

GTCLC-NEG

PROJECT NUMBER: 101018756

ACRONYM: GTCLC-NEG

PROJECT TITLE: Development of an innovative Gas Turbine Chemical Looping Combustor for Carbon Negative Power Generation

DELIVERABLE TITLE: Particle Model DELIVERABLE NUMBER: d3.1

Lead Beneficiary: CSIC Work Package: WP3 Dissemination level: Public Type: Report

Due date: 1 May 2022

Submission date: 1 May 2022

Authors: Dr. Pietro Bartocci, Dr. Alberto Abad, Dr. Arturo Cabello, Dr. Margarita de Las Obras Loscertales, Dr. Francisco Garcia Labiano

INDEX

SECTION 1: INTRODUCTION TO PARTICLE MODELING IN PRESSURISED	
CHEMICAL LOOPING	3
SECTION 2: CALIBRATION	7
SECTION 3: EXPERIMENTAL CAMPAIGN FEBRUARY- JULY 2022	7
SECTION 4: DATA ELABORATION	11
SECTION 5: BIBLIOGRAPHY	24

SECTION 1: INTRODUCTION TO PARTICLE MODELING IN PRESSURISED CHEMICAL LOOPING

The particle modeling of the oxygen carriers produced and characterized in WP 1 is based on two publications realized at the Instituto de Carboquimica, CSIC, see [1, 2]. These works are based also on the theory developed by Levenspiel [3] when speaking of reactions catalyzed by solids and the pore diffusion resistance combined with surface kinetics. While developing the particle model in this project we focused on the most interesting oxygen carrier that we have tested, which is NiO18 loaded on alpha alumina. This is recognized to have a plate like geometry. See figure 1.

Figure 1: Plate like geometry of nickel oxide, taken from [4]

The geometries can be in fact granular or plate like, see figure 2.

Figure 2: granular (see left) and plate like (see right) geometries

For this kind of geometry the governing equations for the particle model are based on the Shrinking Core Model (SCM):

$$\frac{t}{\tau} = X_r \tag{1}$$

where:

- t is time (s)
- τ is the time for complete solid conversion (s)
- Xr is the solid conversion.

When deriving for time we obtain:

 $\frac{dX_r}{dt} = \frac{1}{\tau} \tag{2}$

A nice visualization of the tau is reported in figure 2.

Figure 3: Visualization of the time to complete the reaction (tau)

But we know also that:

$$X = k_r * Pg * t$$
 (3)

With the above mentioned equation and with the Arrhenius equation we can determine:

- E and A for changing temperatures

5

- kr and d for changing pressures

All these kinetics constants have been derived through the PTGA of the laboratories of Instituto de Carboquimica. CSIC Zaragoza. For the calculation of the E based on the values of the required time for complete conversion, see figures 4 and 5.

Figure 4: Determination of k values as the slopes of the conversion lines

Figure 5: Determination of E

GTCLC-NEG project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 101018756

6

SECTION 2: CALIBRATION

Figure 6: Adjusted curves

Table 1: Adjusted temperature (in the range of 400-600°C)

15 bar	-18°C
10 bar	0°C
5 bar	+6°C
1 bar	+31°C

SECTION 3: EXPERIMENTAL CAMPAIGN FEBRUARY- JULY 2022

The tests performed are reported in Table 2.

7

Qt (l/h)	m (mg)	T(ºC)	Pt (atm)	%CH4	%CO2	%N2	Air	PCH4
240	30	475	10	3	19	78	100	0.3
240	50	47 <mark>5</mark>	10	3	19	78	100	0.3
240	70	475	10	3	19	78	100	0.3
240	50	475	10	3	19	78	100	0.3
200	50	475	10	3	19	78	100	0.3
175	50	475	10	3	19	78	100	0.3
240	50	500	10	3	19	78	100	0.3
240	50	475	10	3	19	78	100	0.3
240	50	450	10	3	19	78	100	0.3
240	50	425	10	3	19	78	100	0.3
240	50	475	1	30	19	51	100	0.3
240	50	475	5	6	19	75	100	0.3
240	50	475	10	3	19	78	100	0.3
240	50	475	15	2	19	79	100	0.3
240	50	475	1	3	19	78	100	0.03
240	50	475	5	3	19	78	100	0.15
240	50	475	10	3	19	78	100	0.3
240	50	475	15	3	19	78	100	0.45

Table 2: Experimental campaign performed at the PTGA

Of the above reported tests the following have been performed: 1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,17, 16,17, 18.

