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ABSTRACT: Liquid-phase exfoliation is the most suitable
platform for large-scale production of two-dimensional materials.
One of the main open challenges is related to the quest of green
and bioderived solvents to replace state-of-the-art dispersion
media, which suffer several toxicity issues. Here, we demonstrate
the suitability of methyl-5-(dimethylamino)-2-methyl-5-oxopenta-
noate (Rhodiasolv Polarclean) for sonication-assisted liquid-phase
exfoliation of layered materials for the case-study examples of WS2,
MoS2, and graphene. We performed a direct comparison, in the
same processing conditions, with liquid-phase exfoliation using N-
methyl-2-pyrrolidone (NMP) solvent. The amount of few-layer
flakes (with thickness <5 nm) obtained with Polarclean is
increased by ∼350% with respect to the case of liquid-phase
exfoliation using NMP, maintaining comparable values of the average lateral size, which even reaches ∼10 μm for the case of
graphene produced by exfoliation in Polarclean, and of the yield (∼40%). Correspondingly, the density of defects is reduced by 1
order of magnitude by Polarclean-assisted exfoliation, as evidenced by the I(D)/I(G) ratio in Raman spectra of graphene as low as
0.07 ± 0.01. Considering the various advantages of Polarclean over state-of-the-art solvents, including the absence of toxicity and its
biodegradability, the validation of superior performances of Polarclean in liquid-phase exfoliation paves the way for sustainable large-
scale production of nanosheets of layered materials and for extending their use in application fields to date inhibited by toxicity of
solvents (e.g., agri-food industry and desalination), with a subsequent superb impact on the commercial potential of their
technological applications.
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■ INTRODUCTION

The advent of two-dimensional (2D) materials had a ground-
breaking impact on science and technology,1−13 due to their
peculiar properties with high application capabilities in
different fields, such as energy storage,14−22 catalysis,23−27

optoelectronic devices,28−31 and gas sensing.32−34 A key point
for the technological exploitation of 2D materials is
represented by their large-scale production, which still remains
challenging.35−37 Actually, since the isolation of graphene,38,39

fundamental studies on 2D materials were carried out mostly
on micrometric flakes mechanically exfoliated from parental
bulk crystals40 (top-down approach) or on ultrathin layers
grown by chemical vapor deposition41,42 (bottom-up ap-
proach). While mechanical exfoliation suffers from nonscalable
processes with scarce reproducibility,40 chemical vapor
deposition requires specific substrates enabling epitaxial
growth,43−46 with subsequent problems related to the etching
of 2D sheets from the substrate47 resulting in flakes with
degraded crystalline quality with a high amount of defects and
metallic impurities48 and/or polymer residuals from the

transfer process altering the physicochemical properties of
transferred flakes of 2D materials.49 The removal of the
substrate is a challenging issue also for the preparation of
graphene by Si sublimation from SiC substrate.50

The most viable tool for large-scale production of few layers
of 2D materials is represented by liquid-phase exfoliation
(LPE),37,51−58 which affords high-quality dispersions of 2D
materials, exfoliated from their bulk counterparts and dispersed
in solvents enabling further processing.37,51−54 Definitely, a
suitable solvent for LPE should minimize the energy input
required to overcome the van der Waals forces for effective
sheet separation.51−54,58 This corresponds to the minimization
of the enthalpy of mixing per unit volume ΔH/V, which, in
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turn, is connected to the Helmholtz free energy of solvent
(Fsolv) and the Helmholtz free energy of layered materials
(Flayered), the thickness of the flakes (Tlayered), and the volume
fraction (φ):53,59

ϕΔ ∼ −H
V T

F F
2

( )
layered

solv layered
2

(1)

with

σ= −F TS( )layered s sur (2)

where σs is the surface energy and Ssur the surface entropy.
Therefore, matching surface tensions of solvent and layered

materials is crucial to achieve an efficient LPE. However,
another critical issue is related to the dispersibility of flakes and
solvent, which depends on the specific molecular interactions
between the solvent and the solute, which are accounted by
considering the Hansen solubility parameters, corresponding
to dispersion forces (δd), polar interactions (δP), and hydrogen
bonding (δH), respectively. Whenever δd, δP, and δH of the
solvent match the corresponding values for the solute, the
energy cost associated with the dispersion is minimized (see
the Supporting Information, Section S1, for a more detailed
theoretical model for LPE).51 For the specific cases of
graphene and transition-metal dichalcogenides, N-methyl-2-
pyrrolidone (NMP) and N,N-dimethylformamide (DMF) are
the most diffusely used solvents,37 due to their values of surface
tension and Hansen solubility parameters (reported in Table
1) well matching with surface energy and Hansen solubility

