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Abstract

Let P (m) denote the greatest prime factor of an integer m > 1. It has been
known since the 1900s that Pn := P (an − bn) > n + 1 for integers a > b > 0
and n > 2. A conjecture of Stewart (1977) states that Pn � φ(n)2 where the

implied constant is absolute. He (2013) later proved that Pn �a,b n
1+ 1

104 log log n .
Earlier, Murty and Wong (2002) had shown that the usual abc-conjecture implies
that Pn �a,b,ε n

2−ε. Recently, Murty and Séguin (2019) formulated a conjecture
concerning the p-adic valuation of af − 1 where p - a, and f is the order of a in the
multiplicative group (Z/pZ)×. Conditional on their conjecture, they confirmed the
conjecture of Stewart in the case that b = 1 with the implied constant depending on
a. We prove that a milder abc-conjecture implies that Pn � (n/τ(n))2 where τ(n)
is the number of distinct positive divisors of n, and crucially, the implied constant
is independent of a and b. This is an improvement over the result of Murty and
Wong. Furthermore, as a simple consequence, Stewart’s conjecture follows in the
case that n is prime, thereby refining the result of Murty and Séguin. Additionally,
we obtain a distribution result for the prime factors of gcd(n,Φn(a, b)), generalizing
a similar result of Murty and Séguin.

1. Introduction

Let a, b be integers with a > b > 0. Consider the sequence (un)n∈N of positive

integers defined by

un = un(a, b) := an − bn, (1)

and its associated sequence (P (un))n∈N, where P (m) denotes the greatest prime

factor of an integer m > 1. It has long been known that P (un) → ∞ with n.

However, it is generally believed that P (un) grows rapidly with n. Erdős [2] con-

jectured that P (un)/n→∞ with n in the case that a = 2 and b = 1. In the same

spirit, one is naturally led to conjecture that P (un)/n → ∞ with n for arbitrary

integers a, b with a > b > 0. Stewart [10] confirmed the conjecture for the set of
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integers n having at most κ log log n distinct prime factors for a given κ satisfying

0 < κ < 1/ log 2. Subsequently, he [11] extended his results to general Lucas and

Lehmer sequences and proposed the following conjecture.

Conjecture 1. There is an effectively computable absolute positive constant C

such that

P (un) > Cφ(n)2 (2)

for every n > 2, where φ denotes the Euler totient function.

Murty and Wong [8] proved that the abc-conjecture of Masser and Oesterlé im-

plies that for a given ε > 0, one has

P (un)� n2−ε,

where the implied constant depends on a, b and ε. Murata and Pomerance [6]

proved that subject to the generalized Riemann hypothesis, for almost all integers

n, one has

P (2n − 1) >
n4/3

log log n
.

Stewart [12] provided the first unconditional result in this direction by proving

that there is a constant N0 > 0 depending only on ω(ab), where ω(m) denotes the

number of distinct prime factors of an integer m > 1, such that for every n > N0,

one has

P (un) > n1+
1

104 log log n ,

thereby completely resolving the conjecture of Erdős.

For a positive integer m and a prime p, let νp(m) denote the largest exponent

of p such that pνp(m) | m. Further, for an integer a with p - a, let fp(a) denote

the order of a in the multiplicative group (Z/pZ)×. In a recent article, Murty and

Séguin [9] formulated the conjecture that given an integer a > 1, there is a constant

κ > 1 (depending on a) such that

νp(a
fp(a) − 1) ≤ κ

for every prime p - a. Conditional on their conjecture, Murty and Séguin resolved

Conjecture 1 in the particular case that b = 1, with the constant C in Equation (2)

depending on a.

The present article aims to prove that a weaker abc-hypothesis implies that

P (un) � n2/τ(n)2, where τ(n) denotes the number of distinct positive divisors

of a positive integer n and where the implied constant is absolute. For a given

positive integer m > 1, its radical rad(m) is defined as

rad(m) :=
∏
p|m

p−prime

p.
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Conjecture 2. (The quasi abc-conjecture) There is an absolute constant κ > 1 such

that if a, b and c are pairwise relatively prime positive integers satisfying a+ b = c,

then

c < (rad(abc))κ.

A conjecture of Granville and Tucker [3] suggests that κ = 2. We note that for

our purposes, a weaker hypothesis than the one in Conjecture 2 would suffice. We

will discuss this next. Let k > 1 be a given integer. By the fundamental theorem

of arithmetic, there are unique positive integers U and V such that

un = UV k+1 (3)

where, every prime divisor p of U satisfies νp(U) ≤ k. We refer to U as the (k+1)-free

part of un. Observe that if k ≥ κ where κ is the constant appearing in Conjecture 2,

then Conjecture 2 implies that

UV k+1 = un < an < (rad(abUV ))κ < a2κUκV κ.