The tests have been indicated with the following codes:

- 220222_ni18_475_550t_50 (which corresponds to test number 15, which has to be repeated)

- 220315_ni18_500_10bar_30mg (which corresponds to test number 1)

- 220316_ni18_500_10bar_50mg (which corresponds to tests number 2,4,8,13,17)

- 220317_ni18_425-525_10bar_50mg (which correspond to tests number 7,9,10)

- 220426_ni18_500t_50g (which corresponds to sample 5 and 6);

- 220427_ni18_475-550_1-10bar_50mg (which corresponds to 16,18 and 11)

- 220428_Ni18_500-524T_5-15bar_50g_2-6Ch4 (which corresponds to 12 and 14)

- 220429_ni18_506t_10bar_70g (which corresponds to test 3)

GTCLC-NEG

Figure 8: 220315_ni18_500_10bar_30mg

Figure 9: 220316_ni18_500_10bar_50mg

Figure 10: 220317_ni18_425-525_10bar_50mg

SECTION 4: DATA ELABORATION

The collected data where available in a .csv file. This was opened with excel and then the command data in column was selected to order the data in each column, based on the coma used as a separator and changing the points into comas to have the EU notation of decimal digits. See next figure.

Microsoft Excel - 220315_ni18_500_10bar_30mg	Microsoft Excel - 220315_n118_500_10bar_30mg — 🗇 🗙																			
Eile Edit View Insert Format Tools	Da	ta <u>W</u> indow <u>H</u>	lelp													Type a	question for	help	8	×
	<u></u> }↓	Sort				1 10 4	0		🙄 : Arial			10 - B	zυ		- III - III	% , *:0	.00	E 100 +	• A	
		Filter			•		• •						!			100			-	
A B C D		- Culturateda						1	K		M	N	0	D	0	D	9	Т	1	
1 0 30 9903 24 83 99 7114		Subtotais				<u> </u>		J	IX.	L.	IVI	IN	0			IN IN			0	^
2 1 30 9903 24 84 99 7114		Va <u>l</u> idation																		-
3 2,30.9903,24.84,99.7114		Text to Column	ns																	
4 3,30.9915,24.85,99.7154		RivetTable and	DivotC	hart Peno	.+															
5 4,30.9915,24.86,99.7154	1.2	Pivot rable and	PIVOLC	пан керо	rt															
6 5,30.9928,24.87,99.7193		Import Externa	l <u>D</u> ata		•															
7 6,30.994,24.86,99.7232		Lįst			+															
8 7,30.9952,24.87,99.7272		XMI																		
9 8,30.9964,24.87,99.7311		2000				-														
10 9,30.9977,24.88,99.7351	Y.	<u>R</u> efresh Data																		
11 10,30.9977,24.88,99.7351			۲																	
12 11,30.9989,24.88,99.739						_														
13 12,31.0001,24.89,99.7429	-																			
14 13,31.0013,24.89,99.7469	-					-														
10 14,31,0030,24,09,99,7547	-																			
10 15,51.005,24.09,99.7507	-																			
17 10,51.0002,24.5,55.7020	-					-														
19 18 31 0099 24 91 99 7744	-																			
20 19 31 0111 24 91 99 7784	-														_					
21 20 31 0123 24 92 99 7823	-		_																	
22 21 31 0136 24 92 99 7862																				
23 22.31.0148.24.92.99.7902																				
24 23,31.016,24.92,99.7941																				
25 24,31.0172,24.93,99.7981																				
26 25,31.0185,24.93,99.802																				
27 26,31.0197,24.93,99.8059																				
28 27,31.0197,24.93,99.8059																				
29 28,31.0209,24.94,99.8099																				
30 29,31.0221,24.94,99.8138																				
31 30,31.0197,24.94,99.8059	_					_														
32 31,31.0209,24.94,99.8099	_																			
33 32,31.0209,24.94,99.8099	-																			
34 33,31.0209,24.95,99.8099	-										1.							-	-	×
H ← → H 220315_ni18_500_10bar_30mg	/										1<								>	
Ready																				
Scrivi qui per eseguire la ricer	rca		0	⊟i	-	0		۲	21		100%		9℃	~ 🖪	ē 🔞	0 ‡ (10)	∂ ^b ENG	01:59 06/04/202	2	4

