, that is sewage sludge that can be disposed 
of through spreading on land, incineration or landfilling. The exposure during sludge 
management and handling is limited to professional operators protected. Virus 
inactivation control on disposed sludge is achieved through regulatory measures and 
good practices as described in the ISS COVID-Report19 n. 9/2020 Interim indications 
on the management of sewage sludge for the prevention of the spread of SARS-cov-2 
virus. 

E) First rainwater generated by intense meteoric events coming from the sewerage 
system is channelled through a drain or bypass well, directly to the receiving water 
body, carrying potentially infectious viruses. 

F) Illicit discharges can cause potentially contaminated wastewater to flow directly into 
the receiving water body. 

G) Conventional biological tanks, used in the case of buildings not connected to a 
sewerage system, may contain viral pathogens with consequent exposure risks for the 
purge service operators and any subjects present in the vicinity of the places of 
operation. 

H) Recreational activities may lead to exposure to infectious viruses present in surface 
water when carried upstream of the same water. 

I) Water intended for human consumption undergoes a series of physico-chemical 
treatment processes to remove contaminants, including viruses potentially present in 
the collection. The risk analysis carried out according to the PSA model thoroughly 
examines in prevention the dangerous events and the dangers that can occur at each 
stage of the hydro-potable supply chain. 

J) Breaks or interruptions in the sewerage system may cause contamination of drinking 
water if the distribution and sewerage networks come into contact; similar risks may 
occur inside buildings where inadequate installations or operations lead to the entry 
of wastewater or aerosols generated by wastewater, into water or aeration networks. 

K) Users connected to the drinking water distribution network may be exposed to viruses 
in the event of inadequate drinking water treatment or due to failures in the 
distribution network. 
 

Viruses transmitted through water belong to several families, with over 200 types, many of 
which are associated with epidemics. Families of viruses of priority interest to water belong 
to enteric viruses. They have the characteristic of being called "naked" viruses, as they consist 
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only of nucleic acid enclosed in a protein capsid that protects it from the external 
environment, but without lipoprotein outer casing. In recent decades, attention has also been 
focused on viruses that are mainly responsible for respiratory diseases. These viruses, unlike 
"naked" viruses, have a pericapsidic envelope (envelope), a structure composed of a double 
layer of phospholipids and glycoproteins. The two main groups of envelope viruses that may 
be of concern for the integrated water cycle belong to the families Orthomyxoviridae 
(influenza virus) and Coronaviridae (SARS and MERS coronavirus). These viruses are known to 
have been responsible for epidemics and pandemics such as "Spanish" H1N1 influenza (1918-
1920), H5N1 avian influenza (1997-today), H1N1 influenza (2009-2010), SARS-cov influenza 
(2002-2003), MERS-cov (2012), H7N9 avian influenza (2013-today) and, finally, the ongoing 
pandemic SARS-cov-2 (2020)1. For these groups of viruses, there is currently no evidence of 
water transmission. However, their presence is demonstrated in the faeces, urine and excreta 
of infected patients; as a result, viruses can enter the water cycle through wastewater (Figure 
39). 

However, it is known that, generally, enveloped viruses have much lower persistence 
characteristics than so-called "naked" viruses, being more susceptible to environmental 
factors (temperature, sunlight, pH, etc.), as well as physical factors (degree of matrix 
dehydration) and biological (microbial antagonism). Therefore, even in the absence of specific 
data on the survival of SARS-cov-2 in water, it is hypothesized that the virus can be deactivated 
significantly faster than enteric viruses with typical water transmission such as, for example, 
Adenovirus, Norovirus, Rotavirus and Hepatitis A virus. 

On the basis of the fate of viral pathogens in the integrated water cycle (Figure 40) and the 
above considerations, three elements of risks analysis during “Pandemic Emergency” are 
reported in the following portions of the Risk Matrix (Figure 52, Figure 53, Figure 54, Figure 
55, Figure 56 and Figure 57). 
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First element of risk analysis: Potential transmission of viruses by wastewater 

 

 
 

Figure 52: Preliminary Risk Assessment of potential transmission of SARS-CoV-2 virus by wastewater (first part of the 

matrix) 

 
 

 

 

Figure 53: Residual risk assessment of potential transmission of SARS-CoV-2 virus by wastewater (second part of the 

matrix) 
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Second element of risk analysis: Dysfunctions related to the unavailability of effective service 
personnel for management and surveillance 

 
Figure 54: Preliminary Risk Assessment of dysfunctions related to the unavailability of personnel for management and 

surveillance (first part of the matrix) 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 55: Residual Risk Assessment of dysfunctions related to the unavailability of personnel for management and 
surveillance (second part of the matrix) 
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Third element of risk analysis: dysfunctions related to the unavailability of materials, products 
and reagents 

 

 

 

 

 

 

 

 

 

 

 

Figure 56: Preliminary Risk Assessment of dysfunctions related to the unavailability of materials, products and 
reagents (first part of the matri 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 57: Residual Risk Assessment of dysfunctions related to the unavailability of materials, products and reagents 
(second part of the matrix) 

In order to reduce the residual risk score of the last two hazardous events, the following 
supplementary control and mitigation measures may be applied: 

• In the medium to long term, building of water reservoirs to avoid reuse service 
interruption 

• Supply of Class B treated water from other CAP WWTPs [Deliverable D1.4] should be 
implemented. 
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Risks prioritization for the SSP at Peschiera Borromeo WWTP 

The whole semi-quantitative risk assessment for the reuse system located in the peri-urban 
district of Peschiera-Borromeo is reported in the Risk Matrix (Annex A).   

The output of the semi-quantitative risk assessment, and particularly of the residual risk 
assessment stage that takes into account the already existing control measures, was a priority-
sorted risks list. This list can be very useful to highlight “high” or “very high" risks that need to 
be quickly faced by the introduction of new specific control measures. 

In Figure 58 is reported the numerousness of the hazardous events identified at Peschiera-
Borromeo reuse system that belong to different classes of risk (i.e., low risk, medium risk, high 
risk and very high risk) according to the results of the residual risk assessment.   

 
Figure 58: Distribution of residual risk values by different types of hazard  

Particularly, the histograms in Figure 58 clearly indicate that most of resultant residual risks 
are ranked at Medium Risk level, no residual risks is ranked as Very High Risk, whereas few 
hazardous events are related to Low Risk level (< 6 of risk score R) or High Risk level. Hence, 
to further reduce risks related to the production of water quality of class “B” for agricultural 
irrigation some integrative control measures can be introduced. One effective additional 
control measure is represented by the implementation of an Early Warning System (EWS) and 
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its digital infrastructure at Peschiera-Borromeo WWTP. Indeed, a digital EWS tool is able to 
provide promptly warning messages to assure a safe water reuse. 

3.2.5. Quantitative risk assessment 

3.2.5.1. QMRA 

 

From the semi-quantitative methodology, which resulted in the Risk Matrix of Peschiera 
Borromeo wastewater treatment plant (WWTP), a quantitative approach was then followed 
to analyse microbial risk. A Quantitative Microbial Risk Assessment (QMRA) was carried out 
to quantitatively evaluate microbial risks and compare them with health targets provided by 
World Health Organization (WHO) guidelines (WHO, 2016b), which identify four steps: 
 

• Hazard identification: This step involves deciding which microorganisms are of interest 
in the study and finding out what diseases these microorganisms cause. It includes 
general information about the microbial agent (pathogens) and the adverse 
consequences to the host from infection.  

• Hazard characterization: The scope of this step is to have a detailed description of the 
mechanisms and the cause of the actual adverse health effects. It includes information 
on the required level of detail, hazards (pathogens) and health outcomes to be 
considered and exposure pathways and hazardous events to be included. 

• Exposure assessment: The purpose of exposure assessment is to predict the fate of a hazard 
from its source to the endpoint and quantity what this endpoint is exposed to. Different groups 
of people could be exposed to hazards through different pathways. In this step the frequency 
and magnitude of exposure to pathogens via the pathways and hazardous events are defined. 
It is important to determine dose-response relations.  

• Risk characterization: The final step of the risk assessment combines the information from 
the previous steps to estimate the likelihood of an adverse consequence (Haas et al., 2014). 
The health impact data for the identified hazards and the specific study population are 
reported. They include: the type of health effects, the severity and duration of a disease or 
illness that may occur after ingestion of the pathogen and the relationship between ingested 

dose and the probability that health effects (infection, illness, sequelae) occur (WHO, 2016b). 
Risk characterizations range from a "point estimate" of risk to more sophisticated 
methods, also known as probabilistic risk assessment, that consider uncertainty in 
model input parameters and variability across individuals and subpopulations.  

Risk assessment includes a certain level of uncertainties within its estimation. The terms variability and 
uncertainty refer to imprecise or not reliable data, assumptions or lack of information, which might 
lead to errors in the overall result (Wolfgang Seis, 2012). 

Early approaches of quantitative microbial risk assessment (QRMA) were based on point estimates and 
resulted in a single value of risk. Point estimates means that one value is chosen to represent each 
variable and the risk is calculated considering that value. Mean values of variables are chosen to 
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calculate the average risk while extreme values, such as the 95-percentile, could give an idea of the 
worst-case scenario. Such an approach does not give a comprehensive picture nor appropriate weight 
of all combinations. On the other side, stochastic modelling could be used to have a more realistic 
representation of the distribution of data. Monte Carlo method can be used to obtain the output risk 
distribution using random samples of each distribution. This latter approach was used in this study.  

In this study, QMRA was performed through the web tool QMRA.org (Wolfgang Seis 2022- 
QMRA (Version 0.1.3) [Computer software] https://doi.org/10.5281/zenodo.6457511). The 
tool includes a complete database of typical pathogens concentrations, treatment log 
removals, exposure scenarios, dose-response and health parameters. Moreover, it can be 
customised to allow the user to consider site-specific data and/or conditions. The tool 
QMRA.org runs Monte Carlo simulations and it is able to evaluate the probability of infection 
and the DALYs associated with defined scenarios of microbiological contamination of reused 
wastewater.  

Hazard identification 

The first step of a QMRA procedure is to identify the possible hazardous pathogens that may 
be reason of illness for humans due to wastewater reuse practices.  

Risk assessment is generally conducted for relevant reference pathogens, which should be 
representative of each the major groups of pathogenic organisms (i.e., bacteria, viruses, 
protozoa and helminths), since different groups of pathogens may have different behaviours 
and susceptibilities during wastewater treatment processes.  

Reference pathogens were selected considering suggestions by WHO guidelines and by the 
Australian Guideline for water recycling (NRMMC-EPHC-AHMC, 2006). Hence, Campylobacter, 
Cryptosporidium and Rotavirus were selected to be representative organisms of bacteria, 
protozoa and virus, respectively. 

Campylobacter infectious are currently the second most frequently reported bacterial 
infections causing gastroenteritis (Seis et al., 2012). Campylobacter bacteria are able to 
survive in the environment for a certain time, and infections can occur due to the consumption 
of and bathing in contaminated water. Hence, they can be considered suitable representative 
of bacteria group to conduct risk analysis. 

Rotavirus is a good candidate to be representative of viruses during risk analysis. Indeed, 
Rotavirus poses a major threat of viral gastroenteritis worldwide, has a relatively high 
infectivity compared with other waterborne viruses and a dose–response model is available 
in the literature (A.H. Havelaar, J.M.Melse, 2003)  

Cryptosporidium parvum is a good candidate to be the reference organism for protozoa. It is 
reasonably infective, resistant to chlorination, and it is regarded as one of the most significant 
waterborne human pathogens in developed countries since it is cause of bacterial 
gastroenteritis (NRMMC-EPHC-AHMC, 2006).  

https://doi.org/10.5281/zenodo.6457511
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Hazard characterization 

Pathogens concentrations available at Peschiera Borromeo WWTP are related to the 
concentration of the indicator organisms E. Coli in the raw influent to the plant, in the 
secondary effluent and in the final effluent after UV disinfection, which are measured by 
periodical standard routine analysis.  

To define the expected concentrations of Campylobacter, Cryptosporidium and Rotavirus, 
typical ratios between E. coli and reference pathogens in raw wastewater were used (Mara, 
2006), as reported in Table 21. 

Table 21 Reference ratios between E. Coli and pathogens concentration in raw wastewater 

E. coli - reference ratio 

pathogen Campylobacter Cryptosporidium Rotavirus 

min 1.00E-06 1.00E-07 1.00E-06 

max 1.00E-05 1.00E-06 1.00E-05 

 

Particularly, for Cryptosporidium and Rotavirus the literature ratios shown in Table 21 were 
applied to the concentration of E. coli in the influent. Literature data on log removals at each 
treatment unit were then applied to define the pathogens concentrations in the effluent. 

Reference values (NRMMC-EPHC-AHMC, 2006; Wolfgang Seis & Remy, 2013; WHO, 2006) for 
the applied log reductions are reported in Table 22. 

Table 22: Indicative log-removals for Cryptosporidium and Rotavirus in different wastewater treatment units 

Treatment unit Distribution 
Cryptosporidium Rotavirus 

min max min max 

Primary Treatment uniform 0 1 0 0.1 

Secondary Treatment uniform 0.5 1.5 0.5 2 

UV disinfection uniform 3 3 1 3 

In the case of Campylobacter, the literature ratios shown in Table 21 were applied to the 
concentrations of E. Coli in the final effluent of Peschiera Borromeo WWTP. Indeed, 
Campylobacter and E. Coli are both bacteria and, thus, same log removals are applicable in 
each treatment unit for the two organisms (NRMMC-EPHC-AHMC, 2006; Wolfgang Seis & 
Remy, 2013; WHO, 2006).  

E. Coli concentrations in both the influent and effluent of the WWTP were fitted by a log-
normal distribution (Figure 59). Then, uniform distributions were utilized to apply the ratios 
in Table 21 and obtain the needed distribution of Cryptosporidium, Rotavirus and 
Campylobacter. 
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a) b)  

Figure 59: Fitting of E. coli trends in the a) influent, and b) effluent with lognormal distributions 

Exposure Assessment 

In this step, health impact data for the identified hazards and the target population are 
specified. This includes the type of health effects, the severity and duration of a disease or 
illness that might occur after ingestion of the pathogen, and available information on the 
relationship between ingested dose and the probability that health effects occur (dose–
response relationship). In addition, the fraction and vulnerability of the population exposed 
might need to be considered. 