parameters of graphite and other layered materials (Supporting
Information, Table S1). Nevertheless, recently, both NMP and
DMF have been placed on the list of Substances of Very High
Concern (SVHC),60 which is the first step for introducing
restrictions over the use of substances or their import to
Europe, according to the European REACH regulation.61

Similar concerns have been recently raised in the USA for both
solvents.62,63 In particular, NMP has been already classified as
a reproductive toxin,64 mainly owing to its amide function-
alities.
Therefore, it is becoming mandatory to search for a green

alternative to these traditional aprotic solvents.
Volatile organic compounds (VOCs) represent natural

candidates as solvents for solution processing, but the
exfoliation yield is typically halved,65 so that usually the
transfer of flakes of 2D materials from a suspension in NMP is
required.66 In addition, many VOCs have low flash temper-
atures (13 °C for ethanol; 12 °C for isopropyl alcohol, IPA,
etc.), with subsequent concerns for safety for industrial usage.

Another possibility is constituted by LPE in aqueous media
using surfactants.67 However, residuals of surfactants usually
degrade the quality of 2D materials. This drawback is especially
relevant for their usage in electronic devices, due to the
insulating nature of surfactants, and, moreover, in nano-
composites.68

Electrochemical exfoliation (both anodic and cathodic) in
aqueous electrolytes has emerged as a novel platform for the
production of 2D materials.62 However, for bulk semi-
conductors or insulators, electrochemical exfoliation is
unsuccessful in breaking the interlayer van der Waals forces
without including a conducting additive.69 Moreover, reaching
the monolayer regime through electrochemical exfoliation of
bulk materials remains a severe hurdle.70 Another problem is
related to the unconventional operational electrochemical
conditions, which imply the occurrence of oxygen and
hydrogen evolution stimulated by electrochemical polar-
ization.71 Finally, electrochemical exfoliation in aqueous
electrolytes usually provides flakes of 2D materials with a
high amount of defects.62,72

Recently, triethanolamine (TEA)73 and urea aqueous
solutions74 have been proposed as green alternative media for
LPE of graphene and other layered materials. Regarding TEA,
notwithstanding the good results in terms of flake micro-
structure and dispersion stability, issues related to the yield of
the process and, mostly, to chemical modification of flakes
induced by possible functionalization75,76 during the process
are still open. In addition, its very high dynamic viscosity
(605.9 cP at T = 25 °C77) precludes the use of such
dispersions for inkjet printing of 2D material-based inks, for
which the viscosity range is recommended to be 1−10 cP.78

On the other hand, aqueous dispersions of urea have shown
encouraging results for graphite exfoliation, obtaining high-
quality flakes. However, the low yield of the process (2.4%),
evidently related to the significant difference in the surface
energy (see Table 1 and the Supporting Information, Section
S1), makes urea inappropriate for scalability.
So far, dihydrolevoglucosenone (Cyrene, CAS: 53716-82-8)

has been proposed as a green solvent to obtain graphene
dispersions.79 Cyrene has small, albeit not negligible, values of
acute toxicity (LD50) and aquatic toxicity (EC50) of >2000
mg kg and >100 mg L, respectively. Accordingly, its use for
many applications of 2D materials, including the production of
drinking water through seawater desalination80 or other agri-
food applications,81 is inadvisable. Moreover, the high dynamic
viscosity of Cyrene (14.5 cP at T = 20 °C) also hinders its use
for inkjet printing of 2D material-based inks
Evidently, state-of-the-art methodologies based on common

solvents inevitably hamper the long-standing expansion and
sustainability of the 2D material-based industry, and
concurrently, existing alternatives are far from being mature
for mass production of 2D materials. Therefore, the
identification of a processing solvent combining (i) efficient
LPE and (ii) sustainability remains an open challenge.
Here, we assess the performance of methyl-5-(dimethylami-

no)-2-methyl-5-oxopentanoate (Rhodiasolv Polarclean, CAS:
1174627-68-9) as a polar solvent82 for sonication-assisted LPE
of layered materials. Polarclean (C9H17NO3, Figure 1) has no
detectable toxicity for doses as high as 1000 mg/(kg day); its
water solubility is higher than 490 g/L at T = 24 °C, and it is
biodegradable and not mutagenic.83 Remarkably, Polarclean
has a flash point of 160 °C at ambient pressure.83 Accordingly,
it is safer than many oxygenated solvents, such as VOCs.