Figure 11: File .csv obtained from PTGA experiments

The final polished data are shown in next figure.

GTCLC-NEG

× 1	/licrosoft Excel -	220222_ni18_47	5-550t_50g													- 6	9 >	<
: U	<u>File E</u> dit <u>V</u>	jiew <u>I</u> nsert F	<u>o</u> rmat <u>T</u> ools <u>D</u> ata	Window Help											Type a questi	on for help	8	1
: 🗅	😂 🖬 🖪 🗿	3 🖪 🕰 🗳	ት 📖 👗 🖏 🛍 🗕 ৰ	\$ 10 = 01 =	💋 😣 Σ	- <u>}</u> ↓ _A ↓	🏨 🤣	0	Calibri		- 12 -	ΒI	u ≡ ≡	% 💱 🔝 🖬	• .0 .00 ÷.0	岸 (宇) 🖾 • 🏅	3 <mark>> - A</mark>	÷
	D2 -	<i>f</i> ⊷ 99,9	9765															
	Α	В	С	D	E		F	G	н	1	J		K	L	M	N	0) -
1	Tima (s)	Mass (mg)	Temperature (°C)	%														
2	(50,107	2 23,04	99,9765														
3	:	1 50,107	2 23,04	99,9765														
4		2 50,107	2 23,05	99,9765														
5	1	3 50,107	2 23,05	99,9765														
6	4	4 50,107	2 23,04	99,9765														
7		5 50,107	2 23,03	99,9765														
8	(5 50,107	2 23,03	99,9765		_												
9		7 50,107	2 23,03	99,9765		_												
10	8	3 50,107	2 23,03	99,9765		_					_							
11		9 50,107	2 23,04	99,9765														
12	10	50,107	2 23,05	99,9765														
13	1:	1 50,107	2 23,05	99,9765														
14	1.	2 50,10	6 23,05	99,9741														
15	1:	3 50,10	6 23,04	99,9741														
16	14	1 50,10	6 23,04	99,9741														
1/	1	5 50,10	6 23,04	99,9741														
18	10	5 50,10	6 23,04	99,9741							_							
19	1.	50,10	6 23,05	99,9741							_						-	
20	10	50,10	6 23,07	99,9741							_							
21	19	50,10	6 23,07	99,9741														
22	20	50,10	c 23,00	99,9741							_							
20	2.	50,10	c 23,00	99,9741														
24	2.	2 50,10	6 23,00	99,9741							_							
25	2	5 50,10	6 23,05	99,9741							-							
20	24	50,10	6 23,11	99,9741												-	-	
27		5 50,10	c	00.0744						L	-	-				+	-	1
H 4	► N \ 2202	22_ni18_475-	550t_50g/							<							>	1
Read	y						_									02:02		
-	P Scri	vi qui per ese	eguire la ricerca	C			0	💼 😫	21 🖾	X	100%	-	9℃ ^	ê 🔞 🕯	i (1) の	ENG 06/04/20	22	4)

Figure 12: Ordered data

As it can be seen from the above proposed figure, the sampled data consisted of 4 columns reporting

time in seconds

mass in milligrams

temperature in Celsius degrees

and percentage of mass change.

To elaborate the data it has been used the file **220317_ni18_450-525_10bar_50mg** realized together with Dr. Abad on 30th march 2022. In a first moment only the data sampled at 450 have been taken into account as it is shown in the figure below.