It follows that

V ≤ V k−κ+1 < a2κUκ−1 ≤ (aU)2κ. (4)

The estimate in Equation (4) is all that is required to prove our main result (Theo-

rem 1 below). We record the inequality in Equation (4) for ease of future reference.

Hypothesis 1. There is an absolute constant λ > 2 such that for every integer

k ≥ λ if un is given by Equation (3), then V < (aU)λ.

Our main result is the following.

Theorem 1. Let λ be the constant appearing in Hypothesis 1. For arbitrary integers

a and b with a > b > 0, let un be as defined in Equation (1). Then subject to

Hypothesis 1, there is an effectively computable absolute constant n0 > 1 such that

for every integer n > n0, one has

P (un) > C
n2

τ(n)2
, (5)

where C can be taken to be C = 0.002λ−5.

Set c0 = max{n2/τ(n)2 : n ≤ n0} where n0 is the constant appearing in Theo-

rem 1. Then trivially, one has

P (un) > c−10

n2

τ(n)2

for all n ≤ n0. Thus, setting C0 = min{C, 1/c0} where C is as stated in Theorem 1,

we have
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Corollary 1. For arbitrary integers a and b with a > b > 0, let un be as defined

in Equation (1). Then subject to Hypothesis 1, there is an effectively computable

absolute constant C0 > 0 such that for every integer n > 2, one has

P (un) > C0
n2

τ(n)2
.

Consequently, Conjecture 1 follows whenever n is prime.

Corollary 2. Let p > 2 be a prime, and for arbitrary integers a and b with a >

b > 0, let up be as defined in Equation (1). Then subject to Hypothesis 1, there is

an effectively computable absolute constant C ′ > 0 such that

P (up) > C ′p2.

It is well-known (Theorem 317, [4]) that for every δ > 0, one has

τ(n) < 2(1+δ) logn/ log logn

for n�δ 1. Accordingly, we have the following.

Corollary 3. For arbitrary integers a and b with a > b > 0, let un be as defined in

Equation (1). Then subject to Hypothesis 1, for every δ > 0, there is an effectively

computable constant Cδ > 0 such that for every integer n > 2, one has

P (un) > Cδ
n2

4(1+δ) logn/ log logn
. (6)

Perhaps it is worth highlighting the key aspects where our results improve upon

the best-known conditional lower bound to date on P (un) due to Murty and Wong

[8] mentioned earlier. To begin with, the underlying hypothesis (Conjecture 2) of

Theorem 1 is weaker than the usual abc-conjecture. Secondly, since for every ε > 0

and δ > 0,

4(1+δ) logn/ log logn = o(nε),

the lower bound on P (un) in Equation (6) is considerably sharper than the one due

to Murty and Wong. Thirdly, the implied constant Cδ appearing in Corollary 1, is

independent of the integers a and b. The last condition is an essential requirement

in Conjecture 1. If n is prime, the constant C ′ appearing in Corollary 2 is absolute.

For a positive integer n, set ζn := e2πi/n. The nth cyclotomic polynomial Φn(x)

is defined as

Φn(x) =
∏

0<j<n
gcd(j,n)=1

(x− ζjn).

It is well known that Φn(x) ∈ Z[x] is a monic polynomial with deg Φn = φ(n). The

nth homogenized cyclotomic polynomial Φn(x, y) is defined by

Φn(x, y) = yφ(n)Φn

(
x

y

)
.
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By a standard result on the factorization of xn − yn, one has

an − bn =
∏
d|n

Φd(a, b).

For d | n, set

vd = |Φd(a, b)|. (7)

Observe that vn | un for all n, so that P (un) ≥ P (vn). In most of the past work

cited thus far, the authors have obtained a lower bound on P (vn), which is trivially

a lower bound on P (un). We shall adopt a slightly different strategy in that we

consider the prime factors of vdn for a certain large divisor dn of n. These details

are discussed in the next section.

In proving Theorem 1, we will need information on the prime factors of vd for

d | n. These are summarized in the following.

Lemma 1 ([11]). Let a and b be integers with a > b > 0 and gcd(a, b) = 1, and let

vd be defined as in Equation (7). Then

vd = pδdd N (8)

where p1 = 1, δ1 = 1, and for every d > 1,

pd = P

(
d

gcd(3, d)

)
, δd ∈ {0, 1},

and either N = 1, or every prime factor p of N satisfies p ≡ 1 (mod d).

In the special case that b = 1, Murty and Séguin (see Theorem 1.2, [9]) established

that for some θ ∈ (0, 1), ∑
n≤x

δn log pn = O(xθ).

The last estimate implies that δn = 0 more often than not. By Abel’s summation

formula, one readily deduces from the last estimate above that

∞∑
n=1

δn log pn
n

� 1.