Table 1. Surface Tension and Hansen Solubility Parameters
for Polarclean, NMP, DMF, IPA, TEA, and Urea

surface
tension Hansen solubility parameters

σS [mN m−1]
δd

[MPa1/2]
δp

[MPa1/2]
δH

[MPa1/2]

Polarclean 3882 15.889 10.789 9.289

NMP 40.152 18.059 12.359 7.259

DMF 37.152 17.459 13.759 11.359

IPA 21.752 15.859 6.159 16.459

TEA 45.977 17.3104 7.6104 21.0104

urea 30% in H2O 74.0105 17.0106 16.7106 38.0106
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Besides exfoliation yields and environmental/safety issues,
validating a new solvent for 2D material exfoliation means
keeping suspension and solvents in use, according to a circular-
economy chain-process approach. Notwithstanding, micro-
filtration84−86 represents an interesting route for reuse/
recovery of a large variety of exhausted solvents like DMP,
NMP, and Polarclean, which increases both the concentrations
of the dispersion and the regenerated solvent’s purity; only
Polarclean demonstrates large potentials to be reused in
downstream production processes. Currently, Polarclean is
mostly used for solubilization of agrochemicals, as well as for
crop protection and animal nutrition.87 Recently, the use of
Polarclean has been extended to the production of polymeric
membranes for ultrafiltration88 and water desalination for
drinking water production,89−92 the synthesis of biobased
aliphatic polyurethanes,93 dimerization of abietic acid,63 and
copper-catalyzed azide−alkyne cycloaddition.94 Its dynamic
viscosity (9.78 cP at T = 23 °C83) makes Polarclean an ideal
candidate for inkjet printing of 2D material-based devices, for
which the low dynamical viscosity of state-of-the-art solvents
DMF and NMP (<2 cP) jeopardizes the jetting performance.95

Here, we validate the use of Polarclean as the solvent for
sonication-assisted LPE of layered materials. Specifically, by
adopting as case-study examples WS2, MoS2, and graphene, we
demonstrate that Polarclean outperforms NMP (in the same
processing conditions) by producing dispersions of nanosheets
with an amount of few-layer flakes (with thickness <5 nm)
increased by 350% and comparable values of the average lateral
size of flakes. Moreover, the density of defects is reduced by an
order of magnitude by exfoliation in Polarclean, as evinced by
the I(D)/I(G) ratio in Raman spectra of graphene as low as
0.07 ± 0.01. Our results indicate that Polarclean represents a
unique green candidate solvent for large-scale and scalable
production of functional inks based on 2D materials, which
naturally enables expanding the use of 2D materials in several
application fields, for which state-of-the-art solvents have
represented so far serious obstacles, owing to their toxicity. In
particular, we mention (i) seawater desalination for production
of drinking water;96 (ii) concentration of fruit juices,97 volatile
aroma compounds,98 and whey proteins;99 (iii) separation of
azeotropic mixtures;100 (iv) purification processes from
fermentation broth;101 and (v) recovery of minerals from
seawater102 and salty lakes.103

■ RESULTS AND DISCUSSION
In Table 1, the value of surface tension and the Hansen
solubility parameters of Polarclean are reported and compared
with those of other common solvents (NMP, DMF, IPA). The
surface tension of Polarclean is comparable with its values for
NMP and DMF, while the surface tension in IPA is lower by
∼40%.
The efficiency of Polarclean for obtaining stable and high-

yield dispersions of flakes of 2D materials was validated by

means of an analysis of dispersed flakes for the case-study
examples of WS2, MoS2, and graphene.
Figure 2 reports the yield of the process as a function of the