GTCLC-NEG

×	licrosoft Excel	- 220317_ni18_	450_10bar_50mg	9													-	o >	×
1	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> nsert	Format Too	ls <u>D</u> ata <u>W</u> inde	ow <u>H</u> elp											Type a question	for help	8	×
ŧn	🗃 🖬 🖪	ALAN	🤭 🛍 IX 🗉	5 🙉 = 🛷 🗠	- (1 - 4	χ 🔍 Σ	- 41 <u>7</u> 1	1 1 1 1	0	🙄 : Arial		- 10 -	BZU		e 💷 %	,	€E 00 -	3 - A	
	P10	- fr				2 00	21 31						_			100 110 14			
	A	B	C	D	F	F		G	Н		J	K		M	N	0	Р		(-
1	220317 ni18	425-525 101	ar 50mg	Ni18AI			_						-						^
2	NO TOCARI	0S		Muestra (mg)		RED			OX										- 11
3				50.38		450			450										
4				,		3%CH4			21% 02										
5	t (sea)	Peso	Temperatura																
6	- (2)																		
7	2005	50,9354	455,89																
8	2006	50,9379	455,94																
9	2007	50,8583	455,95																
10	2008	50,9379	455,89																
11	2009	50,9942	455,85																
12	2010	51,004	455,68																
13	2011	50,9722	455,52			51.6													
14	2012	50,9599	455,46			51,0													
15	2013	50,9905	455,45															_	
16	2014	50,9746	455,41			51,4								1				_	
17	2015	50,9807	455,38															_	
18	2016	50,9954	455,21			51,2 -					ale.	1144		l ili			-	_	
19	2017	51,0052	454,93			-					- Iul			laa dila			-	_	
20	2018	51,0077	454,64			51 -					1	n _a r ,		יוףייד			-	_	
21	2019	50,9942	404,40							1.1		Aut de la l	1111	at in the			-	_	
22	2020	50,9771	454,47			500				111	Add.		10-11	ייז זי א			-	_	
23	2021	50,9530	454,05			50,8				11	11	1.1	- P 1					-	
25	2022	50,0014	454,04			-				1	a fill	' L		19 T					
26	2024	50,9832	455,05			50,6					itur 🕂				. [Series1		
27	2025	51.0321	455.42										lu l						
28	2026	51,0383	455,72			50,4													
29	2027	51,0701	456,03							1	1.11		JANAL P	6.1					
30	2028	51,037	456,26			50.2 -					-				94 <u>1</u>				
31	2029	51,0358	456,51							.1	l'	10	TP 1	1.1	1.1				
32	2030	51,0211	456,75			50				i i i				11					
33	2031	50,8963	456,92			50						U	r .	1.1	1				
34	2032	50,9305	456,88									1			11				~
н 4	→ × Dato	s TGA / Red /	Ox 🔏 Xred 🥻 X	ox Conversion	/												<	>	
Read	у																		
-	₽ Sc	rivi qui per e	seguire la rie	cerca	0	Ħ		C		6 🔁		100%	۽ 🌙 ي	rc ∧ ĝ	[™]	(1)) √B E	NG 02:11 06/04/2	022 尾	4

Figure 13: File "220317_ni18_450-525_10bar_50mg"

So in the first section "Datos TGA" the data taken from the PTGA are directly copied and we select only the 3 curves which have been done at the same temperature: 450. We input also:

The mass of the sample in mg

The temperature and the concentration of the reduction gas

The temperature and the concentration of the oxidizing gas

Once all the inputs have been inserted in the first sheet the next one is filled. This is named "Red".