Fieldworkers and local communities might be exposed through direct contact with 
wastewater or contaminated soil or crops. These groups might inhale or ingest wastewater 
used for irrigation. Each group could enter in contact with contaminated wastewater or 
products in several ways or routes of exposure. Different barriers or log removals could be 
applied at each route of exposure to reduce the risk. 

Other possible exposure routes of humans to pathogens due to wastewater irrigation could 
be considered, but not all of them are relevant for the case-study in object. As an example, 
the exposure via drinking water can be neglected, since there are no contacts with water 
catchment areas for providing drinking water.  

Moreover, in Peschiera Borromeo reuse system, no crops are grown to be consumed without 
further processing. Thus, the pathways through the consumption of animals and animal 
products as well as direct consumption of crops grown on wastewater irrigated areas are 
neglected, too. 

In conclusion, both fieldworkers and local community were considered as exposure groups 
through ingestion and inhalation. No pathogen die-off was assumed after irrigation. Dose-
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response models proposed by Haas were adopted to evaluate the risk of infection per person 
per year (pppy).  

Routes of exposure 

The routes of exposures are the activities through which people enter in contact with 
pathogens. 

A volume (mL) and a frequency per person per year (pppy) of exposure must be associated to 
each route. Due to lack of data and impossibility to obtain site-specific information, 
suggestions provided by Australian Guidelines were considered. The main route of exposure 
to microbial hazards from recycled wastewater is ingestion, including ingestion of droplets 
produced by sprays (inhalation). Dermal exposure is also possible, but there is a lack of 
evidence of health impacts through this route and it is considered unlikely to cause significant 
levels of infection or illness in the normal population (NRMMC-EPHC-AHMC, 2006). Data on 
exposure volumes and frequencies per person, utilized in this study, are provided in Table 23 
according to the indications of the Australian water recycling Guideline (NRMMC-EPHC-
AHMC, 2006) and Seis et al. (2012).  

Table 23 Associated exposures for recycled water during irrigation (NRMMC-EPHC-AHMC, 2006) 

Activity Exposed group Rout of exposure Volume (mL) Frequency/person/year 

Agriculture 
irrigation 

Fieldworker Indirect ingestion 0.01 100 

Nearby community 

Inhalation (min) 0.0045 180 

Inhalation (max) 0.0069 180 

Children in the 
nearby community 

Ingestion (min) 0.02 10 

Ingestion (max) 0.1 10 

For highly mechanized agriculture, a daily intake of 1-10 mg contaminated soil, or 1-10 µl 
treated wastewater can be assumed for fieldworkers with a number of exposure events per 
year of 100 days per person per year (Seis et al., 2012). In this case, it is assumed that number 
of 100 ml water ≙ number of 100 g soil (Seis et al., 2012). 

For assessment of the exposure of nearby residents, the dose of liquid aerosol particles people 
are exposed to must be estimated. Due to lack of local data, it can be considered that, due to wind 
presence, nearby resident could inhale 4.5 - 6.9*10-3 mL of water, in the case of spray irrigation, for 

each irrigation event (Seis et al., 2021). The number of exposure events per year is equal to the 
number of irrigation events in one year. In the peri-urban area of Milan, agricultural fields 
cultivated with corns are irrigated once per day for six months. Hence, an exposure of 180 
events per person per year can be assumed. However, spray irrigation is not applied in the 
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investigated area and this exposure scenario does not result in a high risk for the local 
community. 

On the contrary, children of the nearby community may play on agricultural areas or may 
accompany adults while they go for a walk. Especially young children tend to ingest higher 
amounts of soil. To account for this kind of risk an annual number of exposure events of 10 is 
applied. The amount of soil ingested is set to 20-100 mg (i.e., 0.02 – 0.1 mL of water) per 
exposure event according to Seis et al. (2012). 

Reassuming, in this study the (indirect) ingestion of wastewater by fieldworkers and by 
children of the local community were considered as the most relevant exposure routes for 
microbial risk calculation.  

Preventive measures 

Preventive measures, or barriers, are strategies to reduce the exposure to hazard, which 
include actions to reduce the pathogens concentration in the wastewater (e.g., wastewater 
treatment processes) or actions to reduce the volume of water target people are exposed to.  

Each preventive measure can be associated with a log reduction value. Characteristic values 
of log reduction have been taken from (NRMMC-EPHC-AHMC, 2006) and WHO Guidelines 
(2006) and are summarized in Table 24.  

Table 24 Log reductions applied to each barrier 

Reference NRMMC-EPHC-
AHMC, 2006 

WHO guidelines for safe 
use of wastewater, 
excreta and greywater 

  min max min max 

Drip irrigation of crops 2    

Drip irrigation of crops with limited to no ground 
contact (e.g., tomatoes, capsicums) 

3    

Drip irrigation of raised crops with no ground contact 
(e.g., apples, apricots, grapes) 

5    

Drip irrigation of plants/shrubs 4    

No public access during irrigation 2    

No public access during irrigation and limited contact 
after (until dry 1 – 4 hours) (e.g., food crop irrigation) 

3    

Buffer zones (25–30 m) 1  1  

Natural die-off   0.5 2 

In the present study, a log removal value of 2 was considered to evaluate the exposure when 
drip irrigation is utilized. Indeed, the use of drip irrigation significantly reduces the volume of 
utilized wastewater and the production of aerosol compared to other irrigation technologies 
(i.e., spray irrigation or surface irrigation).  
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For the selected exposed groups, two microbial risk scenarios were analysed, which were 
related to the application or not of drip irrigation.  

Dose-response relationship 

The dose of pathogens with which the exposed group enter in contact can be calculated with 
the following equation:  

𝑑 =
𝑐∗𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒/𝑒𝑣𝑒𝑛𝑡

log 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
          (3.1) 

Where: 

- C = concentration of pathogens  
- log reduction = reductions required to achieve a residual risk coming from preventive 

measures or barriers 
- exposure/event= volume (mL) with which people enter in contact in a single event of 

exposure during a certain activity  

Next step consists in the identification of dose-response models, which are mathematical 
functional relationships between the number of pathogens someone is exposed to and the 
probability of occurrence of the related adverse effect. A fraction of infected people may 
develop different health outcomes. The simplest dose-response model is an exponential 
relationship  (Haas et al., 2014):  

𝑃𝑖𝑛𝑓 = 1 − 𝑒−𝑟∗𝑑          (3.2) 

- Pinf =probability of infection 
- r= infectivity constant 
- d= dose 

The exponential model assumes that the probability of infection is constant for similar kind of 
pathogens (C.N. Haas et al, 1999), while actually not all pathogens of the same species are 
equally infective and not all humans have the same health outcomes. For that reason, the 
Beta Poisson-model is also used  (Haas et al., 2014): 

𝑃𝑖𝑛𝑓 = 1 − (1 −
𝑑

𝛽
)−𝛼         

 (3.3) 

Where: 

- d = dose per event 
- α, β = dose response constants 

A Dose-response model is used to calculate the Probability of infection (Pinf) related to each 
event of exposure to the target pathogen. In this study, according to what suggested by (Haas 
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et al., 2014), a Beta-Poisson model has been used to calculate Pinf in the case of Campylobacter 
and Rotavirus, while an exponential model was used for Cryptosporidium.  

𝑃𝑖𝑛𝑓 = 1 − 𝑒−𝑟∗𝑑 (used for Campylobacter and Rotavirus)    

      

𝑃𝑖𝑛𝑓 = 1 − (1 −
𝑑

𝛽
)−𝛼 (used for Cryptosporidium)     

   

Constant values “α” and “β” for the Beta-Poisson model and “r” for the Exponential equation 
were obtained from literature (Table 25). Particularly, reference values were obtained by 
Australian guidelines, QMRA Wiki community portal (a data repository website created by 
researchers of the Center for Advancing Microbial Risk Assessment (CAMRA) OF Michigan 
State University), and Aquanes tool website. 

Table 25 Dose-response constants for selected pathogens 

    Campylobacter Cryptosporidium  Rotavirus 

Dose-response constants 

α 1.44E-01   2.53E-01 

β 7.58     4.26E-01 

r   5.72E-02   

Risk characterization 

Once calculated Pinf, the total probability of infection in one year is obtained by the following 
equation: 

Pinf combined final = 1 − ∏ (1 − Pinf i)
Nin

1        (3.7) 

Where: 

- N = number of activities 
- Pinf i = probability of infection of the ith activity 
- Ni = frequency/person/year of ith activity 

The final probability of infection of each pathogen calculated by eq. (3.7) should be compared 
with the limit value established by US EPA of 1*10-4. If the calculated probability of infection 
is lower than this health-target value, the microbial risk can be considered acceptable.  

Once the value “Pinf combined final" has been calculated, the probability of illness (Pill) is 
obtained multiplying "Pinf combined final" with the ratio illness/infection, which is provided 

by literature (Table 26) (NRMMC-EPHC-AHMC, 2006):  

Pill = Pinf combined final ∗ ratio illness/infection     (3.8) 
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Table 26 Ratios illness/infection for the selected pathogens 

Campylobacter Cryptosporidium Rotavirus 

0.3 0.7 0.5 

WHO guidelines consider Disability-adjusted life years (DALYs), as a metric for expressing the burden 
of disease within a population. The DALY is a health gap indicator for the status of health of a 
population expressed as burden of disease due to a specific disease or risk factor, and it takes into 
account both the morbidity and the mortality caused by a specific disease. A health-target of 10-6 DALYs 
was set by WHO as tolerable health risk.  

The DALY value can be calculated by the following equation: 

DALY per year = Pill ∗ DALYd ∗ susceptibily fraction      (3.9) 

Where: 

- Pill= probability of illness per year 
- DALYd= DALY per case 

Daly per case of reference pathogens were obtained by WHO guidelines (2011), as shown in Table 27. 

Table 27: DALY per case for the selected pathogens 

 Campylobacter Cryptosporidium Rotavirus 

DALY per case 0.0046 0.0015 0.014 

Once values of DALYs per year for each pathogen have been calculated, the obtained values 
can be compared with the tolerable level of risk (1*10-6) set by WHO in order to understand if 
the risk is acceptable or not.  

Results 

Results are summarised in the following paragraphs, both for workers and for children of the 
local community.  

Graphs (Figure 60 – Figure 65) show the calculated Probability of infection that were 
compared with the health-target limit suggested by US EPA (10-4) and the calculated DALYs. In 
this case, the tolerable value of 10-6 suggested by WHO Guidelines was considered as the 
threshold value. 

In each graph, results of the expected microbial risk are shown considering minimum and 
maximum log removals that can be achieved during wastewater treatment. Indeed, log 
removals for viruses and protozoa during the different treatment stages were taken from 
literature and are highly variable since are referred to WWTPs that work under very different 
operational conditions (Table 22). Particularly, low log removals are often related to small 
WWTPs that work under non-optimised conditions and that reach low treatment 
performances. On the contrary, high values of log removals comes from large WWTPs, which 
are generally operated under better conditions. Showing results for minimum and maximum 
removal of pathogens gives indication of the uncertainty of the assumptions done to evaluate 
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the risk. In these terms, the variability of the obtained results (i.e., difference between 
minimum and maximum log removal scenarios) represents the uncertainty related to the use 
of literature data and assumptions done to evaluate the risk. Only site-specific measurement 
campaigns could confirm or deny the assumed hypothesis, allowing to utilize site specific 
values for expected log removals of pathogens at Peschiera Borromeo WWTP. 

A decision support tools such as the Early Warning System will be then very useful to lower 
the expected microbial risk. Indeed, the EWS can detect plant malfunctions or low treatment 
efficiencies and rapidly send alarms. Hence, the presence of the EWS can ensure that when 
wastewater is provided for irrigation, the WWTP is working properly and that treatment 
performances met the required levels. In this case, risk scenarios related to high log removals 
of pathogens will result more plausible. 

Risk for workers 

Risk was evaluated for fieldworkers, considering or not drip irrigation as a barrier. Indeed, 
wastewater treated at Peschiera Borromeo WWTP is reused in agriculture for corn cultivation 
by surface irrigation and by drip irrigation. 

Figure 60 and Figure 61 show the calculated microbial risk in the case of use of drip irrigation 
and conventional irrigation, respectively. Results are similar for both the scenarios. 
Particularly, the probability of infection and DALY values are higher than related health-target 
limits only for the pathogen Rotavirus in the case of low performance of wastewater 
treatment operations and low log removals for pathogens. Hence, the uncertainty related to 
literature values for log removals (Table 22) does not ensure that an acceptable level of risk is 
reached during wastewater irrigation. 

A strategy to reduce uncertainties about treatment performances could be represented by 
the implementation of an Early Warning System. If the tool is operated, it can provide 
information about the status of the wastewater treatment units and thus guarantee that they 
are working with high treatment efficiency. The presence of the EWS can ensure the good 
operation of treatment units and that the required performance levels are met, allowing to 
calculate microbial risk using high log removal for pathogens (Figure 60 and Figure 61).  
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Figure 60: Risk expressed in Probability of Infection (up) and DALYS (down) for workers with drip irrigation in the case of 

maximum log removals (MaximumLMV) and minimum log removals (MinimumLMV) of pathogens. 
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Figure 61: Risk expressed in Probability of Infection (up) and DALYS (down) for workers without drip irrigation in the case 

of maximum log removals (MaximumLMV) and minimum log removals (MinimumLMV) of pathogens. 

Even though for Rotavirus the use of drip irrigation was not able to assure an acceptable level 
of risk for wastewater reuse, this barrier results in any case highly effective to reduce the risk 
for fieldworkers as it was better highlighted in Figure 31. 
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Figure 62: Comparison of risk calculation for workers related to scenarios without and with the use of drip irrigation as a 

barrier 

Risk for local community 

Outcomes of risk calculations for children living in the nearby community are reported in 
Figure 63 and Figure 64. However, in this case, when drip irrigation is utilized for irrigation, 
the risk levels is always below the health-target threshold limits (Figure 63). On the contrary, 
if drip irrigation is not used, the risk is not acceptable for Rotavirus in the case of low 
performance of the wastewater treatment processes (MinimumLRV in Figure 64). This latter 
result highlights again the importance of an EWS able to monitor continuously the quality of 
the reused wastewater to assure a safe irrigation reuse. 