centrifugation speed, in terms of the amount of flakes in the

final dispersion as compared to the initial concentration. For
the optimized process, in the case of WS2 and graphene, the
yield is ∼40% of the initial mass in the final dispersion after a
1000 rpm centrifuge, while the value for MoS2 is even higher
(50%). For the sake of completeness, we report a comparison
of the yields obtained with different solvents in the same
operating conditions in the Supporting Information, Figure S2.
To confirm that the exfoliation process only breaks the van

der Waals interlayer bonds without deteriorating covalent
bonding within the WS2 flake, i.e., its crystal structure, we
analyzed (i) the atomic structure and (ii) phonon modes by
means of scanning transmission electron microscopy (STEM)
and Raman spectroscopy. Definitely, atomic-resolution
HAADF (high angle annular dark field)-STEM images (Figure
3b) of an exfoliated WS2 flake identified in BF (bright field)-
STEM (Figure 3a) directly demonstrate that LPE in Polarclean
did not induce formation of defects. We also note the absence
of defective areas on terraces. The analysis of Raman spectra is
fully consistent with STEM analysis. As shown in Figure 3c,
the Raman spectrum of WS2 is dominated by three major
modes: (i) E2g

1 (Γ) and (ii) A1g(Γ), which are first-order modes,
in-plane and out-of-plane, respectively, and (iii) 2LA(M), a
second-order longitudinal acoustic mode.108−110 Despite the
fact that 2LA(M) overlaps E2g

1 (Γ), the fit procedure (Figure
3c) allows the identification of their related components.
Indeed, the analysis of the 2LA(M) and A1g(Γ) peak intensity
ratio, I(2LA(M))/I(A1g(Γ)), is widely recognized as a reliable
spectroscopic tool to evaluate the thickness of WS2 samples.111

In our case, the spectral analysis indicates I(2LA(M))/
I(A1g(Γ)) values of ∼0.28 in WS2 powder and ∼1.4 in
Polarclean-exfoliated WS2 flakes. These values correspond to
those measured for I(2LA(M))/I(A1g(Γ)) corresponding to
bulk WS2 (<0.5) and few-layer WS2 flakes (>0.5),
respectively.111

Furthermore, the WS2 dispersions in Polarclean were
characterized by UV−vis spectroscopy (Figure 3d). The

Figure 1. (a) Plain and (b) ball-and-stick representations of the
atomic structure of methyl 5-(dimethylamino)-2-methyl-5-oxopenta-
noate (Polarclean).

Figure 2. Yield of the Polarclean-assisted LPE as a function of
centrifugation speed for WS2, MoS2, and graphene.
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observation of the characteristic absorption at around 630 nm
related to the A-exciton, corresponding to the excitonic
absorption band originating from gap transition at the K-
point of the Brillouin zone,112 ensures that the LPE in
Polarclean solvent did not modify the electronic structure of
WS2.
The WS2 dispersion had a concentration of ∼0.2 mg/mL

(with a yield of ∼40% of the initial mass in the final
dispersion) with an estimated value of the optical absorption
coefficient α of 1549 ± 50 L/(g m), congruently with previous
reports.52,113,114 Results for MoS2 and graphene are reported in
the Supporting Information (Figure S4b,c).
The stability of the dispersions was assessed by taking

photographs along 1 week (Supporting Information, Figure
S4d−f), finding in all cases that around 80% of the flakes
remain in the dispersions even after 1 week.
Figure 4 reports a statistical analysis of lateral size and

thickness of WS2 flakes based on images acquired with
scanning electron microscopy (SEM) and atomic force
microscopy (AFM), respectively. The lateral size and thickness
of the WS2 flakes approximately follow a log-normal
distribution peaked at ∼3 μm (Figure 4c) and ∼4 nm (Figure
4d), respectively. These results allow concluding that Polar-
clean-assisted LPE provides flakes with an aspect ratio of ∼103.
The performances of Polarclean as an exfoliation medium

for 2D materials was directly compared with the case of the
most diffuse state-of-the-art solvent, i.e., NMP. Therefore, we
performed LPE under the same operating conditions also for
NMP (see the Experimental Section for experimental