GTCLC-NEG

🗷 Microsoft Excel - 220317 ni18_450_10bar_50mg - 🗗 🗙										×										
1] <u>E</u> ile	Edit	View Insert	Format Too	ols <u>D</u> ata <u>W</u>	indow <u>H</u> elp										Type a	questic	n for help	6	×
En	1 12		AAA	ABS 654 X (h 🙉 + 🛷	10 - 01 - 14	κ 🔍 Σ + 🌢	I Z I	111 🔊 💿	💾 i Ari	al	- 10	B Z	U E E B	.	, .0	.00 =		3 - A	
	F9		- f	=D9/D8			<u> </u>	• •								.00	9.0 J =		_	
		А	В	С	D	E	F	G	Н		J	К	L	M	N O	Р		Q	R	^
1				REDUCCION	1						REDUCCION							REDUCCION		
2				CH4	3%	m inic N2	50,9954				CH4	3%	m inic N2	51,037				CH4	3%	
3				Temperatura	450	m fin N2	50,4593				Temperatura:	450	m fin N2	50,217				Temperatura:	450	
4						m fin gas	50,5413						m fin gas	50,2671						
5				Ciclo 1	1	m inic gas	51,0774				Ciclo 2		m inic gas	51,0871				Ciclo 3		
6			t(s)modificad	lo t(s) origina	l masa (mg) t(s)	masa (mg)			t(s)modificado	t(s) original	masa (mg)	t(s)	masa (mg)		t(s)modif	ficado	t(s) original	masa	(r
7																				
8			215	9 2159	50,9966	5											4741	4741	51,	,0(
9		1	1 216	0 2160	50,9966	5	1										4742	4742	51,	,0(
10		1	1 216	1 2161	51,0162	2				51,4	~						4743	4743	51,	,02
11		1	1 216	2 2162	2 51,0162	2											4744	4744	51,	,08
12		1	1 216	3 2163	51,0383	3				51,2 -							4745	4745	51,	,05
13		1	1 216	4 2164	51,0456	6				A	a. A						4746	4746	51,	,1:
14	_	1	1 216	5 2165	51,0236	j .				51 - 5		A A					4/4/	4/4/	51,	,1
15	-	1	1 216	6 2166	5 51,0126	5					7	$\gamma 0 >$					4/48	4/48	51,	,10
16	-	1	1 216	216/	51,0126					50.8		- VI(A -)					4/49	4/49	51,	<u>,1</u>
1/	-	1	1 216	8 2168	51,004	1				50,0		- ' W \A	1				4750	4750	50,	,98
10	-	1	210	2165	51,0174	+				50.0		- V U1					4751	4751	50,	,98
19	-	1	21/	0 21/0	50,9673	5				50,6 -		- i N	1 66	<			4752	4752	50,	,81
20	-	1	21/	1 21/1	50,9305	2						r u	W.				4753	4753	50	1 <u>'</u>
21			1 217	2 21/2	50,9293	-				50,4 -			<u> </u>				4754	4754	50,	0.
22	-	1	1 217	3 21/3	50,9575	1								\sim			4755	4755	50,	,9
23	-	- 1	1 217	4 2174 E 0170	E0 0607	* 7				50.2 -						Λ.	4750	4750	51,	0.
24	-	- 1	1 217	G 2170	50,5057	1				· · ·			- W 17	~ .		· M	4757	4757	50,	1
26	-		1 217	7 2177	50,520	3				50 -			- 1° - 1)	In	~ MM		4750	4750	50	8
27	-	1	1 217	8 2178	51 0591	1							y.	V	V X		4760	4750	50	80
28		1	1 217	9 2179	50 922	2				10.9							4761	4761	51	3
29		1	1 218	0 2180	50 8779	9				49,0							4762	4762	51	26
30		1	1 218	1 2181	50.922	2				10.0							4763	4763	51	14
31		1	1 218	2 2182	51,2267	7				49,6 +		1		1			4764	4764	51	1
32		1	1 218	3 2183	51,2427	7				3450		3500		3550		3600	4765	4765	50	94
33		1	1 218	4 2184	51,2096	5			4	3375	3375	50,8987		1			4766	4766	50.	9;
34		1	1 219	5 2186	51 1013	2			1	3376	3376	50,9379				1	4767	4767	51.	0(_
14	• • •	N Dato	s TGA A Red	Ox / Xred / X	ox Conversi	on /			1				1	1		-		<		>
Den	dv.		(100																	
inco	u,								-		and the second	-						02.2	,	
-		רא א גע	rivi qui per	eseguire la ri	cerca	0	<u>≓i</u>		C 📋	🛛 🙂 🗖	21 🛄	100	% 🕂 🚽	9℃ ^	ê 🔞 i	ま 口の)	P	ENG 06/04/2	022	25

Figure 14: Data elaboration procedure

In the sheet "Red" we copy paste the data already reported in the previous sheet, but we try to select the one which characterize only the change in weight, so for example instead of starting from second 2005 we start from second 2159. Then we have to find three numbers along the decreasing curve of the mass:

- m inic N2 50,9954
- m fin N2 50,4593
- m fin gas 50,5413
- m inic gas 51,0774

Where the first number is exactly the mass at which the conversion begins this is identified at the intersection of a declining line which describes the reaction and a horizontal line describing the average mass.