Risk for local community is performed using the same hypothesis as the ones expressed for 
fieldworkers but considering a lower number of exposure events. 
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Figure 63: Risk expressed in Probability of Infection (up) and DALYS (down) for local community with drip irrigation in the 

case of maximum log removals (MaximumLMV) and minimum log removals (MinimumLMV) of pathogens. 
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Figure 64: Risk expressed in Probability of Infection (up) and DALYS (down) for local community without drip irrigation in 

the case of maximum log removals (MaximumLMV) and minimum log removals (MinimumLMV) of pathogens. 

The efficiency of drip irrigation as a barrier to reduce risk for local community is shown in 
Figure 34. 
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Figure 65: Comparison of risk calculation for local community related to scenarios without and with the use of drip 

irrigation as a barrier 

1.1.3.1. QCRA 

Quantitative chemical risk assessment is a tool increasingly used in risk-management decision-
making, following the success of its microbiological equivalent (QMRA). In QCRA, available 
data and information regarding toxicity are combined with estimates of exposure to calculate 
the likelihood and severity of human health effects. In certain circumstances, limitations on 
evaluating chemical toxicity and exposure potential introduce significant uncertainties into 
such risk assessment (Bahri et al., 2010).  

According to Annex II of the Regulation on key elements of risk management, the quantitative 
risk assessment shall be used where there is sufficient supporting data or in projects 
presenting a high potential risk to the environment or public health. To finalise QCRA of 
Peschiera –Borromeo case study, a sufficient number of laboratory data, collected by CAP 
during the monitoring programs reported in paragraph Sampling and periodical laboratory 
monitoring, was used.  

The quantitative chemical risk assessment (QCRA) follows the methods of the European Union 
Technical Guidance Document on Risk assessment (EU 2003). Like QMRA, the QCRA is 
structured in: 

• Hazard identification 

• Hazard characterization 

• Exposure assessment 

• Risk characterization 

As for QMRA procedure, the first step was to identify all the possible chemical/physical 
hazards that could be reason of illness for humans due to wastewater reuse practices. For this 
purpose, FMEA model was the tool selected.   
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Hazards identification by FMEA model 

FMEA (Failure Modes-Effects Analysis) arose, in the industrial field, as a methodology used to 
identify and evaluate the risk of a potential adverse event in a production process. Therefore, 
it is a control tool since it studies the hazardous events that may occur, the consequent effects 
and identifies strategies to reduce the probability that a certain adverse event may reoccur. 

This tool can be applied to the study and monitoring of any production chain in order to 
effectively identify deviations in the quality of goods produced, before they manifest real 
defects. In our case the good produced is water destined for reuse in agriculture. The 
production chain is the sequence of management processes that take place from the sewer 
system, through the treatments to finish at the point of delivery/compliance. Starting from 
experimental evidence (laboratory analysis) representative of the entire production process 
of water destined for reuse in agriculture, FMEA analysis allows to identify the critical 
factors/chemical-physical parameters that have an impact on the quality of the wastewater 
of sewer system, treated and distributed at the point of delivery. These parameters can lead 
to different events/phenomena:   
 

•    abnormal pollution of the wastewater treatment plant to be detected quickly and 
managed with appropriate control measures;  

•    incorrect sampling procedure;  
•    selection of unsuitable non-representative sampling points (stagnant water 

sampling) 
Finally, this study allows to orient the analytical control plan in the selection of the parameters 
to be monitored to keep under control the system as well as the most appropriate monitoring 
frequencies. It is an intuitive graphic model, which associates to each chemical/physical 
parameter an index "FMEA" (between 1 and 5) that expresses the deviation of its value from 
the legal limit. In this sense, it offers a snapshot of the quality level of the wastewater 
treatment and allows to trace the level of chemical risk to which the system is subjected by 
monitoring its evolution over time. 
 

As part of the Sanitation Safety Plans, the FMEA model allows to:  

• identify chemical/physical hazards 

• continuously verify the effectiveness of the SSP. 

Implementation of FMEA model for Peschiera-Borromeo water reuse system  

The implementation of the FMEA model for the production chain of Peschiera-Borromeo 
treated wastewater for reuse in agriculture was structured according to the following 4 steps. 
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• FIRST STEP: selection of the most representative parameters of water quality for reuse in 
agriculture 

The most representative parameters of water quality for reuse in agriculture were chosen by 
CAP in its monitoring program (paragraph Sampling and periodical laboratory monitoring) on 
the basis of the requirements of the current Italian legislation, Decree 12/6/2003, n. 185 of 
the Ministry of the Environment on regulation of technical standards for the reuse of 
wastewater. The chemical and physico-chemical parameters selected by CAP included 
conductivity, BOD5, COD, Total Suspended Solids, Total Nitrogen, Ammonium, Nitrate, Total 
Phosphorous, Phosphates, Chlorides, Sulphates, Sulphites, Sulphides, Cyanides, several heavy 
metals (Cadmium, Chromium, Iron, Mercury, Nichel, Lead, Copper, Zinc) and organic 
surfactants. Since for most parameters, data had values below LOQ, FMEA approach was 
applied to only 13 parameters, which are reported in Table 28 and that are characterized by a 
consistent number of detections with values above LOQ and have a demonstrated 
dangerousness. In the future, new parameters will gradually be added to these, depending on 
scientific evidence and according to new legislations. An example could be represented by the 
emerging contaminants studied in section Preliminary studies. 
 

• SECOND STEP: Calculation of the 95th percentile of the observed values for the selected 
parameter  

 

 
Figure 66: Graphical representation of 95th percentile 

 

To define the FMEA indexes, the 95°percentile has been calculated for all the selected 
parameters that were measured at concentration higher than LOQ. 

The 95th percentile is a number/value that is greater than 95% of the numbers/values in a 
given set of data.  The 95° percentile is used to evaluate if the data rank in the range defined 
by the LL and the LOQ as explained below. 
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• THIRD STEP: Definition of the calculation range of the FMEA index 

To define the calculation range of the FMEA index, three different limits were considered. For 
the lower end was considered the LOQ (the minimum quantifiable concentration capable of 
returning a signal 3 - 2 times higher than the background noise) of each chosen parameter, 
according to the method used by CAP laboratory for its determination. For the upper end, two 
different limits for each parameter were considered: one provided by the ISO 16075-1:2020 
guideline,  and one provided by the Italian DM185/2003 (LL). Generally, limits set by the ISO 
16075-1:2020 are less strict than those of the DM185/2003. In the case  limits were not 
available by the ISO 16075-1:2020, limits from Quaderno ARSIA 5-2004 (ARSIA-L) were 
considered (Landi & Baroncelli, 2000).   
Edge values of the ranges set for the calculation of the FMEA index are reported in Table 28 
for all selected parameters.  

Table 28: LOQ, LL, ISO-L and ARSIA-L of each parameter 

N° Parameter LOQ DM185/2003 
limits of Italian 

law  
(LL) 

ISO 16075-
1 limits  
(ISO-L)  

Quaderno ARSIA 
5-2004 limits 

(ARSIA-L) 

1 Conductivity at 25°C 150 mS/cm 3000 µS/cm  1500 µS/cm 
 

2 BOD5 5 mg/L 20 mg/L - - 

3 COD 15 mg/L 100 mg/L - - 

4 TSS 5 mg/L 10 mg/L  30 mg/L 

5 Total Nitrogen 0.1 mg/L 15 mg/L 35 mg/L  

6 Ammonium 
nitrogen (NH4) 

0.44 mg/L 2 mg/L 30 mg/L  

7 Total phosphorus (P) 0.313 mg/L 2 mg/L 7 mg/L  

8 Chloride (Cl-) 3.478 mg/L 250 mg/L  200 mg/L 

9 Sulfate (SO4) 2.292 mg/L 500 mg/L  300 mg/L 

10 Aluminium (Al) 0.112 mg/L 1 mg/L 12.5 mg/L  

11 Iron (Fe) 0.041 mg/L 2 mg/L  3 mg/L 

12 Copper (Cu) 0.010 mg/L 1 mg/L  1 mg/L 

13 Zinc (Zn) 0.055 mg/L 0.5 mg/L  3 mg/L 
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FOURTH STEP: Definition of the five classes of the FMEA index and classification of 95 
percentile (P95) in each of the classes 
 
For each of the 13 parameters in Table 28, the calculation of the FMEA index was performed 
according to the criteria reported in Table 29, where formulas are based on the calculation of 
the 95th percentile (P95). 

  
Figure 67 Example of the range of the FMEA index [LOQ, LL] divided into 5 parts numbered from 1 to 5 according to the 

criteria indicated in Table 29 and characterized by different colours 

 

Table 29: P95 calculation formulae for the five classes of FMEA indices, taking LL as an example of an upper limit 

FMEA index Calculation Formula 

I.FMEA = 1 P95 < LOQ + (LL-LOQ)/5 

I.FMEA = 2 LOQ+(LL-LOQ)/5 ≤ P95 < LOQ+(2/5)x (LL-LOQ) 

I.FMEA = 3 LOQ+(2/5)x(LL-LOQ) ≤ P95 < LOQ+(3/5)x (LL-LOQ) 

I.FMEA = 4 LOQ+(3/5)x (LL-LOQ) ≤ P95 < LOQ+(4/5)x (LL-LOQ) 

I.FMEA = 5 LOQ+(4/5)x (LL-LOQ) ≤ P95 < LL 

I.FMEA = 5 P95 > LL 

 

For all those parameters that had a P95 value included in the first three classes (P95 < 63 % of 
the legal limit) defined in Table 29 the associated risk can be considered negligible (low or very 
low). On the contrary, the parameters falling in classes 4 and 5 (P95> 63 % of the limit) need 
the planning of a careful monitoring program. 

Results of FMEA and PCA for QCRA implementation 

In order to identify the chemical and chemical-physical hazards within the Peschiera-
Borromeo reuse water production chain (Line 2) for QCRA implementation, FMEA and PCA 
models were applied to lab data collected by CAP. 
To implement the FMEA model, the calculation range of the FMEA index was defined 
considering both the limits provided by the ISO 16075-1:2020 limit (ISO-L) and the Quaderno 
ARSIA 5-2004 (ARSIA-L), and by the Italian DM185/2003, which is the national regulation for 

https://context.reverso.net/traduzione/inglese-italiano/chemical-physical
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water reuse, as explained previously. Hence, the FMEA index was calculated twice for each 
parameter to take into account the limits set by both the regulation.  
 

Results of the FMEA model using limits set by ISO-L and ARSIA-L  
The histograms in Figure 68 A and B show the FMEA model applied to the data set of analyses 
carried out in the effluent of Peschiera-Borromeo WWTP (Line 2) between 2018 and 2021. 
The FMEA index was calculated for each year of the period 2018 – 2020 and for all the selected 
parameter (Figure 68). In the 3D histogram of Figure 68 A, the level of risk (FMEA index in z-
axis) is diversified according to the different parameters (x-axis) and to the different years (y-
axis). On the contrary, in the cumulative graph of Figure 68 B, it is possible to observe the 
percentage of variation of the FMEA index over time. Results from both elaborations highlight 
the parameters that have to be considered as priority for monitoring/assessment purposes.  

 In 2021, all investigated parameters fall into classes 1, 2 and 3, where the associated risk can 
be considered negligible (low or very low). The same results were found in the previous three 
years, with the exception of copper and zinc, which had a FMEA index 5 for 2020. 

 

  
Figure 68 A and B: FMEA indices of investigated parameters representative of the quality of treated wastewater at 

Peschiera-Borromeo WWTP Line 2 for the years 2018, 2019, 2020 and 2021 considering the range [LOQ, ISO-L/ARSIA-L] 

Finally, measured concentrations for the selected parameters in the wastewater effluent have 
never exceed the ISO-L limits. Indeed, the 95th percentile value is always less than 63 % of the 

B 

A 
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limits reported by ISO 16075-1:2020 for the most significant parameters, and consequently 
the accomplishment of a QCRA is not justified. 

 

Results of the FMEA model using limits set by DM 185/2003   

The histograms in Figure 69 A and B show the FMEA model applied to the same lab data set 
used for the elaboration shown in Figure 68, but obtained using different range of extremes 
[LOQ, LL].  

 

 
Figure 69 A and B: FMEA indices of investigated parameters representative of the quality of treated wastewater at 

Peschiera-Borromeo WWTP Line 2 for the years 2018, 2019, 2020 and 2021 considering the range [LOQ, DM 185/2003] 

As it can be seen by the comparison of Figure 68 and Figure 69 , the limits imposed by the 
Italian DM 185/2003 are much more restrictive than those  set by the ISO 16075-1:2020 and 
Quaderno Arsia limits. 

B 
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In fact, while in the previous analysis there were no parameters worthy of attention, in this 
case, according to Italian law limits, TSS, total nitrogen, ammonium nitrogen and total 
phosphorus parameters were found in class 5 in 2021. According to these results an 
intensification of the monitoring program could be justified for the previous cited parameters, 
since their values were found to be near the threshold (LL) of the national law 185/2003. 
However, the accomplishment of a QCRA is not justified, since none of the monitored 
parameters overcome the limits established by the National Regulation (LL) 185/2003.  

Results of the Principal Components Analysis (PCA)  

In order to confirm the results and to show the power of the employed approach, a Principal 
Components Analysis (PCA) was carried out for selected water quality parameters that were 
often detected at concentration levels above the limit of quantification. 

Not of easy lecture, the Principal Component Analysis (PCA) is a technique for reducing the 
dimensionality of datasets, increasing interpretability but at the same time minimizing 
information loss. It does so by creating new uncorrelated variables that successively maximize 
the variance. Finding such new variables, the principal components analysis solves an 
eigenvalue/eigenvector problem. 

In Figure 70, the results of the PCA analysis carried out for the selected parameters from 2018 
(in blue) to 2021 (in purple) are reported. The plot was accomplished using the main three 
determined components, which explain largely the variance for all the variables.  

The PCA biplot (Figure 70) is a type of plot where axes are the principal components and define 
the space of the variables. The projections of the data on the variable space, or samples 
scores, are represented by dots, whereas the blue lines represent variables loadings, or 
vectors that quantify the correlation of the variables with the components.  