procedures and Figures S5−S7 in the Supporting Information
for morphological and physicochemical characterization).
While the lateral size is comparable (Figure S5 of the
Supporting Information), the statistical analysis on thickness
reveals a bimodal distribution for NMP-exfoliated flakes
(Figure S5 of the Supporting Information), peaked around 4
and 30 nm, corresponding to thin and thick flakes, respectively.
Remarkably, ∼85% of flakes exfoliated by Polarclean have a
thickness <5 nm. Considering recent discoveries on the
apparent height of monolayer flakes of exfoliated layered
materials in AFM experiments with respect to the supporting
substrate,115 we can infer the predominance of few-layer flakes
(1−3 layers) in Polarclean-assisted LPE. Conversely, by using
NMP in the same experimental conditions, ∼76% of flakes
have thickness >5 nm, thus evidencing a largely incomplete
exfoliation of the bulk crystal in NMP-assisted LPE.
Congruently, HAADF images of NMP-exfoliated WS2 flakes
(Figure S7 of the Supporting Information) are consistent with
an incomplete exfoliation of the parental bulk crystal, as
evidenced by (i) the higher Z-contrast and (ii) the multi-
layered structure imaged in the atomic-resolution HAADF-
STEM micrograph in Figure S7f.
To assess eventual modifications in the physicochemical

properties of exfoliated flakes, we performed XPS measure-
ments in the region of W 2f and S 2p core levels (Figure 5) for
(i) the starting bulk and (ii) exfoliated WS2 nanosheets
obtained by LPE with both Polarclean and NMP. The W 4f
core levels are split in J = 5/2 and 7/2 components shifted by
2.1 eV. Specifically, measurements indicate that W 4f core
levels have three different contributions arising from WO3,
WS2, and defective WS2 (sulfur vacancies) with a binding
energy (BE) of 36.1, 33.2, and 32.7 eV for the J = 7/2
component, respectively, in agreement with previous works on
WS2-based systems.116−118

Figure 3. (a) BF-STEM micrograph with different overlapped flakes
of WS2 transferred on a lacey carbon grid. (b) Atomic-resolution
HAADF-STEM micrograph on the side of the same sample in panel a,
in correspondence of an isolated flake. A ball-and-stick representation
of the WS2 atomic structure is overlapped to the experimental
micrograph, with W and S atoms depicted in blue and green,
respectively, while the unit cell is indicated by red lines. The contrast
in intensity of W and S sites is due to their different atomic
number.107 The inset reports the fast Fourier transform (FFT) of the
micrograph. (c) Raman spectra for bulk WS2 and for nanosheets
exfoliated in the liquid phase using Polarclean solvent. (d)
Absorbance spectrum in the 400−800 nm range, showing the A
exciton.

Figure 4. (a) Representative high-resolution SEM image of typical
WS2 flakes. (b) Analysis of lateral size distribution of WS2 flakes
determined from SEM images. (c) Representative AFM image of WS2
flakes. The height profile along the white solid line is reported in the
inset. (d) Analysis of thickness distribution determined from AFM
measurements.
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Correspondingly, the S 2p core levels are split in J = 1/2 and
3/2 components shifted by 1.2 eV. Four well-distinct
contributions associated with SO4, SO3, stoichiometric WS2,
and defective WS2 are observed at BEs of 168.4, 166.7, 163.0,
and 162.6 eV for the J = 3/2 component, respectively, as in
previous reports.116−118

Notably, the XPS analysis indicates that the exfoliation
process does not induce further oxidation, regardless the
increase of the surface/volume ratio when going from bulk
WS2 to nanosheets. Components related to WO3 have only
7.8% and 7.3% of the total areas of the W 4f in Polarclean- and
NMP-exfoliated WS2, respectively. Similarly, spectral compo-
nents in S 2p related to SO4 and SO3 have only ∼8% and 6−
9% of the total area for both solvents. Essentially, the
physicochemical properties of WS2 nanosheets produced by
using NMP and Polarclean solvents are similar. The lack of
additional spectral contributions in core levels demonstrates
that Polarclean-assisted LPE did not alter the electronic
properties of the layered material, as also confirmed by XPS
measurements for the parental compound MoS2 (Supporting
Information, Figure S10).
In order to validate the extension of the use of Polarclean as

the exfoliation medium for layered materials, we demonstrated
the efficiency of sonication-assisted LPE for the cases of MoS2
and graphene (Figure 6).
Figure 6a,c,e reports a representative SEM image of

