Initial Results from SAR-Based Validation of Sea Ice Drift Forecast Models

Martin Bathmann^{*1}, Stefan Wiehle¹, Anja Frost¹, Lasse Rabenstein², Gunnar Spreen³ ¹German Aerospace Center (DLR), Maritime Safety and Security Lab Bremen, Germany; ²Drift+Noise Polar Services, Bremen, Germany, ³University of Bremen, Institute of Environmental Physics, Germany *martin.bathmann@dlr.de

Introduction

- Optimal shipping routes through drifting sea ice increasingly important for navigation in polar regions
- Sea ice drift information obtained from Synthetic Aperture Radar (SAR) [5]
- Evaluation of usability of sea ice drift forecast models for multi-day sea ice analysis
- Improvements for high-resolution forecast Predictive Ice Image application (PRIIMA) [2]
- Forecast model trajectories derived with Lagrangian Tracking
- Sea ice drift vector fields obtained from successive SAR-scene pairs

Data and Methodology

- Historical TOPAZ4 [4] and neXtSIM [3] forecasts from December 2021
- 7 Sentinel-1 SAR-scene pairs from 2 regions of interest (ROIs) in the Lincoln Sea

• Vector model for data processing

- high flexibility
- floating-point number resolution
- Object-oriented-programming (OOP), topology, hashing and spatial indexing

Trajectories and measurements both

Performing Lagrangian Tracking with **RK4-IDW RK4**: $X_{IDW_{k+1}} = X_{IDW_k} + f_{IDW_{k+1}}\Delta t$ $f_{IDW_{k+1}} = \frac{1}{6} \left(f_{IDW_1} + 2f_{IDW_2} + 2f_{IDW_3} + f_{IDW_4} \right)$ $f_{IDW_1} = f(X_{IDW_k}, t_k)$ $f_{IDW_2} = f(X_{IDW_k} + f_{IDW_1} \Delta t / 2, t_k + \Delta t / 2)$ $f_{IDW_3} = f(X_{IDW_k} + f_{IDW_2} \Delta t/_2, t_k + \Delta t/_2)$ $f_{IDW_4} = f(X_{IDW_k} + f_{IDW_3}\Delta t, t_k + \Delta t)$ IDW: forecast model grid point $d_{p,t_i} = distance \ between \ grid \ point$

one hour drift vector

 Comparison of forecast model trajectories and SAR-based drift vector fields

Initial Results

- calculated starting from a regular grid
- Forecast model sea ice drift interpolated in every grid point with cubic splines
- Runge-Kutta 4th-order (RK4) [6] combined with Inverse Distance Weighting (IDW) to a refined approach (RK4-IDW)

and current location

RMS separation distance measured values vs quality information (QI)

Further Research

- How is the measured sea ice deformation represented in the forecast models?
- How can the influence of the sea ice rheology be derived by evaluating the forecast model input data (e.g. winds and ocean currents)?
- Which other solutions for sea ice analysis can be put into practice with the available OOP approach?

40°W

50°W

Conclusions

- Trajectories
 - RK4-IDW yields smoother trajectories
 - Small difference (ca. 200 m) between IDW and RK4-IDW
- TOPAZ4: viscous-plastic rheology •
 - Rheology without brittleness of sea ice, but good overall drift
 - Difficult to derive deformation fields
- neXtSIM: brittle rheology
 - Problems of low drift near land
 - Divergence field is promising
- Only small case study so far • Overall RMS separation distance of TOPAZ4 and neXtSIM between 3 and $5^{km}/dav$

References

30°W

0 15 30 km

30°W

30°W 86°N

20°W

[1] Albedyll, L. von: Sea ice deformation and sea ice thickness change, Dissertation, Universität Bremen, 2022. [2] Drift+Noise: PRIIMA - Predictive Ice Image, https://business.esa.int/projects /priima, last access: 31 January 2023, 2019. [3] European Union - Copernicus Marine Service: neXtSIM: Arctic Ocean Sea Ice Analysis and Forecast, https://doi.org/10.48670/moi-00004, 2020. [4] European Union - Copernicus Marine Service: TOPAZ4: Arctic Ocean Physics Analysis and Forecast, https://doi.org/10.48670/moi-00001, 2015. [5] Frost, A., Wiehle, S., Singha, S., and Krause, D.: Sea Ice Motion Tracking from Near Real Time Sar Data Acquired During Antarctic Circum-navigation Expedition, in: 2018 IEEE IGARSS, Valencia, Spain, 2338–2341, 2018 [6] Vennell, R., Scheel, M., Weppe, S., Knight, B., and Smeaton, M.: Fast Lagrangian particle tracking in unstructured ocean model grids, Ocean Dynamics, 71, 423–437, 2021.

Acknowledgements

The present work is part of the project FAST-CAST 2, funded under grant 19F2191A by the German Federal Ministry for Digital And Transport's mFUND programme.

Gifund Bundesministeri für Digitales und Verkehr aufgrund eines Beschlusse des Deutschen Bundestages

Gefördert durch