 
Figure 70:  PCA biplot showing both PC scores of the samples (dots) and loading of variables (vectors) 

In the PCA biplot, it is observed that parameters are well-separated in space. The first and 

second components explain the 60% of variance. The first component can explain the content 
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of heavy metals in waters. In our study, metal profile in wastewater were evaluated through 

zinc, copper, aluminium, and iron concentrations, since the concentrations of the other heavy 

metals resulted often or always below their LOQ. In the same plot of Figure 70, it is possible 

to observe that, unlike from iron and aluminium, zinc and copper (red circle) represent a self-

stand cluster. These two parameters are well correlated between them, but are not correlated 

with other parameters. This allows to conclude that the increase in concentration of these 

two metals observed in 2020 was a unique and random event. 

The second component is strongly correlated with total nitrogen, total phosphorus, 

conductivity, BOD5, COD and SST, and for this reason it can be seen as representative of the 

variation of the organic content of the system. Nitric nitrogen and phosphorus are positively 

correlated with the third component. The low variability of the data along the third 

component and the absence of correlation with BOD5, COD and ammonium nitrogen 

demonstrates the normality of the trophic state of the waters, and consequently the good 

performance of the treatment plant. 

Correlations found by PCA confirm the good performance of the WWTP in treating 

wastewater and the absence of high concentration of dangerous contaminants in the effluent 

during the observation periods. Hence the performance of a QCRA results not necessary. 

3.3. Digital architecture of the Early Warning System at Peschiera-
Borromeo WWTP  

The purpose of Risk Management is to select, plan, establish and monitor risk reduction measures. In 

this context, the Early Warning System (EWS) can be used as a tool to support risk management, 
since it can receive real time information about effluent water quality from Peschiera 
Borromeo WWTP. In this way, decision making about water reuse can be supported and risk 
minimized allowing rapid reactions in case the occurrence of a hazardous event is detected by 
the EWS.  

The EWS provides warnings if in the plant are detected conditions where quality requirements 
for water reuse cannot be satisfied. In these terms, the EWS can be used as a tool to support 
decision making. The rapid detection of a possible hazardous event needs an equally rapid 
communication to the strategy controllers of the water utility to let them promptly react.  

Parameters of interest to be monitored by the EWS were selected considering the outcomes 
of the risk assessment (i.e., risk matrix, QMRA and QCRA) and the regulatory requirements for 
water reuse. The EWS architecture includes the generation of warning and alarms related to 
measurements obtained by on-line sensors and from machine learning algorithms (i.e., soft 
sensors). Particularly, for monitoring the microbial hazard the following device/sensors can be 
selected: 
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• ALERT System device for an almost real-time measurements of E. coli in the treated 
effluent; 

• Sensors and soft sensors for the determination of TSS in the final effluent in real-
time 

• Soft sensors for the predictive determination of TSS in the final effluent (prediction 
of TSS concentration in the final effluent obtained up to 6 h earlier) 

• Sensors for monitoring light intensity of UV lamps for disinfection 

For monitoring the compliance of wastewater quality with the European Regulation 741/2020 
on water reuse, the following sensors were selected: 

• Soft sensor for the determination of BOD5 in the final effluent in real-time 

• Soft sensor for the determination of COD in the final effluent in real-time 

• Sensors for real-time measurements of TOC and UV absorbance at 254 nm, which 
can be used to estimate COD and BOD5. 

Hence the warning/instruction messages listed in Table 30 can be generated. 
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Table 30: Warning messages of the EWS for water reuse at Peschiera Borromeo WWTP  

Sensor 
Parameter of 

interest 
Threshold value 

Warning/instruction 
message 

Note 

Alert System E. Coli 
10  

(number/100 
mL) 

Water quality non-
suitable for class A 

reuse 

No compliance 
with class A 

water quality 

Alert System E. Coli 100  
(number/100 

mL) 

Water quality non-
suitable for class B 

reuse 

No compliance 
with class B 

water quality 

Alert System E. Coli 1000  
(number/100 

mL) 

Water quality non-
suitable for class C 

reuse 

No compliance 
with class C 

water quality 

Soft sensor 
(including 

forecasting 
measurements) 

TSS 10 mg/L Stop water reuse 

High TSS 
concentration in 
the final effluent 

do not allow a 
proper 

disinfection by 
the UV lamps  

Sensor 
UV light 
intensity 

Sudden drop of 
UV light intensity  

Stop water reuse 
Proper UV 

disinfection is 
not ensured 

Soft sensor/ UV 
absorbance 

sensor 
BOD5 10 mg/L 

Water quality non-
suitable for class A 

reuse 

No compliance 
with class A 

water quality 

Soft sensor/UV 
absorbance 

sensor 

BOD5 25 mg/L Stop water reuse  No compliance 
with EU 

regulation 
741/2022 on 
water reuse 

Soft sensor/UV 
absorbance 
sensor/TOC 

COD 125 mg/L Stop water reuse  No compliance 
with EU 

regulation 
741/2022 on 
water reuse 

 

Since microbial risk was highlighted as one of the most significant risk during wastewater 
reuse, in this study, particular attention has been addressed to TSS prediction since solid 
particles may be vehicle of pathogens. Particularly, from data collected in DWC project during 
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sampling campaigns to test Alert Systems, it was observed that lab TSS and E. coli 
concentration can be correlated, as shown in Figure 71. 

 
Figure 71: Correlation between E.coli (expressed as LogN) and TSS (expressed as LogTSS) lab data at different treatment 

stage: influent to biologic unit of Line 2 (orange); Influent to UV unit of Line 2 (grey); influent to biologic unit of Line 1(blue); 

influent to disinfection unit of Line 1 (green) 

Moreover, high TSS concentration can cause a screen effect and a subsequent decrease on 
disinfection performances of the UV disinfection lamps. At Peschiera Borromeo WWTP, TSS 
concentration in the final effluent is generally lower than 10 mg/L. Hence, this value was 
considered as the threshold value for TSS concentration in the wastewater effluent that can 
assure a proper disinfection by UV lamps. In the case of TSS concentration higher than 10 
mg/L, water reuse should be stopped since a satisfactory disinfection is not assured. 

Resuming, the Early Warning System has been developed at Peschiera Borromeo WWTP to 
forecast water quality depending on sensors measurements and soft-sensing techniques. 
Artificial Neural Networks (ANN) were developed for real-time and time-series prediction of 
parameters related to wastewater quality. According to the WWTP operational conditions, 
the soft-sensing algorithms are able to forecast the quantitative values of target parameters 
and compare them with threshold limits for water reuse. The developed ANNs are able to 
predict the following parameters: 

- Biochemical oxygen demand (BOD5 – real-time prediction); 

- Chemical oxygen demand (COD – real-time prediction); 

- Total suspended solids (TSS – real-time prediction and up to 6 hours earlier prediction). 

Soft sensors are smart process models that use “easy-to-measure” variables, which can be 
monitored on-line at a reasonable cost, to predict target “hard-to-measure” variables (F. A. A. 
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Souza et al., 2016). The easy-to-measure or secondary parameters are typically pressure, 
temperature, flow rate, pH, conductivity, turbidity, and dissolved oxygen (i.e., typical 
operational parameters in a WWTP).  

Real-time monitoring of BOD5 and COD in WWTP can be accomplished indirectly by surrogate 
measurements, such UV absorbance at 254 nm or by estimation from TOC on-line 
measurements. Specific sensors are available in the market to predict TSS.  

However, TSS, BOD, COD were predicted by soft-sensing technique since the sensors installed 
at Peschiera Borromeo WWTP were not able to produce reliable measurements. In an ideal 
case, developed soft-sensors may support real sensor during maintenance/malfunction 
periods.  

Periodic lab analyses are anyway scheduled for standard monitoring programs and are used 
to guarantee the precision of soft-sensors estimations. 

Furthermore, for the parameter TSS a time series ANN was developed to predict earlier in 
time (up to 6 hours earlier) the TSS concentration in the final effluent and give the possibility 
to the operational facility staff to stop water reuse or take preventive actions before the 
occurrence of the hazardous event. 

As it was largely discussed in Deliverable 1.1, sensors for the measurements of water quality 
parameters did not produce reliable data at Peschiera Borromeo WWTP (particularly the TSS 
probe). In addition, very few laboratory measurements were available for BOD5, COD and TSS. 
Since a very large set of data is needed for the development of high-performing ANN, a digital 
twin model of the WWTP was created using the software BIOWIN. Hence, data generated by 
software simulation were used to train and test the predictive artificial neural networks. 
Finally, the developed ANNs were validated with real data by a domain adaptation procedure. 
Indeed, this procedure allowed to develop a soft sensor able to provide predicted 
concentrations of TSS, COD and BOD5for real case application using a limited set of real data. 

Even if data from the new installed sensors at Peschiera Borromeo WWTP were not available 
in time for the submission of the Deliverable D1.1, recently signals from TOC sensor have been 
connected and stored in remote control. Raw data (Figure 72) from TOC sensor are provided 
every 40 minutes, and they report also an estimation of COD concentrations, which is 
calculated by using an internal conversion factor. However, since TOC data were limited in 
number and their reliability need to be checked by comparison with laboratory data, they 
were not used for soft-sensors development.  
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Figure 72: Extract of raw data acquired from TOC sensor 

3.3.1. Modelling of wastewater treatment processes 

Predictive models of the Early Warning System require an affordable and large set of data to 
be trained and validated, including both periods of normal operation and periods with 
malfunctions occurrence, which are rarely available. Hence, a model representing typical 
operational conditions of Peschiera Borromeo WWTP was created using the simulation 
software BIOWIN. Particularly, models were used to obtain simulated data representative of 
the measurements performed by sensors that are actually installed at the investigated WWTP. 

Each process unit of Peschiera Borromeo WWTP was schematized using dimensional data as 
well as information about typical working conditions. 

In detail, the SEDIPAC unit was schematized through a Lamellar sedimentation unit using data 
of its volumetry, removal efficiency and sludge underflow. The BIOFOR unit was modelled 
using a Bioreactor – Media unit. In detail, for the schematization of the anoxic compartment 
were provided information about size of the tanks and percentage of volume filled with media 
to support biomass growth. For the aerobic tanks additional data about diffuser systems and 
air flowrates were provided (Figure 72).  
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a)  

b)  

Figure 72: BIOWIN schematization of a) SEDIPAC and b) BIOFOR aerobic units 

Data on internal mixer liquor recirculation and backwash were included to simulate WWTP 
operational conditions. Data of the dosage of external carbon source for denitrification and of 
chemicals for phosphorus precipitation were also included. The layout created by BIOWIN for 
the simulation of the wastewater treatment processes at Peschiera Borromeo WWTP is shown 
in Figure 73.  
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Figure 73: Peschiera Borromeo WWTP layout 

Once the configuration was completed, the model was run using real data coming from the 
WWTP. Laboratory data and sensors data measured during the whole 2020 were used for the 
purpose. Data were provided as hourly parameters and included: 

- Influent flowrate; 

- influent COD 

- Influent pH; 

- Influent TKN (Total Kyendal Nitrogen); 

- Influent TP (total phosphorus); 

- Temperature in the BIOFOR reactor; 

Data for temperature and pH were available from sensors with a 15 minutes time steps. Hourly 
averages were calculated to have hourly values. Data for flowrate, COD, TKN, TP were 
available as daily averages because related to laboratory analyses of 24 h composite samples 
(except flowrate data, which were obtained daily by a totalizator device). Hence, the 
generation of hourly variations for the above-mentioned parameters was accomplished using 
the tool developed by Langergraber et al., (2008), which allows to simulate typical diurnal 
variation of wastewater quality parameters. Laboratory data were available to cover different 
seasonal conditions within one year. Hence, hourly data were generated for one year of 
operation of Peschiera Borromeo WWTP. Static simulations by BIOWIN were performed to 
calibrate and validate the model by comparing simulated data with available laboratory data. 
On the contrary, dynamic simulations of the software BIOWIN were performed to generate a 
data set with 1 hour time steps that cover one year period for the following parameters:  

- Dissolved oxygen concentration in the BIOFOR reactor 

- Effluent flow rate; 

- Effluent pH; 

- Effluent total Nitrogen (TN) 

- Effluent N-NH4; 

- Effluent N-NOx; 
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- Effluent P-PO4 

- Effluent COD 

- Effluent TSS 

- Effluent BOD5 

In Figure 74 are reported, as an example, obtained concentrations for COD and TSS in the 
wastewater effluent during the simulated year 2020. 

 

 

 
Figure 74: Obtained hourly data concentrations for COD and TSS by BIOWIN simulation 

In Figure 75 is reported a comparison between laboratory data and calculated daily averages 
of data obtained by BIOWIN simulation for COD and TN in July 2020. The comparison shows a 
good agreement between simulated and real data. It must be highlighted that the graph in 
Figure 75 is referred to a limited period, while a longer dataset has been considered for model 
validation. In any case, the obtained average error between simulated and real data was  kept 
within the 10 – 20 %. In addition, the analytical methods for COD determination are 
characterised by an uncertainty of around 5 – 10 mg/L, which must be taken into account 
when comparing lab data with simulation results. 

 

 

COD 
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in purple lab data, in green BIOWIN data 

TN 

 
in green lab data, in red BIOWIN data 

 Figure 75: Comparison between real and simulated data for the parameters COD and TN 

To increase the dataset and to simulate conditions, where the investigated WWTP is not 
working properly, different malfunction scenarios were simulated by BIOWIN. Simulated 
malfunction events with indication of the modified operational parameters are reassumed in 
Table 31. Malfunctions were simulated in both warm and cold seasons to take into account 
scenarios with different temperature of operation. 