Polarclean-exfoliated MoS2 flakes and the related statistical
analysis on lateral size and thickness, respectively. Correspond-
ingly, Figure 6b,d,f are related to graphene flakes exfoliated
using Polarclean as the dispersion medium. For the sake of
completeness, further morphological and physicochemical
characterization of exfoliated MoS2 and graphene nanosheets
are reported in the Supporting Information, Section S4.
Regarding MoS2 exfoliation, statistical analyses on both

lateral size and thicknesses (Figure 6c,e) indicate values
comparable with the case of WS2. Explicitly, the distribution of
lateral size is peaked around ∼2.5 μm, while the thickness
distribution is centered around 4−5 nm.
Concerning the exfoliation of graphene nanosheets with

Polarclean, remarkably, the distribution of lateral size reaches
an average value of 10 μm, which is one of the largest reported
so far for LPE of graphite.12,19 The corresponding Raman
spectrum (Figure 7) displays D and G bands at 1331 and 1581

cm−1. We recall that, while the G peak arises from the E2g
optical phonon of graphene,119 the D band is originated by
breathing modes of six-atom rings and requires a defect for its
activation.120 Therefore, the I(D)/I(G) ratio is a widely

Figure 5. (a) S 2p and (b) W 4f core-level spectra of powder and
Polarclean-exfoliated and NMP-exfoliated WS2 samples.

Figure 6. Representative SEM image of isolated exfoliated flakes of
(a) MoS2 and (b) graphene. Statistical analysis of (c, d) lateral size
and (e, f) thickness of (c, e) MoS2 and (d, f) graphene flakes,
respectively.

Figure 7. Raman spectrum for graphene exfoliated with Polarclean
solvent (brown curve). For the sake of comparison, we report also
Raman spectra for NMP-assisted (green curve) and Cyrene-assisted
(red curve) LPE exfoliation of graphene (data taken from ref 79) and,
moreover, bulk graphite (black curve). See Figure S12 in the
Supporting Information for a comparison extended to other solvents.
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recognized probe of structural defects in the graphene sheet121

(see also the Supporting Information, Section S5). Notably,
the ratio of the intensity of D and G Raman-active bands in
few-layer graphene exfoliated through Polarclean is I(D)/I(G)
= 0.07 ± 0.01. Definitely, we estimate a density of defects as
low as (8 ± 2) × 109 cm−2, which is consistent with the high
crystalline order of exfoliated graphene flakes (without
evidence of defects) imaged by high-resolution TEM (HR-
TEM) in Figure S11 of the Supporting Information. For the
sake of comparison, from the I(D)/I(G) analysis in Raman
spectra (Figure 7 and Figure S12 of the Supporting
Information), we also estimated the density of defects for
graphene exfoliated with NMP,79,122 Cyrene,79 IPA,123

DMF,124 acetone/water,125 ethanol/water,126 TEA,73 and
aqueous solution of urea,74 finding values of (6 ± 2) × 1010,
(5 ± 2) × 1010, (1.0 ± 0.3) × 1011, (9 ± 3) × 1010, (4 ± 1) ×
1010, (2.6 ± 0.7) × 1011, (6 ± 2) × 1010, and (7 ± 2) × 1010

defects/cm2, respectively. Evidently, graphene flakes exfoliated
with Polarclean exhibit a density of defects inferior by
approximately 1 order of magnitude with respect to LPE
assisted by other solvents.
The analysis of the intensity of the D′ band can provide

further indication on the density of defects. Similarly to the D
band, the D′ mode is a double resonance originated by the
transverse optical (TO) phonons around the K or K′ points in
the first Brillouin zone, and it is activated by defects, although
it involves an intravalley rather than intervalley process.121

Remarkably, the intensity of the D′ band at 1615 cm−1 is
suppressed for the case of Polarclean-assisted LPE of graphene,
in contrast with the case of other solution processing methods
(Figure 7 and Figure S12 of the Supporting Information).