The second number is when the declining line meets a first horizontal line which indicate the equilibrium of mass after the reaction is completed.

The third number indicates the effect of the change of the flow on the sample inside the PTGA.

The fourth number is given by the sum of the initial mass in nitrogen (m inic N2) plus the difference in weight between the final mass in the gas (m fin gas) and the final mass in nitrogen (m fin N2).

The last data found it is reported as the real beginning of the reaction in the curve and it is identified, taking not also of its corresponding time.

The real end of the reaction period is the part of the curve when constant mass is achieved.

Figure 15: Final curve

GTCLC-NEG

Once the beginning and the end of the reaction have been clearly identified, the following data are calculated.

t(s)	masa (mg)
0	0
1	-0,0584
2	-0,0714
3	-0,0904
4	-0,1346
5	0
6	-0,1034
7	-0,0774
8	-0,1634
9	-0,1774
10	-0,1774
11	-0,2274
12	-0,1762
13	-0,2274
14	-0,2644
15	-0,2874
16	-0,2914
17	-0,3174
18	-0,3884
19	-0,4981
20	-0,47
21	-0,3806
22	-0,4847
23	-0,4908
24	-0,5263
25	-0,5079
26	-0,5165

GTCLC-NEG

27	-0,7111
28	-0,6683
29	-0,4945
30	-0,5092
31	-0,7099
32	-0,563
33	-0,847
34	-0,8433
35	-0,989
36	-1,0171
37	-0,9498
38	-0,8837
39	-0,8396
40	-0,7772
41	-0,7552
42	-0,7625
43	-0,7662
44	-0,8225
45	-0,8604
46	-0,9657
47	-0,9498
48	-0,8923
49	-0,88
50	-0,8702
51	-0,8715
52	-0,9033
53	-0,8776
54	-0,8543
55	-0,8531
56	-0,8335
57	-0,8286

17

GTCLC-NEG

58	-0,8409
59	-0,8458

Where the first column is still representing the seconds, while the second column is the change in mass calculated through the subtraction of the mass at time i+1 and the mass at time i.

Once these data have been calculated the next step is the calculation of the conversion rate. To do this other input have to be considered, as shown in the following table:

Fichero=	Ni18AI		
Muestra=			
T Calc.=			
Prep.=			
Dp(mm)=	0.1-0.3		
T (C)=	950		
CH4			NiO
СО		Ro	0,200
H2	15	NiO	0,18
H2O		Roc	0,036
CO2		%	3,6
N2	85		
Muestra (mg)	50,38		
var. Peso teo	1,81		

In particular we consider the Ro of nickel (oxygen transport capacity of nickel), the nickel oxide content in the oxygen carrier (NiO), and the oxygen transport capacity of the material (Roc), which is derived by multiplying the oxygen

transport capacity of nickel oxide for the content of nickel oxide in the oxygen carrier.

In this case:

Roc = NiO_content*Ro = 0.18*0.2 = 0.036 = 3.6%

Based on the weight of the sample, which was 50.38 mg, it is calculated the maximum weight variation (var. Peso teo) by multiplying: 0.036*50.38 = 1.81 mg. This value in the case of reduction reaction is the maximum weight loss which can be achieved.