Table 31: Malfunction scenarios simulated by BIOWIN 

Malfunction of the Aeration system 

Simulated 
event 

Aeration interruption (breakage of the 
blowers) 

Insufficient aeration (reduction of air flow rate) 

Modified 
parameter 

during 
simulation 

Q air (air flowrate) Q air 

Main 
affected 

parameters 

DO in BIOFOR reactor, NH4, NOx, COD, 
BOD, TSS in the effluent 

DO in BIOFOR reactor, NH4, NOx, COD, BOD, TSS in 
the effluent 

Simulated 
Scenarios 

Q air = 0 m3/h for different time 
intervals 

50% reduction of Qair for different time intervals 

scenario_1 Qair = 0 for 1 h Qair = -50% for 1 h 

scenario_2 Qair = 0 for 5 h Qair = -50% for 5 h 

scenario_3 Qair = 0 for 12 h Qair = -50% for 12 h 

scenario_4 Qair = 0 for 24 h Qair = -50% for 24 h 

scenario_5 Qair = 0 for 48 h Qair = -50% for 48 h 

Error in sludge underflow management 

Simulated 
event 

Increase of sludge underflow Reduction of sludge underflow  
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Modified 
parameter 

during 
simulation 

Q underflow in the SEDIPAC unit Q underflow in the SEDIPAC unit 

Main 
affected 

parameters 
TSS in the effluent TSS in the effluent 

Scenarios increase of Q underflow  reduction of Q underflow  

scenario_1 Q underflow +20% for 2 days Q underflow -20% for 2 days 

scenario_2 Q underflow +50% for 2 days Q underflow -50% for 2 days 

Internal recycles 

Simulated 
event 

Errors in setting the Internal recycle of 
sludge to the SEDIPAC unit 

Malfunction of the backwash system 

Modified 
parameter 

during 
simulation 

Q of sludge recycle Q backwash 

Main 
affected 

parameters 
TSS, NH4, NOx, COD in the effluent TSS, NH4, NOx, COD in the effluent 

Scenarios Internal Recycle variations variation of Q backwash  

scenario_1 Q r -20% for 1 day Q backwash +30% for 2 days 

scenario_2 Q r +20% for 1 day Q backwash -30% for 2 days 

scenario_3 Q r = 0 for 1 day Q backwash = 0 for 2 days 

Industrial discharge 

Simulated 
event 

Industrial discharge Industrial discharge 

Modified 
parameter 

during 
simulation 

pH pH 

Main 
affected 

parameters 
NNH4, NNOx, COD, BOD in the effluent NNH4, NNOx, COD, BOD in the effluent 

Scenarios Influent with pH = 5 Influent with pH = 11 

scenario_1 pH = 5 for 1 h pH = 11 for 1 h 

scenario_2 pH = 5 for 5 h pH = 11 for 5 h 

scenario_3 pH = 5 for 12 h pH = 11 for 12 h 

scenario_4 pH = 5 for 24 h pH = 11 for 24 h 

scenario_5 pH = 5 for 48 h pH = 11 for 48 h 

High organic or hydraulic load 

Simulated 
event 

Organic overload (es., discharge of 
agri-food industry) 

Rain event 

Modified 
parameter 

during 
simulation 

COD in the influent Q, COD, TKN in the influent 

Main 
affected 

parameters 

DO in the BIOFOR, COD, NH4, NOx, 
BOD, TSS in the effluent 

DO in the BIOFOR, COD, NH4, NOx, BOD, TSS in the 
effluent 
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Scenarios Increase of COD load Increase of influent Q flowrate 

scenario_1 
influent organic load equal to the 50% 

of maximum COD measured in the 
influent of the plant for 1 day 

Q max, COD min, TKN min measured in the influent 
to the plant for 1 day 

scenario_2 
influent organic load equal to the 
maximum COD measured in the 

influent of the plant for 1 day 
- 

Chemical dosing 

Simulated 
event 

Errors in external carbon dosing Errors in AlCl3 dosing for phosphorus removal 

Modified 
parameter 

during 
simulation 

Q of dosed external carbon Q of dosed chemicals 

Main 
affected 

parameters 
COD, NNOx in the effluent PPO4, TP in the effluent 

Scenarios variation of Q dosed variation of Q dosed 

scenario_1 Q -50% for 1 day Q -20% for 1 day 

scenario_2 Q +50% for 1 day Q +20% for 1 day 

 

Figure 76 shows the BOD5 concentration in the effluent during the BIOWIN simulation of 
malfunction of the aeration system. 

 
Figure 76: BOD5 concentration in the effluent during BIOWIN simulation of malfunction related to the incorrect operation 

of the aeration system in the BIOFOR reactor. 

Obtained hourly data were used to develop the soft sensors included in the EWS to generate 
the warnings/alarms reassumed in Table 30. The complete dataset included 10330 data points 
for each selected parameter. 
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3.3.2. Soft-sensors development for wastewater quality prediction 

As explained, the obtained database by BIOWIN simulation was used to feed and train two 
different Artificial Neural Networks (ANN): 

1. The first soft sensor was developed by creating an ANN able to predict TSS, BOD, COD 
from parameters that are continuously monitored by sensors at the plant 

2. The second soft sensor was developed to predict TSS concentration up to 6 hours 
earlier in time to give technicians the possibility to stop water reuse or take preventive 
actions before the occurrence of the hazardous events that may affect the safety of 
the water reuse.  

Since microbial hazards and disinfection performances are related with solid concentration, 
both ANNs were developed to obtain, as output, the TSS concentration at the effluent. 
Furthermore, BOD and COD were predicted by the first ANN since they are regulated 
parameters for wastewater reuse.  

3.3.2.1. Development of soft sensor for predicting TSS, COD, BOD 

The developed network used for real-time prediction of TSS, COD, BOD was a Deep Feed 
Forward Neural Network (DFF) that taking as inputs (simulated) sensors data could provide 
predictive trends of not-measured parameters (i.e., TSS, COD or BOD). The ANN was 
performed using 6 inputs, including Influent flowrate, Influent pH, temperature in the anoxic 
BIOFOR reactor, dissolved oxygen (DO) concentration in aerated BIOFOR reactor, effluent 
flowrate, effluent pH. These parameters were selected as input of the ANN because they are 
easy-to-measure by cheap and reliable sensors in a WWTP, and they are the parameter 
generally used for process control during wastewater treatment. Furthermore, many WWTPs 
are equipped by these sensors, and, thus, the developed ANN may be adapted and replicated 
in other WWTPs very easily.  

The developed ANN in this study was a MULTITASK (MLT) model able to predict concurrently 
three target parameters (i.e., TSS, BOD, COD). Indeed, in the context where more tasks for 
prediction are needed, which rely on a common hidden layer representation, a MLT approach 
can provide the following benefits (Ruder, 2017): 

- MTL represents an implicit data augmentation strategy which allows to avoid model 
overfitting. As different tasks could have different noise patterns, a model that learns 
more tasks simultaneously is able to learn a more general representation. Learning just 
one task independently bears the risk of overfitting to that specific task, while learning 
all the tasks jointly enables the model to obtain a better representation function 
through averaging the noise patterns. 

- If a task is very noisy or data is limited and high-dimensional, it can be difficult for a 
model to differentiate between relevant and irrelevant features. MTL approach can 
help the model to focus its attention on those features that matter as other tasks will 
provide additional evidence for the relevance or irrelevance of those features. 
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- MLT speeds up the inference phase: on a real use-case setup, it is faster to obtain all 
the predictions from one model respect to three. Moreover, the computational cost 
of training just one model is lower than training three independent models. 

The architecture of the selected MTL model is constituted by the following layers (Figure 77): 

- Input layer 
- Shared layer (Dense layer with 32 neurons) 
- Task specific layer (2 Dense layers per task, with 16 and 8 neurons respectively) 
- Output layer (1 single neuron per task) 

 

 
Figure 77: Schematic representation of the selected multitask ANN model. 

The ReLU Function was selected as the transfer (activation) function utilized by each neuron 
to generate its output. Hence the ANN was developed selecting 70% of BIOWIN simulated 
data for training, 10% for validation, and 20% for testing (Figure 78). The training and testing 
samples were randomly selected from the full dataset.  
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Figure 78: Schematic representation of the development process of an ANN model  

To evaluate the performance of the developed ANN models, statistical parameters including 

Correlation Coefficient (𝐶𝐶), Root Mean Square Error (𝑅𝑀𝑆𝐸), Scatter Index (𝑆𝐼), 𝐵𝐼𝐴𝑆, Mean 

of Absolute Percentage Difference (MeanAPD) and its standard deviation (StdAPD) were 

calculated by the following equations.  

𝐶𝐶 =
∑ (𝑆𝑖 − 𝑆𝑚)(𝑃𝑖 − 𝑃𝑚)𝑁

𝑖=1

√∑ (𝑆𝑖 − 𝑆𝑚)
2

× ∑ (𝑃𝑖 − 𝑃𝑚)𝑁
𝑖=1

2
𝑁
𝑖=1

 (3.10) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝑆𝑖)2𝑁

𝑖=1

𝑁
 (3.11) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑆𝑚
̅̅ ̅̅

× 100 (3.12) 

𝐵𝐼𝐴𝑆 =  
∑ (𝑃𝑖 − 𝑆𝑖)

 𝑁
𝑖=1

𝑁
 (3.13) 

APDi =  |
Pi − Si

Si
| × 100    in  (%)                                (3.14) 
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Where Si and Pi denote the hourly-averaged Biowin simulations and their correspondent ANN 

predictions at 𝑖𝑡ℎ hour, respectively. N is the total number of available hourly values. 

𝑆𝑚 𝑎𝑛𝑑 𝑃𝑚 are mean values of hourly BIOWIN simulations and ANN predicted values, 

respectively. MaenADP and StdADP were obtained by calculating the average and standard 

deviation of all determined APDi (Absolute Percentage Differences) by equation 3.14. 

For the testing phase, which represents the final evaluation of the performance of the 

developed ANN model, the statistic parameters above described are reported in Table 32. 
Table 32: Statistical parameters calculated to evaluate the performance of the developed ANN model during the testing 

phase 

Predicted parameter CC RMSE SI BIAS MeanAP
D (%) 

StdAPD 

Effluent BOD 0.963 1.235 0.228 -0.006 8.460 10.480 

Effluent COD 0.961 2.388 0.147 -0.050 6.671 8.521 

Effluent TSS 0.856 1.419 0.217 -0.105 5.630 11.966 

In Figure 79 - Figure 82 is reported a comparison between the predicted data by the ANN 
models and the simulated BIOWIN data, which represent the true values, during the test 
phase. Overall, the calculated parameters in Table 32 confirm that the developed soft sensor 
was able to predict COD, BOD and TSS concentrations in the final effluent with a very good 
accuracy given both correlation (CC) and error indices (RMSE, SI, BIAS and MeanAPD).  

 



 

 

142 

Figure 79: Comparison between BOD hourly data predicted by ANN and simulated by BIOWIN. Data included within the 

rectangle in dashed line are related to the simulation of malfunction scenarios. Horizontal dashed lines identify thresholds 

for warning messages generation to stop water reuse 

 

 
Figure 80: Comparison between COD hourly data predicted by ANN and simulated by BIOWIN. Data included within the 

rectangle in dashed line are related to the simulation of malfunction scenarios 
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Figure 81: Comparison between TSS hourly data predicted by ANN and simulated by BIOWIN. Data included within the 

rectangle in dashed line are related to the simulation of malfunction scenario. Horizontal dashed lines identify thresholds 

for warning messages generation to stop water reuse 

  

  

  
Figure 82: Scatter plots and errors histogram to compare hourly data predicted by ANN and simulated by BIOWIN 

Nevertheless, an accurate analysis of Figure 79 - Figure 82 shows that the biggest deviation of 
predicted data from the true data occurred for events related to the simulated malfunction 
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scenarios (highlighted by a rectangle with dashed line in Figure 79 - Figure 81). It is not a 
surprising outcome, since malfunctions were simulated in BIOWIN by improvise changes of 
operating conditions, which created a sudden jump of the values for BOD, COD and TSS in the 
effluent. However, even though for these data points the error was a bit higher than for the 
rest of the dataset, it can still be affirmed that the developed soft sensor was able to detect 
the occurrence of the simulated hazard event, and the sudden change of BOD, COD and TSS 
values. Hence, it was able to absolve his function within the EWS since the warning message 
to stop the water reuse would have been generated by the algorithm. On the contrary, during 
normal operating conditions of the WWTP the soft sensor is always able to predict the target 
COD, BOD, TSS parameters with very high accuracy. Finally, it has to be noted that thresholds 
for water reuse shown in Table 30 were also exceeded during the simulated “normal” year of 
operation at Peschiera Borromeo WWTP by BIOWIN, and not only during malfunction 
scenarios. In these cases, the overcoming of the threshold values occurred gradually following 
a defined trend, and predicted data by ANN showed again a very high accuracy (Figure 79 and 
Figure 81). 

3.3.2.2. Domain adaptation of the ANN model with real data 

Since the data used for developing the ANN were generated via BIOWIN simulations and the 
real prob data were not exploited to train the ANN model, it was elaborated a procedure to 
adapt the configuration of the developed ANN model using a real data set. In this project, 
accurate prob measurements for all input and output parameters needed to train the ANN 
were not available. Hence, it was needed to combine prob records with lab measurements to 
prepare a real validation dataset. However, the produced dataset was still limited in number 
of datapoints. Totally, 1855 data points were extracted from both lab and prob records. 
Particularly, data of pH influent, pH effluent, DO in aerobic BIOFOR reactor and temperature 
in anoxic BIOFOR reactor were available by sensors and it was easy to obtain hourly data for 
each of these parameters. For influent and effluent flowrates (obtained by totalizator 
devices), and for BOD, COD, TSS concentrations in the effluent (available by laboratory 
measurements), data were available only as daily average values. Hourly variation during a 
day of the influent flowrate was obtained using the tool developed by Langergraber et al., 
(2008) described previously. For effluent flowrate, BOD, COD and TSS concentration in the 
effluent, it was assumed that hourly data had the same value of the correspondent daily 
averaged value. This assumption can be in part justified considering the equalization effect on 
wastewater quality parameters of the effluent obtained due to the high hydraulic retention 
time (HRT) of the WWTP. Further limitation of the available dataset was that laboratory data 
were limited and related to non-consecutive days. 

