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Abstract

Let P(m) denote the greatest prime factor of an integer m > 1. It has been
known since the 1900s that P, := P(a™ —b") > n + 1 for integers a > b > 0
and n > 2. A conjecture of Stewart (1977) states that P, > ¢(n)? where the
implied constant is absolute. He (2013) later proved that P, >4 ni+ TorTesToR
Earlier, Murty and Wong (2002) had shown that the usual abc-conjecture implies
that P, >, n?>~°. Recently, Murty and Séguin (2019) formulated a conjecture
concerning the p-adic valuation of af — 1 where p { a, and f is the order of a in the
multiplicative group (Z/pZ)*. Conditional on their conjecture, they confirmed the
conjecture of Stewart in the case that b = 1 with the implied constant depending on
a. We prove that a milder abc-conjecture implies that P, > (n/7(n))? where 7(n)
is the number of distinct positive divisors of n, and crucially, the implied constant
is independent of @ and b. This is an improvement over the result of Murty and
Wong. Furthermore, as a simple consequence, Stewart’s conjecture follows in the
case that n is prime, thereby refining the result of Murty and Séguin. Additionally,
we obtain a distribution result for the prime factors of ged(n, ®,(a, b)), generalizing
a similar result of Murty and Séguin.

1. Introduction

Let a, b be integers with a > b > 0. Counsider the sequence (u,)nen of positive
integers defined by
Up = up(a,b) :=a™ — 0", (1)

and its associated sequence (P(u,))nen, where P(m) denotes the greatest prime
factor of an integer m > 1. It has long been known that P(u,) — oo with n.
However, it is generally believed that P(u,) grows rapidly with n. Erdds [2] con-
jectured that P(u,)/n — oo with n in the case that @ = 2 and b = 1. In the same
spirit, one is naturally led to conjecture that P(u,)/n — oo with n for arbitrary
integers a, b with a > b > 0. Stewart [10] confirmed the conjecture for the set of
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integers n having at most xloglogn distinct prime factors for a given k satisfying
0 < k < 1/log2. Subsequently, he [11] extended his results to general Lucas and
Lehmer sequences and proposed the following conjecture.

Conjecture 1. There is an effectively computable absolute positive constant C'
such that
P(u,) > C¢(n)? (2)

for every n > 2, where ¢ denotes the Euler totient function.

Murty and Wong [8] proved that the abc-conjecture of Masser and Oesterlé im-
plies that for a given € > 0, one has

P(uy,) > n"¢,

where the implied constant depends on a, b and €. Murata and Pomerance [6]
proved that subject to the generalized Riemann hypothesis, for almost all integers
n, one has

nA/3

P2 —1) > ——.

( loglogn
Stewart [12] provided the first unconditional result in this direction by proving
that there is a constant Ny > 0 depending only on w(ab), where w(m) denotes the
number of distinct prime factors of an integer m > 1, such that for every n > Np,
one has

1
P(un) > n1+ 1041()g;log;n7

thereby completely resolving the conjecture of Erdos.

For a positive integer m and a prime p, let v,(m) denote the largest exponent
of p such that p*»(™) | m. Further, for an integer a with p { a, let f,(a) denote
the order of @ in the multiplicative group (Z/pZ)*. In a recent article, Murty and
Séguin [9] formulated the conjecture that given an integer a > 1, there is a constant
k > 1 (depending on a) such that

vp(af @ —1) <k

for every prime p 1 a. Conditional on their conjecture, Murty and Séguin resolved
Conjecture 1 in the particular case that b = 1, with the constant C' in Equation (2)
depending on a.

The present article aims to prove that a weaker abc-hypothesis implies that
P(u,) > n?/7(n)?, where 7(n) denotes the number of distinct positive divisors
of a positive integer n and where the implied constant is absolute. For a given
positive integer m > 1, its radical rad(m) is defined as

rad(m) = H .

plm
p—prime
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Conjecture 2. (The quasi abc-conjecture) There is an absolute constant > 1 such
that if a, b and ¢ are pairwise relatively prime positive integers satisfying a + b = ¢,
then

¢ < (rad(abc))”.

A conjecture of Granville and Tucker [3] suggests that k = 2. We note that for
our purposes, a weaker hypothesis than the one in Conjecture 2 would suffice. We
will discuss this next. Let £ > 1 be a given integer. By the fundamental theorem
of arithmetic, there are unique positive integers U and V such that

U, = UVFHL (3)

where, every prime divisor p of U satisfies v, (U) < k. We refer to U as the (k+1)-free
part of u,,. Observe that if & > k where « is the constant appearing in Conjecture 2,
then Conjecture 2 implies that

UV =y, < a™ < (rad(abUV))® < a* UV*".