Once the input parameters have been calculated the data selected in table

	reduccion		
tiempo	peso	tiempo	conversion
0	0	0,0	0
1	-0,0584	1,0	0,03219973
2	-0,0714	2,0	0,03936747
3	-0,0904	3,0	0,04984341
4	-0,1346	4,0	0,07421375
5	0	5,0	0
6	-0,1034	6,0	0,05701116
7	-0,0774	7,0	0,04267566
8	-0,1634	8,0	0,09009307
9	-0,1774	9,0	0,09781218
10	-0,1774	10,0	0,09781218
11	-0,2274	11,0	0,12538044
12	-0,1762	12,0	0,09715054
13	-0,2274	13,0	0,12538044

14	-0,2644	14,0	0,14578095
15	-0,2874	15,0	0,15846235
16	-0,2914	16,0	0,16066781
17	-0,3174	17,0	0,17500331
18	-0,3884	18,0	0,21415024
19	-0,4981	19,0	0,274635
20	-0,47	20,0	0,25914163
21	-0,3806	21,0	0,20984959
22	-0,4847	22,0	0,2672467
23	-0,4908	23,0	0,27061003
24	-0,5263	24,0	0,29018349
25	-0,5079	25,0	0,28003838
26	-0,5165	26,0	0,28478012
27	-0,7111	27,0	0,39207578
28	-0,6683	28,0	0,36847735
29	-0,4945	29,0	0,27265008
30	-0,5092	30,0	0,28075515
31	-0,7099	31,0	0,39141414
32	-0,563	32,0	0,3104186
33	-0,847	33,0	0,46700631
34	-0,8433	34,0	0,46496626
35	-0,989	35,0	0,54530016
36	-1,0171	36,0	0,56079352
37	-0,9498	37,0	0,52368665
38	-0,8837	38,0	0,48724141
39	-0,8396	39,0	0,46292621
40	-0,7772	40,0	0,42852102
41	-0,7552	41,0	0,41639098
42	-0,7625	42,0	0,42041595
43	-0,7662	43,0	0,422456
44	-0,8225	44,0	0,45349786

45	-0,8604	45,0	0,4743946
46	-0,9657	46,0	0,53245335
47	-0,9498	47,0	0,52368665
48	-0,8923	48,0	0,49198315
49	-0,88	49,0	0,48520136
50	-0,8702	50,0	0,47979798
51	-0,8715	51,0	0,48051475
52	-0,9033	52,0	0,49804817
53	-0,8776	53,0	0,48387808
54	-0,8543	54,0	0,47103127

Figure 16: determination of tau

The detailed data are reported in the table below.

GTCLC-NEG

tau		90
Teorica		
t(s)		X
	0	0
	1	0,01111111
	2	0,02222222
	3	0,03333333
	4	0,0444444
	5	0,05555556
	6	0,06666667
	7	0,0777778
	8	0,08888889
	9	0,1
	10	0,1111111
	11	0,12222222
	12	0,13333333
	13	0,1444444
	14	0,15555556
	15	0,16666667
	16	0,1777778
	17	0,18888889
	18	0,2
	19	0,2111111
	20	0,22222222
	21	0,23333333
	22	0,2444444
	23	0,25555556
	24	0,26666667
	25	0,2777778
	26	0,28888889

27	0,3
28	0,3111111
29	0,32222222
30	0,33333333
31	0,3444444
32	0,3555556
33	0,36666667
34	0,3777778
35	0,3888889
36	0,4
37	0,4111111
38	0,42222222
39	0,43333333
40	0,4444444
41	0,45555556
42	0,46666667
43	0,4777778
44	0,48888889
45	0,5
46	0,5111111
47	0,52222222
48	0,53333333
49	0,5444444
50	0,5555556
51	0,56666667
52	0,5777778
53	0,58888889
54	0,6
55	0,6111111
56	0,62222222
57	0,63333333

GTCLC-NEG

58	0,6444444
59	0,6555556
60	0,66666667

Bibliography

- 1. Abad, A., et al., *Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO+ H2) for chemical-looping combustion.* Energy & Fuels, 2007. **21**(4): p. 1843-1853.
- 2. Garcia-Labiano, F., et al., *Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion.* Energy & Fuels, 2006. **20**(1): p. 26-33.
- 3. Levenspiel, O., *Chemical reaction engineering*. 1998: John wiley & sons.
- 4. Gayan, P., et al., *NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition–precipitation methods.* Fuel, 2009. **88**(6): p. 1016-1023.