In this project a domain adaptation procedure (Farahani et al., 2021) of the developed ANN 
was accomplished by feeding the model with the new field data set, and by using a cross-
validation method (Bergmeir & Benítez, 2012). Particularly, 10 different iterations were 
performed splitting the total dataset in days (i.e., hourly data present within one day were not 
divided to make the ANN development procedure more suitable for real case applications), 
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and using 50% of available days for training, 10% for validation, and 40% for testing (Figure 
83). In this way, for each iteration were available: 

- Training: 40 days (1000 data points) 
- Validation: 9 days (115 data points) 
- Test: 34 days (740 data points) 

 
Figure 83: Group Shuffle split of available data 

The performed Domain Adaptation procedure allowed to adapt the develop ANN to real data using a 

limited amount of data. Indeed, for the training procedure were used only 1000 data points, which 

represent the 40% of the available dataset. On the contrary, for ANN development using BIOWIN data 

were used 6912 measurements, which represent the 80% of the simulated dataset (total BIOWIN data 

points were 8640). The calculation of statistical parameters to evaluate the predictive performance of 

the ANN model when feed with real data is reported in Table 32,  

 

Table 34 and Table 35 for BOD, COD, TSS, respectively. Since the dataset was limited, the training, 

validation and test phases were repeated 10 times (10 iteration) to evaluate the stability of the 

produced outputs.  
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Table 33: Statistical parameters calculated to evaluate the performance of the developed ANN when fed with real data 

after domain adaptation procedure for BOD data prediction for the test phase  

 

Table 34: Statistical parameters calculated to evaluate the performance of the developed ANN when fed with real data 

after domain adaptation procedure for COD data prediction for the test phase 

 

 

Table 35: Statistical parameters calculated to evaluate the performance of the developed ANN when fed with real data 

after domain adaptation procedure for TSS data prediction for the test phase 

Fold CC RMSE SI BIAS MeanAPD StdAPD 

Fold CC RMSE SI BIAS MeanAPD StdAPD 

1 0.333 2.081 0.350 204.791 25.955 23.617 

2 0.178 1.944 0.345 510.134 26.650 17.764 

3 0.102 2.712 0.444 -1.077 25.920 25.960 

4 0.458 2.994 0.423 -667.871 30.623 34.883 

5 0.596 2.091 0.350 217.192 28.693 42.896 

6 0.078 2.724 0.438 -60.828 26.697 25.589 

7 0.342 3.032 0.437 -683.296 27.777 19.246 

8 0.232 2.197 0.371 125.240 25.318 21.162 

9 -0.053 2.545 0.434 115.646 24.058 24.525 

10 0.350 2.195 0.363 27.128 26.505 30.610 

Mean 0.262 2.452 0.395 -21.294 26.820 26.625 

Fold CC RMSE SI BIAS MeanAPD StdAPD 

1 0.137 4.960 0.289 354.772 23.287 19.715 

2 0.127 5.705 0.337 1370.614 27.692 23.672 

3 0.064 5.256 0.291 -335.619 22.294 18.237 

4 0.160 5.229 0.285 -1538.485 19.268 15.028 

5 0.092 6.141 0.335 -540.931 24.026 21.141 

6 0.284 5.175 0.300 915.706 26.094 23.744 

7 -0.076 5.995 0.343 211.393 23.150 19.481 

8 0.120 4.999 0.292 339.115 21.086 18.871 

9 0.098 3.872 0.230 -494.672 17.206 13.108 

10 0.198 4.757 0.273 -311.962 22.135 17.488 

Mean 0.120 5.209 0.298 -3.007 22.624 19.048 
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1 0.331 1.550 0.280 19.210 21.311 23.049 

2 -0.016 1.721 0.342 374.585 24.037 24.443 

3 0.325 1.580 0.297 -79.725 18.729 26.972 

4 0.177 1.788 0.332 36.210 18.972 30.082 

5 0.324 1.449 0.254 -373.082 12.649 16.762 

6 0.261 2.145 0.385 -97.249 25.017 34.198 

7 0.396 1.521 0.269 -34.581 19.796 25.021 

8 0.317 1.058 0.199 39.520 16.163 15.767 

9 0.105 1.143 0.215 11.814 15.407 12.986 

10 0.166 1.478 0.267 23.510 18.572 17.740 

Mean 0.238 1.543 0.284 -7.979 19.065 22.702 

 

Unlikely, results obtained during the test phase were not consistent during the 10 different 
iterations, and the model was not able to produce stable outputs as indicated by the very 
different values of CC and error indexes (Table 32,  

 

Table 34 and Table 35) obtained for all the three target parameters. According to the scientific 
literature, in the case of real sensors installed on-line, acceptable errors in terms of APD values 
are assumed to be < 20% (Cecconi et al., 2019). In the case of the developed soft sensor in this 
work, the calculated MeanAPD in the 10 iterations ranged between 17 and 27% for BOD, 24 
and 30% for COD, and 15 and 25% for TSS, whereas CC values were not very high probably 
because affected by single extreme values. Graphical results for the best and worst prediction 
scenarios in terms of CC are reported in Figure 84, Figure 85, Figure 86 for BOD, COD, TSS, 
respectively. 
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Best – iteration 2 

 

Worst – iteration 7 

 
Figure 84: Comparison between BOD hourly data predicted by ANN and laboratory data for the best and worst prediction 

in terms of correlation coefficient 

Best – iteration 6 Worst – iteration 7 

  
Figure 85: Comparison between COD hourly data predicted by ANN and laboratory data for the best and worst prediction 

in terms of correlation coefficient 
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Best – iteration 5 Worst – iteration 9 

  
Figure 86: Comparison between TSS hourly data predicted by ANN and laboratory data for the best and worst prediction 

in terms of correlation coefficient 

Reason for the non-very accurate results obtained after the domain adaptation procedure is 
the limited dataset of available real data, which were also related to non-consecutive days. In 
addition, it is preferable to have data measured by sensors in a continuous mode instead of 
daily averaged laboratory data. In this case, the soft sensor may be continuously feed with 
sensor data, and they may be used to support real sensors during maintenance period or fault 
measurements. 

3.3.2.3. Development of soft sensor for the forecasting of TSS concentration  

Aim of the development of a second soft sensor, in this work, was the prediction of TSS 
concentration in the final effluent of Peschiera Borromeo WWTP earlier in time, and 
specifically, 1 h, 3 h and 6 h before the occurrence of the real-time measurement. Indeed, the 
earlier prediction may give technicians the possibility to stop water reuse or take preventive 
actions before the occurrence of a hazardous event for water reuse (e.g., high TSS 
concentration that reduces the UV disinfection performance). For the development of this 
soft-sensor only simulated data by BIOWIN were used since reliable and consecutive real data 
by sensors were not available. Hence, an artificial neural network model for timeseries 
forecasting was developed using 70% of BIOWIN data for training, 10% for validation and 20% 
for testing. Data were split according to time of occurrence. Hence, 70% of data used for 
training were related to measurements from January 2020 to September 2020, measurements 
related to September-October 2020 were used for validation and measurements from 
October to December were used for testing. The developed ANN was feed with data related 
to Influent flowrate, Influent pH, temperature in the anoxic BIOFOR reactor, dissolved oxygen 
(DO) concentration in aerated BIOFOR reactor, effluent flowrate, effluent pH, and effluent 
TSS. The target parameter was TSS concentration in the effluent 6h, 3h and 1h before the real 
measurement. 

The utilized Deep Learning model was the recurrent neural network (RNN) (Yu et al., 2019). 
The typical feature of the RNN architecture is a cyclic connection, which enables the RNN to 
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possess the capacity to update the current state based on past states and current input data 
(Siami-Namini et al., 2019). It means that predicted data will be calculated with respect to the 
past and current data. The selected RNN was a Long Short-Term Memory (LSTM) network with 
an internal layer with 32 cells.  

A windowing procedure with the following features (Figure 87) was applied to train the model: 

- Input width = 24 (it is the number of input data utilized to train the model, in this case 
24 data for 24 consecutive hours); 

- Label width = 1 (it is the time step for prediction); 
- Offset = 1 (for 1 h prediction), 3 (for 3 h prediction), 6 (for 6 h prediction) represents 

the time offset of the prediction.  

 

 

 

 
Figure 87: Features of the windowing procedure utilized to train the predictive ANN model 

Statistical parameters (i.e., RMSE, SI, BIAS and MeanAPD) were calculated to evaluate the 
predictive performance of the ANN model along the whole periods of data. Averages of 
performance parameters for all utilized 24 hours windows are reported in Table 36 for the 
predictive model at 1h, 3h and 6h. The parameters CC was not calculated since the presence 
of continues constant values in some simulated periods produced indefinite values. 
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Table 36: Average of statistical parameters calculated to evaluate the performance of the forecasting models for TSS 

prediction 

Forecasting model RMSE SI BIAS MeanAPD StdAPD 

1 h 0.224 0.025 -0.087 1.682 1.763 

3 h 0.229442 0.0264834 -0.045 1.792 1.844 

6 h 0.234 0.027 -0.099 1.855 1.661 

By the analysis of Table 36 is evident that model was able to predict TSS with very high 
accuracy for the three different time offsets considered in this study.  

For completeness of the study, performance indicators of the 1h forecasting models are 
shown for three different 24 h windows in Table 37, whereas predicted and true values are 
compared in Figure 88. 

  
Figure 88: Comparison between predicted and true values for TSS in the case of forecasting with 1 h of time offset 
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Table 37: Calculated performance indicators for the 1h forecasting model for three different 24 h windows 

Window RMSE SI BIAS MeanAPD StdAPD 

1 
0.117 

 
0.022 0.103 1.924 1.011 

2 0.439 0.048 0.208 4.437 2.115 

3 0.060 0.007 -0.013 0.554 0.408 

 

Similar information is shown for the 3 h forecasting model (Figure 89 and Table 38). and the 6 
h forecasting model (Figure 90 and Table 39). 

 
Figure 89: Comparison between predicted and true values for TSS in the case of forecasting with 3 h of time offset 
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Table 38: Calculated performance indicators for the 3h forecasting model for three different 24 h windows 

Window RMSE SI BIAS MeanAPD StdAPD 

1 
0.120 

 
0.022 

0.107 
 

1.998 
 

1.000 

2 
0.305 

 
0.033 

 
0.076 

 
2.671 

 
2.163 

3 0.103 0.012 -0.055 0.861 0.805 

  

 
Figure 90: Comparison between predicted and true values for TSS in the case of forecasting with 6 h of time offset 
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Table 39: Calculated performance indicators for the 6h forecasting model for three different 24 h windows 

Window RMSE SI BIAS MeanAPD StdAPD 

1 
0.079 

 
0.014 

 
0.051 

 
1.182 

 
0.911 

2 0.181 0.019 -0.005 
1.543 

 
1.294 

3 0.116 0.013 0.005 1.105 0.775 

 

3.3.3. Early Warning System integration in FIWARE 

Real-time sensor data from WWTP will be ingested by a dedicated back-end deployed as a 
serverless application. The ingestion of data triggers the processing using a dedicate event 
bus. As shown in Figure 91 a dedicated function written in python can run as a function in the 
cloud. The lambda function uses the images stored in an Elastic Container Registry (ECR) and 
it makes easier to update the code / models. The output of ANN is a timeseries that includes 
forecast to be used by the EWS. The EWS can then provide warnings depending on the 
predicted outputs. 

 

 
Figure 91: EWS architecture 

The ANN can produce for the WebGIS information about predicted effluent wastewater 
quality. The warning provided by the EWS can be communicated to the WebGIS, which will 
indicate if the plant is able to provide reclaimed wastewater for reuse applications.  
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4. Conclusions 

In this report is described the implementation of Early Warning Systems designed to assure 
health protection in water reuse practices and during recreational activities in bathing water 
sites. 
 