We will prove that the last result holds in general.

Theorem 2. We have
∞∑
n=1

δn log pn
n

� 1

where δn and pn are defined as in Lemma 1.
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2. Proofs

Throughout, we will assume that n > 2. Further, we will assume without loss of

any generality that gcd(a, b) = 1. Let λ > 2 be as defined in Hypothesis 1. We may

and do further suppose that λ is an integer. Let integers U and V be as defined in

Equation (3) with k = λ. For each d | n, let Ud denote the (λ + 1)-free part of vd,

and let Vd be the positive integer such that

vd = UdV
λ+1
d

where vd is as defined in Equation (7). From un =
∏
d|n vd, we have that

UV λ+1 =
∏
d|n

Ud
∏
d|n

V λ+1
d .

Since

U ≤
∏
d|n

Ud,

and hence,

V ≥
∏
d|n

Vd.

Let dn | n be such that Udn is maximal. That is, Ud ≤ Udn for every d | n. Thus,

U ≤ Uτ(n)dn
. (9)

We have the following estimate on the size of dn conditional on Hypothesis 1.

Lemma 2. Subject to Hypothesis 1, we have for n > 1 that

φ(dn) > C1
n

τ(n)
, (10)

where C1 can be taken to be C1 = 1/6(λ2 + λ+ 1).

Proof. By an easy induction argument, we have

log un >
n

2
log a. (11)

On the other hand,

log un = logU + (λ+ 1) log V. (12)

Now, Hypothesis 1 implies that V < (aU)λ. So, from Equation (9) and Equa-

tion (12), we deduce that

log un < λ(λ+ 1) log a+ (λ2 + λ+ 1) logU (13)

≤ λ(λ+ 1) log a+ τ(n)(λ2 + λ+ 1) logUdn .
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Next, by the triangle inequality, for every x > 0, one has

|Φdn(x)| ≤ (1 + x)φ(dn).

Setting x = a/b above, we get

Udn ≤ |Φdn(a, b)| ≤ (a+ b)φ(dn) < a2φ(dn).

We now deduce from Equation (13) that

log un < 3(λ2 + λ+ 1)τ(n)φ(dn) log a. (14)

Finally, comparing Equation (11) and Equation (14), we obtain

n

2
< 3(λ2 + λ+ 1)τ(n)φ(dn).

The lemma follows.

In proving Theorem 1, we will need an upper bound on logUdn in terms of P (un).

For this purpose, we will appeal to the following version of the Brun-Titchmarsh

inequality due to Montgomery and Vaughan (see Theorem 2, [5]). For x > 0 and

positive integers ` and r with gcd(`, r) = 1, let π(x, `, r) denote the number of

primes p ≤ x satisfying p ≡ r (mod `).

Lemma 3 ([5]). For 0 < ` < x, one has

π(x, `, r) <
2x

φ(`) log(x/`)
.

Proof of Theorem 1. From Hypothesis 1 and Equation (9), we have

n

2
log a < log un = logU + (λ+ 1) log V (15)

< logU + λ(λ+ 1) log aU

= λ(λ+ 1) log a+ τ(n)(λ2 + λ+ 1) logUdn .

Using Lemma 1,

logUdn < log n+ λ
∑
p≤Pn

p≡1 (mod dn)

log p (16)

where Pn = max{en, P (un)}. Moreover, from Lemma 3 and the trivial bound

dn ≤ n, one has ∑
p≤Pn

p≡1 (mod dn)

log p ≤ 2Pn logPn
φ(dn) log(Pn/dn)

≤ 2Pn logPn
φ(dn) log(Pn/n)

. (17)
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From Equation (15), Equation (16) and Equation (17), we obtain

n

2
log a < C2 log a+ C2τ(n) log n+

2C2τ(n)Pn logPn
φ(dn) log(Pn/n)

(18)

where C2 = λ(λ2 + λ + 1). Since a ≥ 2, using the well-known estimate that

τ(n) ≤ 2
√
n, we have from Equation (10) and Equation (18) that

n

3
<

2C2τ(n)Pn logPn
φ(dn) log(Pn/n)

<
2C3τ(n)2Pn logPn

n log(Pn/n)
(19)

for n� 1, and where C3 = C2/C1. Since Pn ≥ en, we get from Equation (19) that

n2

6C3τ(n)2
< Pn logPn. (20)

Thus, for n� 1, one has

Pn >
n2

12C3τ(n)2 log
(

n2

6C3τ(n)2

) > n3/2.

It follows that logPn < 3 log(Pn/n). Using this estimate in Equation (19), we

obtain

Pn >
1

18C3

n2

τ(n)2
.

The expression on the right-hand side above is > en for n� 1. So, Pn = P (un) for

n� 1. The theorem now follows by observing that

C3 = 6λ(λ2 + λ+ 1)2 < 24λ5

since λ > 1.