It follows that
VSV < @ Uttt < (al)" . (4)

The estimate in Equation (4) is all that is required to prove our main result (Theo-
rem 1 below). We record the inequality in Equation (4) for ease of future reference.

Hypothesis 1. There is an absolute constant A > 2 such that for every integer
k > ) if u, is given by Equation (3), then V < (al)*.

Our main result is the following.

Theorem 1. Let A be the constant appearing in Hypothesis 1. For arbitrary integers
a and b with a > b > 0, let u, be as defined in Equation (1). Then subject to
Hypothesis 1, there is an effectively computable absolute constant ng > 1 such that
for every integer n > ng, one has

n2

P(’Lbn) > CW7

®)

where C' can be taken to be C = 0.002\7°.

Set co = max{n?/7(n)? : n < ng} where ng is the constant appearing in Theo-
rem 1. Then trivially, one has
n2

P(uy) > calw

for all n < ng. Thus, setting Cy = min{C, 1/¢o} where C'is as stated in Theorem 1,
we have
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Corollary 1. For arbitrary integers a and b with a > b > 0, let u,, be as defined
in Equation (1). Then subject to Hypothesis 1, there is an effectively computable
absolute constant Cy > 0 such that for every integer n > 2, one has

Pluy) > COTZ;.

Consequently, Conjecture 1 follows whenever n is prime.

Corollary 2. Let p > 2 be a prime, and for arbitrary integers a and b with a >
b > 0, let up, be as defined in Equation (1). Then subject to Hypothesis 1, there is
an effectively computable absolute constant C' > 0 such that

P(uy,) > C'p*.
It is well-known (Theorem 317, [4]) that for every § > 0, one has

T(n) < 2(1+5) logn/ loglogn

for n >s 1. Accordingly, we have the following.

Corollary 3. For arbitrary integers a and b with a > b > 0, let u,, be as defined in
Equation (1). Then subject to Hypothesis 1, for every § > 0, there is an effectively
computable constant Cs > 0 such that for every integer n > 2, one has

n2

(14-6) logn/loglogn * (6)

P(un) >C(54

Perhaps it is worth highlighting the key aspects where our results improve upon
the best-known conditional lower bound to date on P(uy,) due to Murty and Wong
[8] mentioned earlier. To begin with, the underlying hypothesis (Conjecture 2) of
Theorem 1 is weaker than the usual abc-conjecture. Secondly, since for every € > 0

and 5 > 07
4(+9)logn/loglogn _ ().

the lower bound on P(u,,) in Equation (6) is considerably sharper than the one due
to Murty and Wong. Thirdly, the implied constant Cs appearing in Corollary 1, is
independent of the integers a and b. The last condition is an essential requirement
in Conjecture 1. If n is prime, the constant C’ appearing in Corollary 2 is absolute.
For a positive integer n, set ¢, := e*™/™. The nth cyclotomic polynomial ®,, (z)
is defined as
our)= [ @-¢.

0<j<n
ged(j,m)=1

It is well known that ®,,(x) € Z[x] is a monic polynomial with deg ®,, = ¢(n). The
nth homogenized cyclotomic polynomial ®,,(z,y) is defined by

n X
D, (z,y) = y*™a, (y) :
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By a standard result on the factorization of 2™ — y™, one has

a = bt = H(bd(a,b).

d|n
For d | n, set
va = [®a(a,b)|. (7)

Observe that v, | u, for all n, so that P(u,) > P(v,). In most of the past work
cited thus far, the authors have obtained a lower bound on P(v,,), which is trivially
a lower bound on P(u,). We shall adopt a slightly different strategy in that we
consider the prime factors of vg4, for a certain large divisor d,, of n. These details
are discussed in the next section.

In proving Theorem 1, we will need information on the prime factors of v,y for
d | n. These are summarized in the following.

Lemma 1 ([11]). Let a and b be integers with a > b > 0 and ged(a,b) =1, and let
vq be defined as in Equation (7). Then

vy =piN (8)

where p1 =1, 61 = 1, and for every d > 1,

d
pa =P (gcd(3d)> . 0q € {0,1},

and either N = 1, or every prime factor p of N satisfies p =1 (mod d).