■ CONCLUSIONS

We have proven that Polarclean is an efficient green solvent for
the production of layered materials by LPE. In particular,
sonication-assisted LPE provided distributions of lateral size of
4, 3, and 10 μm and thickness of 4, 4, and 5 nm for WS2, MoS2,
and graphene. Concurrently, the amount of few-layers sheets
(below 5 nm) in dispersions in Polarclean is higher by ∼350%
compared to LPE with NMP. Correspondingly, the density of
defects of graphene flakes produced by LPE is reduced by 1
order of magnitude by using Polarclean, as evidenced by the
I(D)/I(G) ratio in Raman spectra of graphene as low as 0.07 ±
0.01. The superior performances in LPE, together with the
absence of any toxicity issue and its biodegradability, make
Polarclean an ideal candidate for sustainable large-scale
production of 2D materials. Naturally, Polarclean can also
replace solvents commonly employed for other processing
methods beyond sonication, such as shear mixing127 or wet-jet
mill,128 particularly promising for industrial scale-up. The
efficiency of the Polarclean-based LPE process is crucial in
order to combine intrinsic benefits for environmental health
and safety with optimization of performances. Undeniably, the
introduction of a green solvent for LPE also will expand the
growing market of 2D materials toward fields to date nearly
unexplored (e.g., recovery of minerals from seawater,
concentration of fruit juices, production of drinking water,
etc.), as a result of the toxicity of state-of-the-art solvents for
LPE, with subsequent superb impact on the commercial
potential of their technological applications.

■ EXPERIMENTAL SECTION
Materials. WS2 (CAS number 12138-09-9), MoS2 (CAS number

1317-33-5), and graphite (CAS number 7782-42-5) were purchased
from Sigma-Aldrich and used without further purification. Related
particle size distributions are reported in the Supporting Information,
Figure S1. Absolute ethanol, N-methyl-2-pyrrolidone (NMP),
triethanolamine (TEA), and urea were purchased from commercial
chemical suppliers. Methyl-5-(dimethylamino)-2-methyl-5-oxopenta-
noate (Rhodiasolv Polarclean) was provided by Rhodiasolv, Solvay
Novecare, Paris.

Exfoliation of Layered Materials. A 0.05 g portion of a powder
of WS2, MoS2, and graphite was dispersed in 40 mL of Rhodiasolv
Polarclean and sonicated for 3 h in a bath sonicator (Elmasonic P
working at 37 kHz) in a thermostat bath to prevent excessive
temperature rise (T ≤ 25 °C). Beside exfoliation, in order to
physically remove Polarclean, several centrifugations were carried out.
After a first centrifugation at 5000 rpm, supernatant was discarded and
substituted with an analogous amount of ethanol. After this step, 3
successive centrifugations were performed to remove solvent
residuals, with a last centrifugation at 1000 rpm aimed at separating
thinner flakes from thick and unexfoliated material. Finally, the
supernatant was collected for characterization.

Characterization. STEM investigation was performed with a
JEOL ARM200F Cs-corrected microscope, equipped with a cold-field
emission gun with an energy spread of 0.3 eV and operating at 60
keV. The probe size was 1.1 Å at 60 kV. Micrographs were acquired in
BF and in Z-contrast mode by HAADF.

Field emission scanning electron microscope (FESEM) experi-
ments were carried out at the Microscopy Centre of University of
L’Aquila with a Gemini SEM 500 instrument, at an accelerating
voltage of 2 kV. AFM measurements were performed in air tapping
mode with a Veeco Digital D5000 system, using tips with a spring
constant of 3 N/m and resonance frequencies between 51 and 94
kHz.

Raman spectra were acquired using a micro-Raman spectrometer
(μRS) (LABRAM spectrometer, λ = 633 nm, Horiba-Jobin Yvon,
Kyoto, Japan) equipped with a confocal optical microscope (100×
MPLAN objective with 0.9 numerical aperture and 0.15 mm work
distance). The spatial resolution was ∼1 μm, while the energy
resolution was ∼2 cm−1.

Optical absorption spectra of WS2, MoS2, and graphene dispersions
achieved after Polarclean-assisted LPE were measured by using a
UV−vis spectrometer (PerkinElmer, Lambda 750) with a 1 cm quartz
cuvette. Moreover, UV−vis spectra of differently diluted dispersions
were used to estimate optical absorption coefficients by applying
Lambert−Beer’s law. To estimate the concentration, dispersions were
filtered. By measuring the filtered mass, we evaluated the
concentration of flakes after exfoliation and centrifugation.

XPS measurements were performed using a PHI 1257
spectrometer, equipped with a monochromatic Al Kα source (hν =
1486.6 eV) with an experimental resolution of 0.25 eV.
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