In the city of Paris, the EWS aims to reduce the health risks related to microbiological 
contamination in bathing water sites from combined sewer overflows and/or other 
wastewater discharges. The designed EWS is able to predict the bathing water quality in terms 
of E. coli concentration. Particularly, two different models have been implemented for the 
scope. A deterministic model (ProSe) is able to produce input data for a statistical tool using 
quantitative and qualitative data from upstream tributaries, WWTP discharges, combined 
sewer overflows (CSO), etc. On the other side, the statistical model is based on machine 
learning and Bayesian regression algorithms, and it is able to estimate E. Coli concentration in 
the selected bathing site defining the sanitary quality of water according to the Bathing Water 
Directive. Predicted data can be sent to dedicated app to inform managers, stakeholders and 
citizens about the need to close the access to the bathing site due to the occurrence of 
potential risks for swimmers’ health. 
The EWS for safe water reuse is a tool conceived within the risk-based management 
framework of sanitation systems. It aims at preventing bacterial and toxic contamination 
linked to the reuse of treated wastewater for agricultural irrigation based on: (i) a 
comprehensive network of multi-parameter sensors at a WWTP, (ii) new sensors for real-time 
and in-situ measurements (e.g., E. coli measurement - Digital Solution DS1); (iii) machine 
learning and forecasting algorithms to predict contamination events. Particularly, the Early 
Warning System designed for the case study of Milan at Peschiera Borromeo WWTP is able to 
provide warnings and alarms if estimated concentrations for target water quality parameters 
do not assure compliance with water reuse standards or are related to hazard events that may 
determine non- tolerable risks for human health during agricultural irrigation.  
To effectively design the EWS in Milan, a semi-quantitative and a quantitative risk assessment 
were accomplished to define relevant hazards or the occurrence of hazardous event that may 
entail non-tolerable risks for human health. Outcomes of the semi quantitative risk 
assessment highlighted the effectiveness of control measures to minimize health risk and 
proposed additional measures that may be further applied to reduce still relevant risks, such 
as the presence of hazardous pathogens in wastewater due to failure of the disinfection 
system. A Failure Modes-Effects Analysis (FMEA) excluded the presence of possible chemical 
hazards in the treated wastewater. On the contrary, outcomes of the performed quantitative 
microbial risk analysis (QMRA), which was performed using the Monte Carlo approach, 
highlighted the occurrence of a non-negligible risk for rotavirus if appropriate log-removals 
for virus deactivation cannot be assured at the WWTP. In this context, the EWS system 
represents a strategical tool to guarantee a continuous supply of safe treated water. The EWS 
implemented in Milan can generate warning and alarms related to measurements obtained 
by on-line sensors and from machine learning algorithms (i.e., soft sensors). Particularly, the 
developed soft sensors are able to predict the following parameters: (i) Biochemical oxygen 
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demand (BOD – real-time prediction); (ii) Chemical oxygen demand (COD – real-time 
prediction); (iii) Total suspended solids (TSS – real-time prediction and up to 6 hours earlier 
prediction). To predict these target parameters, the elaborated soft-sensors use data on 
Influent flowrate, Influent pH, temperature in the anoxic reactor, dissolved oxygen (DO) 
concentration in aerated BIOFOR reactor, effluent flowrate, effluent pH, which are measured 
by on-line probes at Peschiera Borromeo WWTP.  
The development of the two solutions was contextualised in both cases into a risk 
management approach, also considering the legislative requirements of the European Bathing 
Water Directive and Water Reuse Regulation. Overall, the risk management approaches 
promote a process control to complement end-product quality testing by avoiding the final 
provision of not suitable products. Hence, the risk management process can be defined as the 
identification, evaluation, and prioritization of risks, followed by the coordinated application 
of actions/resources to minimize, monitor, and control the probability or impact of 
unfortunate events. In this context, an EWS can be considered as an auxiliary tool for risk 
management, which allows the identification of the occurrence of a contamination/hazard 
event in real-time or even beforehand contributing in this way to minimize risks. Hence, the 
development of an EWS is strictly connected with the realization of a risk management plan, 
where care has to be taken in the phases of system description and hazard identification. To 
reach this scope the expertise of a multidisciplinary team that include engineers, chemists, 
experts in environmental science, biology, agriculture and technical operators of the water 
sector results strategical. Particularly, parameters to monitor by EWS have to be 
representatives of hazards that may occur in the described system, and they have to be 
defined according to the outcomes of the risk analysis or based on legislative requirements. 
Indeed, the advantage to implement an EWS based on a risk assessment to monitor water 
reuse or bathing water quality relies in the possibilities to predispose a well-designed 
monitoring (in some cases even predictive) system able to control all the possible hazardous 
events that may occur in a specific context. Furthermore, an EWS can also absolve the function 
of decision support system providing specific and defined information/instructions to 
minimize the occurring risk.   
Main difficulties that have been faced to develop EWS are related to phase of system 
description and hazard identification. Particularly, in the case of water reuse very few 
information was available about the list of possible malfunctions or contamination events that 
may occur during the operation of a WWTP and the related frequency of occurrence. A 
register for the annotation of malfunctions and contamination events is paramount for the 
realization of a risk management plan, and consequently for the implementation of an 
effective EWS.  
In DWC, the development of a EWS was based on the collection of real-time data by sensors 
and on the use of machine-learning algorithms, which represent very powerful tools to 
complement and improve the information obtained by probe measurements. However, the 
development of accurate mathematical models for monitoring and prediction is based on the 
availability of robust and reliable dataset, which are rarely available in real contexts. For 
example, scarce maintenance of probes can impact data reliability, and it results to be a very 
frequent and significant issue. Furthermore, very few data are available about the occurrence 
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of malfunctions or contamination events, and this fact can limit the modeling of these 
hazardous events. The utilization of mechanistic and physical model can in part compensate 
for this lack. The roadmap for the replicability of the proposed solutions (and hence of the 
potential standardization of the risk-based approach) relies on the definition of specific 
guidelines for risk management plan preparation. Particularly, defined procedures for the 
annotation of contamination events or malfunctions occurrences may be set up and provided 
to interested stakeholders to help them in the identification and recording of the occurrence 
of hazardous events. In addition, specific protocols for the validation of real-time probe 
measurements should be defined. Indeed, the availability of good quality data is the first and 
unavoidable requirement for the replicability of the proposed solutions in other locations.     
In this work the risk assessment for water reuse and consequently the implementation of the 
EWS has been limited to the operation of the water reclamation facility. However, for an 
exhaustive evaluation of risks, the assessment should be extended to other components of 
the water reuse systems, including pipes and storage tanks that may be needed to distribute 
treated wastewater to users, and to critical points of the sewer network that convey the raw 
wastewater to the WWTP. Hence, an EWS may be implemented to monitor those other 
components of the reuse system. 
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Annex B - Python code of developed soft sensor that can be run in the cloud 

 

Train ANN Multitask model on Biowin data 

import os 

import sys 

import random 

import numpy as np 

import pandas as pd 

from pathlib import Path 

import tensorflow as tf 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Dense 

from tensorflow.keras.optimizers import Adam, SGD 

from tensorflow.keras.callbacks import EarlyStopping 

from tensorflow.keras.backend import clear_session 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

from scipy.stats.stats import pearsonr 

from sklearn.metrics import mean_squared_error 

from math import sqrt 

import csv 

from pickle import dump 

 

random.seed(2) 

random_state = 2 

 

#WORKING DIRECTORY 

path = Path('path/to/insert') 

save_path = Path(path /’Ann_model_MLT’) 

 

 

#DATA LOADING 

data = pd.read_excel(path / 'data/Biowin simulated data.xlsx', header=1) 

   

#variables to consider 

feat = ['Influent Flow', 

'Influent pH', 

'Biofor DN Temperature', 
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'Biofor CN - Dissolved oxygen', 

'Effluent Flow', 

'Effluent pH'] 

 

targets = list(data.columns[-3:]) 

 

X = data[feat] 

y = data[targets] 

 

 

#PARAMETERS TO SET 

 

Loss= {"BOD": 'mean_squared_error', 

       "COD": 'mean_squared_error', 

       "TSS": 'mean_squared_error'} 

 

lr=0.01 

 

Optimizer= Adam(learning_rate=lr) 

#Optimizer= SGD(learning_rate=lr) 

 

 

epochs=1000 

bs=128 

 

 

#DEFINE NETWORK ARCHITECTURE FUNCTION 

clear_session() 

 

def ANN_AP(X,T,Loss,Optimizer): 

     

    x = Input(shape=(X.shape[1], )) 

    shared = Dense(32, activation='relu')(x) 

    sub1 = Dense(16, activation='relu')(shared) 

    sub2 = Dense(16, activation='relu')(shared) 

    sub3 = Dense(16, activation='relu')(shared) 

    sub1 = Dense(8, activation='relu')(sub1) 

    sub2 = Dense(8, activation='relu')(sub2) 

    sub3 = Dense(8, activation='relu')(sub3) 

    out1 = Dense(1, name="BOD", activation='linear')(sub1) 
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    out2 = Dense(1, name="COD", activation='linear')(sub2) 

    out3 = Dense(1, name="TSS", activation='linear')(sub3) 

 

    model = Model(inputs=x, outputs=[out1, out2, out3]) 

 

    model.summary() 

     

    model.compile(loss=Loss, optimizer=Optimizer, metrics=['MeanSquaredError','MeanAbsoluteError']) 

 

    return model 

 

#SPLIT AND SCALE DATA 

x_tv, x_test, y_tv, y_test = train_test_split(X, y, test_size=0.25, shuffle= True, random_state = random_state) 

x_train, x_valid, y_train, y_valid = train_test_split(x_tv, y_tv, test_size=0.20, shuffle= True, random_state = random_state) 

print(x_train.shape, x_valid.shape, x_test.shape) 

 

# Transform 

ss = StandardScaler() 

ss.fit(x_train) 

x_train_scaled = ss.transform(x_train) 

x_valid_scaled = ss.transform(x_valid) 

x_test_scaled  = ss.transform(x_test) 

 

# save the scaler 

dump(ss, open(save_path / 'scaler_MLT.pkl', 'wb')) 

 

#CALL AND TRAIN NETWORK 

NeuNet = ANN_AP(X,y,Loss,Optimizer) 

 

es = EarlyStopping(monitor='val_loss', patience=150, restore_best_weights=True) 

history = NeuNet.fit(x_train_scaled, y={"BOD": y_train.iloc[:,0],"COD": y_train.iloc[:,1],"TSS": y_train.iloc[:,2]},  

                     validation_data = (x_valid_scaled,{"BOD": y_valid.iloc[:,0],"COD": y_valid.iloc[:,1],"TSS": y_valid.iloc[:,2]}),  

                     epochs=epochs, batch_size=bs, verbose=1, callbacks=[es]) 

 

Save trained model 

NeuNet.save(save_path) 

 

PLOT TRAINING CURVES 

mae = history.history['mean_absolute_error']  

val_mae = history.history['val_mean_absolute_error']  
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loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

lista = [loss,val_loss,mae,val_mae] 

epochs = range(len(loss)) 

 

plt.figure() 

plt.plot(epochs, mae, 'b', label='Training mae') 

plt.plot(epochs, val_mae, 'r', label='Validation mae') 

plt.title('Training and validation MAE') 

plt.legend() 

 

plt.figure() 

plt.plot(epochs, loss, 'b', label='Training loss') 

plt.plot(epochs, val_loss, 'r', label='Validation loss') 

plt.title('Training and validation loss MSE') 

plt.legend() 

 

#If we want to reload a trainend model 

#NeuNet = tf.keras.models.load_model(save_path) 

 

#INFERENCE ON TEST SET 

 

#Export metrics on CSV 

 

with open(save_path / 'Metrics.csv', "w") as f: 

  fieldnames = ['Variable','CC','RMSE','SI','BIAS','MeanAPD','StdAPD'] 

  writer = csv.DictWriter(f, fieldnames=fieldnames) 

  writer.writeheader() 

 

 

# make predictions on the testing data 

preds = NeuNet.predict(x_test_scaled) 

 

for i in range(0,len(targets)): 

     

    name = targets[i] 

     

    pred = preds[i].flatten() 

    y_test_var = y_test.iloc[:,i] 
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    diff = pred - y_test_var 

    percentDiff = (diff / y_test_var) * 100 

     

    #METRICS 

    AbsPercentDiff = np.abs(percentDiff) 

    MeanAPD = np.mean(AbsPercentDiff) 

    StdAPD = np.std(AbsPercentDiff) 

     

    CCTest  = pearsonr(y_test_var,pred)   #it should be the same thing of MATLAB 'corr'  

    RmseTest  = sqrt(mean_squared_error(y_test_var,pred)) 

    SITest  = sqrt(mean_squared_error(y_test_var,pred))/np.mean(y_test_var) 

    BiasTest  = np.sum(pred-y_test_var)/y_test_var.shape[0] 

 

    s = f""" 

    {'-'*40} 

    # Variable: {name} 

    # CC: {CCTest} 

    # RMSE: {RmseTest} 

    # SI: {SITest} 

    # BIAS: {BiasTest} 

    # MeanAPD: {MeanAPD} 

    # StdAPD: {StdAPD} 

     

    {'-'*40} 

    """ 

     

    print(s) 

     

    #Export metrics on CSV 

     

    with open(save_path / 'Metrics.csv', "a") as f: 

      writer = csv.DictWriter(f, fieldnames=fieldnames) 

      writer.writerow({'Variable':name,'CC':CCTest,'RMSE':RmseTest,'SI':SITest, 

                       'BIAS':BiasTest,'MeanAPD':MeanAPD,'StdAPD':StdAPD}) 

    plt.figure() 

    a = plt.axes(aspect='equal') 

    plt.scatter(y_test_var, pred) 

    plt.xlabel('Measured '+name) 

    plt.ylabel('Predicted '+name) 

    lims = [0, 50] 
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    plt.xlim(lims) 

    plt.ylim(lims) 

    _ = plt.plot(lims, lims) 

     

    plt.figure() 

    plt.hist(diff, bins=30) 

    plt.title('Error = Target - Predicted for '+name) 

    plt.xlabel('Prediction Errors') 

    _ = plt.ylabel('Count') 

     

    plt.figure() 

    plt.plot(y_test_var, 'ro',markersize=2, markevery=1, marker='h', markeredgecolor='black', markeredgewidth=0.0, label='Meaured  '+ 
name) 

    plt.plot(pd.Series(pred,index=y_test_var.index), 'b*',markersize=2, markevery=1, marker='*', markeredgecolor='black', 
markeredgewidth=0.0,linewidth=1, label='ANN predicted '+name) 

     

    plt.title('Measured V.S. ANN predicted '+name+' on test set' ) 

    plt.legend() 

    plt.xlabel("Data Index") 

    plt.ylabel(name) 

    #plt.savefig(save_path+ 'Time series full Data.tif', format='tif', dpi=300) 

 

Validate ANN Multitask model on laboratory data 

import os 

import sys 

import random 

import numpy as np 

import pandas as pd 

from pathlib import Path 

import tensorflow as tf 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Dense 

from tensorflow.keras.optimizers import Adam, SGD 

from tensorflow.keras.callbacks import EarlyStopping 

from tensorflow.keras.backend import clear_session 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

from scipy.stats import pearsonr 

from sklearn.metrics import mean_squared_error 
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from math import sqrt 

import csv 

from pickle import load 

 

random.seed(2) 

random_state = 2 

 

 

#WORKING DIRECTORY 

path = Path('path/to/insert') 

save_path = Path(path / 'Ann_model_MLT') 

 

 

#DATA LOADING 

data = pd.read_excel(path / 'Sensor_Lab_datasets_UPDATE_v2.xlsx', header=0) 

#data_day = data.groupby(by=data['Date'].dt.date).mean() 

 

 

feat = ['Influent Flow', 

'Influent pH', 

'Biofor DN Temperature', 

'Biofor CN - Dissolved oxygen', 

'Effluent Flow', 

'Effluent pH'] 

 

targets = list(data.columns[-3:]) 

 

 

cols_to_update = data.columns[:1].tolist() + feat + data.columns[-3:].tolist() 

data.columns = cols_to_update 

 

dt = data['Date'] 

day = pd.Timedelta(1, "h") 

#in_block = ((dt - dt.shift(-1)).abs() >= day) | (dt.diff() == day) 

breaks_day = dt.diff() != day  

breaks_feat = data[['Influent Flow','Influent pH','Effluent Flow','Effluent pH']].diff() != 0 

breaks = np.logical_and(breaks_day, breaks_feat.any(axis=1)) 

data['grp_date'] = breaks.cumsum() 

data_day = data.groupby('grp_date').mean() 
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x_test = data[feat] 

y_test = data[targets] 

 

#MODEL and SCALER LOADING 

NeuNet = tf.keras.models.load_model(save_path) 

ss = load(open(save_path / 'scaler_MLT.pkl', 'rb')) 

 

 

#SCALE DATA 

x_test_scaled  = ss.transform(x_test) 

print(x_test_scaled.shape) 

#Export metrics on CSV 

 

with open(save_path / 'Val_Metrics.csv', "w") as f: 

  fieldnames = ['Variable','CC','RMSE','SI','BIAS','MeanAPD','StdAPD'] 

  writer = csv.DictWriter(f, fieldnames=fieldnames) 

  writer.writeheader() 

 

#INFERENCE ON TEST SET 

 