We next turn to the proof of Theorem 2. We begin by recalling a well-known

result concerning the resultant of cyclotomic polynomials.

Lemma 4 ([1]). Let m and n be integers with m > n > 1. If m/n is not a power

of a prime, then there are polynomials u(x) and v(x) in Z[x] such that

u(x)Φm(x) + v(x)Φn(x) = 1.

On the other hand, if m = pkn where p is a prime, then there are polynomials u(x)

and v(x) in Z[x] such that

u(x)Φm(x) + v(x)Φn(x) = pφ(n).
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In particular, Lemma 4 implies that if there is a prime p such that

p | gcd(Φm(c),Φn(c))

for some integer c, then m = pkn for some positive integer k.

To prove Theorem 2, we need a precise description of positive integers n for which

δn = 1. This is the content of the next result.

Proposition 1. For a positive integer n > 1, let pn and δn be as in Lemma 1.

Further, let m = n/p
νpn (n)
n . If δn = 1, then pn ≡ 1 (mod m).

Proof. We let p denote pn for brevity. Suppose that δn = 1 for some n > 1. Since

gcd(a, b) = 1, there is a unique c ∈ (Z/pZ)× such that ab−1 ≡ c (mod p). Let

f = fp(c) so that p is a primitive divisor of Φf (c) (that is, p - Φd(c) for every

d < f). Thus,

p | Φf (c), p ≡ 1 (mod f). (21)

Also, p | Φn(a, b) implies that p | Φn(c). That is,

p | gcd(Φf (c),Φn(c)).

From the remark following Lemma 4, we deduce that f = n/pk for some positive

integer k. Next, observe that cn ≡ 1 (mod p) since p | Φn(c). Now, using Fermat’s

little theorem, we deduce that

cm ≡ cn ≡ 1 (mod p).

So, f | m. It follows that k = νp(n), and as such, f = m. The proposition follows

by observing from Equation (21) that p ≡ 1 (mod f).

For a pair of relatively prime integers a and b with a > b > 0, and a prime p - ab,
let fp denote the smallest positive integer such that

afp ≡ bfp (mod p). (22)

The proof of Theorem 2 rests upon the following result, which is an adaptation of

a result of similar flavour from [7] (see Inequality (3), [7]).

Proposition 2. For fp defined above, we have∑
p-ab

log p

(p− 1)fp
� 1.

We need the following lemma to prove Proposition 2.

Lemma 5. For n� 1, one has∑
p|n

log p

p− 1
≤ 4 log log n.
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Proof. By Corollary 2.3, Inequality (14) in [7], for n� 1, one has∑
p|n

log p

p
≤ 2 log log n.

Therefore, for n� 1,∑
p|n

log p

p− 1
=
∑
p|n

p

p− 1

log p

p
≤ 2

∑
p|n

log p

p
≤ 4 log log n.

Proof of Proposition 2. For x > 0, define

A(x) :=
∏
f≤x

(af − bf ).

It is easily seen that

A(x) <
∏
f≤x

af < ax
2

.

Thus,

log logA(x) < 2 log x+ log log a < 3 log x (23)

for x� 1. For an integer f > 0, let

δ(f) :=
∑
fp=f

log p

p− 1
,

and for x > 0, let

∆(x) :=
∑
f≤x

δ(f).

Observe that for f ≤ x, the fact that fp = f implies that p | A(x). Thus, from

Lemma 5 and Equation (23), we obtain

∆(x) ≤
∑
p|A(x)

log p

p− 1
≤ 12 log x. (24)

Noting that p ≡ 1 (mod fp), we have by the Abel summation formula that∑
p≤x
p-ab

log p

(p− 1)fp
≤
∑
f≤x

δ(f)

f

=
∆(x)

x
+

∫ x

1

∆(t)

t2
dt+O(1)

≤ 12 log x

x
+ 12

∫ x

1

log t

t2
dt+O(1) = O(1)

for x� 1. The proposition follows.
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Proof of Theorem 2. Let

S :=

∞∑
n=1

δn log pn
n

,

where δn and pn are as stated in the theorem. For a positive integer n, let kn =

νpn(n), and let mn = n/pknn . From Proposition 1, δn = 1 implies that pn ≡ 1

(mod mn). Furthermore, mn is the smallest positive integer such that

amn ≡ bmn (mod pn).

We deduce that δn = 1 implies that fpn = mn. Also, since gcd(a, b) = 1, we have

pn - ab if δn = 1. Thus,

S ≤
∑
p-ab

∞∑
k=1

log p

pkfp
=
∑
p-ab

log p

(p− 1)fp
� 1 (25)

by Proposition 2, thereby proving the theorem.
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