In the special case that b = 1, Murty and Séguin (see Theorem 1.2, [9]) established
that for some 6 € (0,1),

Z n log p, = O(z?).

n<zx

The last estimate implies that §,, = 0 more often than not. By Abel’s summation
formula, one readily deduces from the last estimate above that

> 5, logp,
n

n=1
We will prove that the last result holds in general.

Theorem 2. We have
= 5, logpy
E ﬂ < 1
n

n=1

where 6, and p, are defined as in Lemma 1.
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2. Proofs

Throughout, we will assume that n > 2. Further, we will assume without loss of
any generality that ged(a,b) = 1. Let A > 2 be as defined in Hypothesis 1. We may
and do further suppose that A is an integer. Let integers U and V be as defined in
Equation (3) with & = A. For each d | n, let U; denote the (A + 1)-free part of vy,
and let V; be the positive integer such that

va = UaV)

where vg is as defined in Equation (7). From u, =[], va, we have that

oV =Tua Vi

d|n d|n
Since
U S H Ud7
d|n
and hence,
vV>]]va
dln

Let d,, | n be such that Uy, is maximal. That is, Uy < Uy, for every d | n. Thus,
v<u;™. (9)

We have the following estimate on the size of d,, conditional on Hypothesis 1.

Lemma 2. Subject to Hypothesis 1, we have for n > 1 that

#(dn) > Cr s, (10)

where Cy can be taken to be C; = 1/6(A\2 + A + 1).

Proof. By an easy induction argument, we have
n
log u,, > 5 log a. (11)

On the other hand,
logu, =logU + (A +1)log V. (12)

Now, Hypothesis 1 implies that V < (aU)*. So, from Equation (9) and Equa-
tion (12), we deduce that

logu, < AA+1)loga+ (A2 + A+ 1)logU (13)
< MM+ Dloga+7(n)(AN2 + X+ 1)log Uy, .
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Next, by the triangle inequality, for every z > 0, one has
|, ()] < (1 +a)0).
Setting x = a/b above, we get
Ua, < |®a,(a,b)] < (a+b)?tdn) < g2?(dn),

We now deduce from Equation (13) that

logu, < 3(A* + A+ 1)7(n)é(d,) log a. (14)
Finally, comparing Equation (11) and Equation (14), we obtain

g <302+ A+ Dr(n)o(dy).

The lemma follows. O

In proving Theorem 1, we will need an upper bound on log Uy, in terms of P(u,).
For this purpose, we will appeal to the following version of the Brun-Titchmarsh
inequality due to Montgomery and Vaughan (see Theorem 2, [5]). For z > 0 and
positive integers ¢ and r with ged(¢,r) = 1, let n(xz,¢,r) denote the number of
primes p < z satisfying p = r (mod ¢).

Lemma 3 ([5]). For 0 <{ <z, one has

2x
¢(€) log(z/€)

Proof of Theorem 1. From Hypothesis 1 and Equation (9), we have

w(x, l,r) <

gloga< logu, =logU + (A+1)logV (15)
<logU + A(A+ 1) logaU
= XA+ 1loga+ 7(n)(A\* + X+ 1)log Uy, .

Using Lemma 1,
log Uy, <logn + A Z logp (16)

p<Pyp
p=1 (mod d,)

where P, = max{en, P(u,)}. Moreover, from Lemma 3 and the trivial bound
d, < n, one has

2P, log P, 2P, log P,
logp < < . 17
2 S o oA = gy 07

p=1 (mod d,)
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From Equation (15), Equation (16) and Equation (17), we obtain

2Cy7(n) P, log P,
¢(dn) log(Pn/n)

where Co = A(A%2 + X\ + 1). Since a > 2, using the well-known estimate that
7(n) < 2y/n, we have from Equation (10) and Equation (18) that

g loga < Cyloga + Car(n)logn + (18)

n_ 2Cy7(n) Py, log P, - 2C37(n)? P, log P, (19)
3 < oldn)log(Pa/n) = mlog(Pu/n)

for n > 1, and where C3 = Co/C4. Since P, > en, we get from Equation (19) that

2

n
—— < P,log P,. 2
6C37(n)? < 8 (20)

Thus, for n > 1, one has

n?
P, > . > n?/2,
12037'(71)2 lOg (@Z_w)

It follows that log P, < 3log(P,/n). Using this estimate in Equation (19), we

obtain ,
1 n
P,>———.
].803 T(TL)2

The expression on the right-hand side above is > en for n > 1. So, P, = P(u,,) for
n > 1. The theorem now follows by observing that

C3 = 6AN? + A +1)% < 24)°
since A > 1. O

We next turn to the proof of Theorem 2. We begin by recalling a well-known
result concerning the resultant of cyclotomic polynomials.