# make predictions on the testing data 

preds = NeuNet.predict(x_test_scaled) 

preds = pd.DataFrame(np.concatenate(preds,axis=1)) 

preds['Date'] = data['Date'] 

preds['grp_date'] = breaks.cumsum() 

preds_day = preds.groupby('grp_date').mean() 

 

for i in range(0,len(targets)): 

     

    name = targets[i] 

     

    pred = preds[i] 

    y_test_var = y_test.iloc[:,i] 

     

    diff = pred - y_test_var 

    percentDiff = (diff / y_test_var) * 100 

     

    #METRICS 
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    AbsPercentDiff = np.abs(percentDiff) 

    MeanAPD = np.mean(AbsPercentDiff) 

    StdAPD = np.std(AbsPercentDiff) 

     

    CCTest  = pearsonr(y_test_var,pred)   #it should be the same thing of MATLAB 'corr'  

    RmseTest  = sqrt(mean_squared_error(y_test_var,pred)) 

    SITest  = sqrt(mean_squared_error(y_test_var,pred))/np.mean(y_test_var) 

    BiasTest  = np.sum(pred-y_test_var)/y_test_var.shape[0] 

 

    s = f""" 

    {'-'*40} 

    # Variable: {name} 

    # CC: {CCTest} 

    # RMSE: {RmseTest} 

    # SI: {SITest} 

    # BIAS: {BiasTest} 

    # MeanAPD: {MeanAPD} 

    # StdAPD: {StdAPD} 

     

    {'-'*40} 

    """ 

     

    print(s) 

     

    #Export metrics on CSV 

     

    with open(save_path / 'Val_Metrics.csv', "a") as f: 

      writer = csv.DictWriter(f, fieldnames=fieldnames) 

      writer.writerow({'Variable':name,'CC':CCTest,'RMSE':RmseTest,'SI':SITest, 

                       'BIAS':BiasTest,'MeanAPD':MeanAPD,'StdAPD':StdAPD}) 

    plt.figure() 

    a = plt.axes(aspect='equal') 

    plt.scatter(y_test_var, pred) 

    plt.xlabel('Measured '+name) 

    plt.ylabel('Predicted '+name) 

    lims = [0, 50] 

    plt.xlim(lims) 

    plt.ylim(lims) 

    _ = plt.plot(lims, lims) 
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    plt.figure() 

    plt.hist(diff, bins=30) 

    plt.title('Error = Target - Predicted for '+name) 

    plt.xlabel('Prediction Errors') 

    _ = plt.ylabel('Count') 

 

TSS forecasting 

import os 

import sys 

import random 

import numpy as np 

import pandas as pd 

from pathlib import Path 

import tensorflow as tf 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Dense 

from tensorflow.keras.optimizers import Adam, SGD 

from tensorflow.keras.callbacks import EarlyStopping 

from tensorflow.keras.backend import clear_session 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

from scipy.stats.stats import pearsonr 

from sklearn.metrics import mean_squared_error 

from math import sqrt 

import csv 

from pickle import dump 

from sklearn.model_selection import GroupShuffleSplit 

 

clear_session() 

 

def compute_metrics(pred,y_test): 

 

    diff = pred - y_test 

    percentDiff = (diff / y_test) * 100 

     

    #METRICS 

    AbsPercentDiff = np.abs(percentDiff) 

    MeanAPD = np.mean(AbsPercentDiff) 

    StdAPD = np.std(AbsPercentDiff) 
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    CCTest  = pearsonr(y_test,pred)   #it should be the same thing of MATLAB 'corr'  

    RmseTest  = sqrt(mean_squared_error(y_test,pred)) 

    SITest  = sqrt(mean_squared_error(y_test,pred))/np.mean(y_test) 

    BiasTest  = np.sum(pred-y_test)/y_test.shape[0] 

 

           

    return [CCTest[0],RmseTest,SITest,BiasTest,MeanAPD,StdAPD] 

 

 

'''fixing seed''' 

seed_value = 2 

 

os.environ['PYTHONHASHSEED']=str(seed_value) 

random.seed(seed_value) 

random_state = seed_value 

np.random.seed(seed_value) 

tf.random.set_seed(seed_value) 

 

#WORKING DIRECTORY 

path = Path('path/to/insert’) 

save_path = Path(path / 'forecast') 

 

 

#DATA LOADING 

data = pd.read_excel(path / 'data/Biowin simulated data.xlsx', header=1) 

   

#variables to consider 

feat = ['Influent Flow', 

'Influent pH', 

'Biofor DN Temperature', 

'Biofor CN - Dissolved oxygen', 

'Effluent Flow', 

'Effluent pH'] 

 

data = data.rename(columns={"Effluent Total suspended solids": "TSS"}) 

targets = list(data.columns[-1:]) 

 

data['new_date'] = [d.date() for d in data['Date']] 

dt = data['new_date'] 
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day = pd.Timedelta(1, "d") 

breaks_day = dt.diff() >= day  

data['grp_date'] = breaks_day.cumsum() 

 

 

n = len(data) 

train = data[0:int(n*0.7)] 

val = data[int(n*0.7):int(n*0.8)] 

test = data[int(n*0.8):] 

 

fig, axs = plt.subplots(figsize=(12, 4)) 

train.plot( 'Date' , targets, ax=axs) 

val.plot( 'Date' , targets, ax=axs) 

test.plot( 'Date' , targets, ax=axs) 

axs.set_title('TSS 1 year timeseries simulation') 

axs.legend(['TSS_train', 'TSS_val', 'TSS_test']) 

axs.set_xlabel("Date") 

axs.set_ylabel('TSS value') 

fig.savefig(str(save_path)+ '/TSS timeseries', format='tif', dpi=300,bbox_inches='tight') 

 

fig, axs = plt.subplots(figsize=(12, 4)) 

test.plot( 'Date' , targets, ax=axs, color='g') 

axs.set_title('TSS timeseries simulation test set') 

axs.legend(['TSS_test']) 

axs.set_xlabel("Date") 

axs.set_ylabel('TSS value') 

fig.savefig(str(save_path)+ '/TSS test set', format='tif', dpi=300,bbox_inches='tight') 

 

sel = feat+targets 

train_df = train[sel] 

val_df = val[sel] 

test_df = test[sel] 

 

train_mean = train_df.mean() 

train_std = train_df.std() 

 

train_df = (train_df - train_mean) / train_std 

val_df = (val_df - train_mean) / train_std 

test_df = (test_df - train_mean) / train_std 
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num_features = train_df.shape[1] 

 

 

class WindowGenerator(): 

  def __init__(self, input_width, label_width, shift, 

               train_df=train_df, val_df=val_df, test_df=test_df, 

               label_columns=None): 

    # Store the raw data. 

    self.train_df = train_df 

    self.val_df = val_df 

    self.test_df = test_df 

 

    # Work out the label column indices. 

    self.label_columns = label_columns 

    if label_columns is not None: 

      self.label_columns_indices = {name: i for i, name in 

                                    enumerate(label_columns)} 

    self.column_indices = {name: i for i, name in 

                           enumerate(train_df.columns)} 

 

    # Work out the window parameters. 

    self.input_width = input_width 

    self.label_width = label_width 

    self.shift = shift 

 

    self.total_window_size = input_width + shift 

 

    self.input_slice = slice(0, input_width) 

    self.input_indices = np.arange(self.total_window_size)[self.input_slice] 

 

    self.label_start = self.total_window_size - self.label_width 

    self.labels_slice = slice(self.label_start, None) 

    self.label_indices = np.arange(self.total_window_size)[self.labels_slice] 

 

  def __repr__(self): 

    return '\n'.join([ 

        f'Total window size: {self.total_window_size}', 

        f'Input indices: {self.input_indices}', 

        f'Label indices: {self.label_indices}', 
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        f'Label column name(s): {self.label_columns}']) 

 

OUT_STEPS = 24 

wide_window = WindowGenerator( 

    input_width=24, label_width=OUT_STEPS, shift=6, 

    label_columns=[targets[0]]) 

 

def split_window(self, features): 

  inputs = features[:, self.input_slice, :] 

  labels = features[:, self.labels_slice, :] 

  if self.label_columns is not None: 

    labels = tf.stack( 

        [labels[:, :, self.column_indices[name]] for name in self.label_columns], 

        axis=-1) 

 

  # Slicing doesn't preserve static shape information, so set the shapes 

  # manually. This way the `tf.data.Datasets` are easier to inspect. 

  inputs.set_shape([None, self.input_width, None]) 

  labels.set_shape([None, self.label_width, None]) 

 

  return inputs, labels 

 

WindowGenerator.split_window = split_window 

 

# Stack three slices, the length of the total window. 

example_window = tf.stack([np.array(test_df[:wide_window.total_window_size]), 

                           np.array(test_df[820:820+wide_window.total_window_size]), 

                           np.array(test_df[1200:1200+wide_window.total_window_size])]) 

 

example_inputs, example_labels = wide_window.split_window(example_window) 

 

print('All shapes are: (batch, time, features)') 

print(f'Window shape: {example_window.shape}') 

print(f'Inputs shape: {example_inputs.shape}') 

print(f'Labels shape: {example_labels.shape}') 

 

wide_window.example = example_inputs, example_labels 

 

def plot(self, model=None, plot_col=targets[0], max_subplots=3): 

  inputs, labels = self.example 
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  plt.figure(figsize=(12, 8)) 

  plot_col_index = self.column_indices[plot_col] 

  max_n = min(max_subplots, len(inputs)) 

  for n in range(max_n): 

    plt.subplot(max_n, 1, n+1) 

    plt.ylabel(f'{plot_col} [normed]') 

    plt.plot(self.input_indices, inputs[n, :, plot_col_index], 

             label='Inputs', marker='.', zorder=-10) 

 

    if self.label_columns: 

      label_col_index = self.label_columns_indices.get(plot_col, None) 

    else: 

      label_col_index = plot_col_index 

 

    if label_col_index is None: 

      continue 

 

    plt.scatter(self.label_indices, labels[n, :, label_col_index], 

                edgecolors='k', label='Labels', c='#2ca02c', s=64) 

    if model is not None: 

      predictions = model(inputs) 

      plt.scatter(self.label_indices, predictions[n, :, label_col_index], 

                  marker='X', edgecolors='k', label='Predictions', 

                  c='#ff7f0e', s=64) 

 

    if n == 0: 

      plt.legend() 

 

  plt.xlabel('Time [h]') 

 

WindowGenerator.plot = plot 

wide_window.plot() 

 

 

def make_dataset(self, data): 

  data = np.array(data, dtype=np.float32) 

  ds = tf.keras.utils.timeseries_dataset_from_array( 

      data=data, 

      targets=None, 

      sequence_length=self.total_window_size, 
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      sequence_stride=1, 

      shuffle=True, 

      batch_size=32,) 

 

  ds = ds.map(self.split_window) 

 

  return ds 

 

WindowGenerator.make_dataset = make_dataset 

 

@property 

def train(self): 

  return self.make_dataset(self.train_df) 

 

@property 

def val(self): 

  return self.make_dataset(self.val_df) 

 

@property 

def test(self): 

  return self.make_dataset(self.test_df) 

 

@property 

def example(self): 

  """Get and cache an example batch of `inputs, labels` for plotting.""" 

  result = getattr(self, '_example', None) 

  if result is None: 

    # No example batch was found, so get one from the `.train` dataset 

    result = next(iter(self.train)) 

    # And cache it for next time 

    self._example = result 

  return result 

 

WindowGenerator.train = train 

WindowGenerator.val = val 

WindowGenerator.test = test 

WindowGenerator.example = example_window 

 

wide_window.train.element_spec 

 



 

 

181 

for example_inputs, example_labels in wide_window.train.take(1): 

  print(f'Inputs shape (batch, time, features): {example_inputs.shape}') 

  print(f'Labels shape (batch, time, features): {example_labels.shape}') 

   

   

   

MAX_EPOCHS = 20 

 

def compile_and_fit(model, window, patience=5): 

  early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 

                                                    patience=patience, 

                                                    mode='min') 

 

  model.compile(loss=tf.losses.MeanSquaredError(), 

                optimizer=tf.optimizers.Adam(), 

                metrics=[tf.metrics.MeanAbsoluteError()]) 

 

  history = model.fit(window.train, epochs=MAX_EPOCHS, 

                      validation_data=window.val, 

                      callbacks=[early_stopping]) 

  return history 

   

 

 

multi_lstm_model = tf.keras.Sequential([ 

    # Shape [batch, time, features] => [batch, lstm_units]. 

    # Adding more `lstm_units` just overfits more quickly. 

    tf.keras.layers.LSTM(32, return_sequences=False), 

    # Shape => [batch, out_steps*features]. 

    tf.keras.layers.Dense(OUT_STEPS*num_features, 

                          kernel_initializer=tf.initializers.zeros()), 

    # Shape => [batch, out_steps, features]. 

    tf.keras.layers.Reshape([OUT_STEPS, num_features]) 

]) 

 

history = compile_and_fit(multi_lstm_model, wide_window) 

mae = history.history['mean_absolute_error']  

val_mae = history.history['val_mean_absolute_error']  

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 
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lista = [loss,val_loss,mae,val_mae] 

epochs = range(len(loss)) 

 

plt.figure() 

plt.plot(epochs, loss, 'b', label='Training loss') 

plt.plot(epochs, val_loss, 'r', label='Validation loss') 

plt.title('Training and validation loss MSE') 

plt.legend() 

 

 

val_performance = multi_lstm_model.evaluate(wide_window.val) 

performance = multi_lstm_model.evaluate(wide_window.test, verbose=0) 

#wide_window.plot(multi_lstm_model) 

 

predictions = multi_lstm_model.predict(wide_window.test, verbose=0) 

 

 

res = [] 

res_round = [] 

 

for inputs, labels in wide_window.test: 

      labels = np.array(labels[:, :, -1]) 

      labels = labels*train_std['TSS']+train_mean['TSS'] 

 

       

      pred = multi_lstm_model(inputs) 

      pred = np.array(pred[:, :, -1]) 

      pred = pred*train_std['TSS']+train_mean['TSS'] 

 

      for i in range(pred.shape[0]): 

          res.append(compute_metrics(pred[i,:],labels[i,:].reshape(-1))) 

          res_round.append(compute_metrics(pred[i,:].round(),labels[i,:].reshape(-1).round())) 

 

mean_res = np.mean(res, axis=0) 

mean_res_round = np.mean(res_round, axis=0) 



 

 