Lemma 4 ([1]). Let m and n be integers with m > n > 1. If m/n is not a power
of a prime, then there are polynomials u(x) and v(x) in Z[zx] such that

w(z) P (z) + v(2) P, (z) = 1.

On the other hand, if m = p*n where p is a prime, then there are polynomials u(x)
and v(x) in Z[z] such that

(@) () + () B () = ).
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In particular, Lemma 4 implies that if there is a prime p such that

p | ged(Pim(c), Pn(c))

for some integer ¢, then m = p*n for some positive integer k.
To prove Theorem 2, we need a precise description of positive integers n for which
0, = 1. This is the content of the next result.

Proposition 1. For a positive integer n > 1, let p, and J, be as in Lemma 1.
Further, let m = n/py’" ), If 6, =1, then p, =1 (mod m).

Proof. We let p denote p,, for brevity. Suppose that d,, = 1 for some n > 1. Since
ged(a,b) = 1, there is a unique ¢ € (Z/pZ)* such that ab~! = ¢ (mod p). Let
f = fp(c) so that p is a primitive divisor of ®;(c) (that is, p t ®4(c) for every
d < f). Thus,

pl®s(c), p=1 (modf). (21)

Also, p | ®,(a,b) implies that p | ®,,(c). That is,

p | ged(®(c), Pn(c)).

From the remark following Lemma 4, we deduce that f = n/p* for some positive
integer k. Next, observe that ¢ =1 (mod p) since p | ,,(c). Now, using Fermat’s
little theorem, we deduce that

cm=c"=1 (mod p).

So, f | m. It follows that k = v,(n), and as such, f = m. The proposition follows
by observing from Equation (21) that p =1 (mod f). O

For a pair of relatively prime integers a and b with a > b > 0, and a prime p { ab,
let f, denote the smallest positive integer such that

a’r = b/»  (mod p). (22)

The proof of Theorem 2 rests upon the following result, which is an adaptation of
a result of similar flavour from [7] (see Inequality (3), [7]).

Proposition 2. For f, defined above, we have

logp
— < 1.
p% (p— 1)fp

We need the following lemma to prove Proposition 2.

Lemma 5. Forn > 1, one has

1
E =Y < 4loglogn.
p—1
pln
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Proof. By Corollary 2.3, Inequality (14) in [7], for n > 1, one has

1
Z =Y < 2loglogn.

pln
Therefore, for n > 1,
1 1 1
Z o8P _ P8P o 22 08P o 4loglogn.
p—1 p—1 p p
pln pln pln
O
Proof of Proposition 2. For x > 0, define
A(z) .= [ (' = b).
f<a
It is easily seen that ,
Ax) < Haf<ag” .
f<w
Thus,
loglog A(z) < 2logx + logloga < 3logx (23)
for x > 1. For an integer f > 0, let
log p
o(f) :=
(f)= m—
fo=f
and for z > 0, let
Alz) = > 5(f).
f<w

Observe that for f < x, the fact that f, = f implies that p | A(z). Thus, from
Lemma 5 and Equation (23), we obtain

1
Az) < Z 2% < 12logz. (24)
plA(=)
Noting that p =1 (mod f,), we have by the Abel summation formula that
Z log p < Z 6(f)
ptab

_A@) | [TAQR)
— +/1 dt+ 0(1)

T

121 *logt
< ;gx+l2/ “8Lat+0(1) = 0(1)
1

for x > 1. The proposition follows. O
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Proof of Theorem 2. Let

g . — 0, log py,
0 dulospe
n=1

where §,, and p,, are as stated in the theorem. For a positive integer n, let k, =
Vp, (n), and let m, = n/pf». From Proposition 1, §, = 1 implies that p, = 1
(mod my,). Furthermore, m,, is the smallest positive integer such that

a™ =b"  (mod py).

We deduce that d,, = 1 implies that f, = m,. Also, since ged(a,b) = 1, we have
pn 1 abif 6, = 1. Thus,

oo

1 1
sey ey e o, 2
ptab k=1 p fp ptadb P fp
by Proposition 2, thereby proving the theorem. O]
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