Geologic Map of Ceres [Dawn Mission] - Global dataset based on the 15 individual quadrangle maps published in ICARUS Volume 316 (December 2018) March 30, 2023 INTRODUCTION: One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. The geological mapping campaign of Vesta was completed and published, e.g. [1], and recently also the mapping project for Ceres is completed. The tiling schema for the mapping project based on recommendations by [2], and is divided into two parts (for Ceres described in [3,4]): four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map is based on survey and HAMO images [5]. This served as basis for generating a more detailed view of the geologic history and also for defining the chrono-stratigraphy and time scale of the dwarf planet [5]. A more detailed view could be expected within the 15 quadrangles (HAMO tiles) which was completed by the Low Altitude Mapping (LAMO) data (35 m/pixel). For the interpretative mapping one responsible mapper was assigned for each quadrangle. Once the mapping is finished, all datasets must be combinable in ESRI’s ArcGIS™. To handle this a template is needed to generate one homogenous GIS-based project (w.r.t. geometrical and visual character) representing one geologically-consistent final map. Therefore, the mapping process was supported by an predefined mapping template which was generated in the proprietary ArcGIS environment (see ../addInfos). The template contains different layers (called feature classes) for the different object/geomoetry types and contains predefined attribute values as well as cartographic symbols. The cartographic symbols follow [6] as far as possible, and the colours for the geological units were defined according to individual needs and requests within the mapping team. The colour choice was based on established colour values used in geologic maps, e.g., defined and used within standardized planetary maps generated by USGS. [1] Williams D.A. et al. Icarus, 244, 1-12, 2014 [2] Greeley, R. & Batson, G., Planetary Mapping, Cambridge University Press,1990 [3] Roatsch et al 2016, Planetary and Space Science 126, p 103-107, doi:10.1016/j.pss.2016.05.011 [4] Roatsch et al 2016, Planetary and Space Science 121, p 115-120, doi:10.1016/j.pss.2015.12.005 [5] Mest, S. et al., 2017, LPSC, #2512 [6] FGDC, Digital Cartographic Standard for Geologic Map Symbolization, FGDC-STD-013-2006, 2006 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- THE DATA PACKAGE: All data are included within the compressed folder DAWN_Ceres_GeologicMap_globalDataset.zip. After uncompressing the folder, the following data are available: [1] all mapping data is saved in a Filegeodatabase (compatible to ArcGIS): ..\Dawn_Ceres_GeologicMap_global --> contains two feature data sets: 1. the mapsheetlayer with boundary data and graticular, 2. Ceres_GeolMappingLayer with GeoContacts, GeoUnits, LineFeatures, PointFeatures, Surfacefeatures [2] additional data included: ..\layerfiles: --> contains the cartographic symbols* stored for every individual thematic layer (*.lyr). Especially helpful for comparable cartographic visualization if *.shp are being used instead of feature classes. ..\shapes: --> the shapefiles are extracted from the filegeodatabase using in other GIS environments (*.shp). ..\projectionfiles: --> here the four primary projections are stored for visualizing the global data set in different views. ..\mappackage --> stored the map project within an compressed proprietary map document using ArcGIS. ..\mxd --> contains the whole mapping project within a ArcGIS project file as *.mxd-format ..\symbol-key.pdf --> this shows the complete cartographic legend of the map. ..\DAWN_CERES_GeoMapGlobal_March2019_A0.pdf --> A0 map sheet showing the whole global dataset (in plate carree and stereographic projection) of the merged geological mapping project. ..\DAWN_CERES_GEOMAPGLOBAL-SCHEMA_2023.XML --> represents an XML export of the database schema of the filegeodatabase structure * 5 layer-files which describe the predefined symbols of the individual feature classes (GeoContacts, GeoUnits, LineFeature, PointFeature and SurfaceFeature). All symbols are updated (as specified in Tucson) and Geol unit colors are reclassified and thematically grouped. Additional to that I include on so called style file Ceres_GeolMapping that contains all symbols and colors and manually imported in other mapping projects. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- BACKGROUND INFORMATION TO THE GLOBAL DATASET: The global geological map was created by merging the 15 individual quadrangle maps published in ICARUS vol. 316. The NOMENCLATURE was downloaded from the IAU (status January 2016) The QUADRANGLE BOUNDARIES based on the HAMO atlas published by Roatsch et al 2016, Planetary and Space Science 121, p 115-120, doi:10.1016/j.pss.2015.12.005. The whole atlas is available to the public through the Dawn GIS web page http://dawngis.dlr.de/atlas and is available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/). The BASEMAP MOSAIC of Ceres was created using camera data from LAMO (Low Altitude Mapping Orbiter) orbit phase (over 31,300 clear filter images with a resolution of about 35 m/pxl during the eleven cycles). This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The LAMO atlas was published by Roatsch et. al 2017, Planetary and Space Science 140, p 74-79, doi:10.1016/j.pss.2017.04.008. and is available to the public through the Dawn GIS web page http://dawngis.dlr.de/atlas and the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/). =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- NOTE: It should be noted that the data of the merged project contains still some objects in the boundary regions between the quadrangles appearing twice. This is primarily due to the different scientific interpretations of the mappers, and will not be easily solved by just changing topology and visualization. Furthermore it will require ongoing and prolonged scientific discussion and practice, which could be solved within an updating version of the global map. The detailed descriptions of all those interpretions are published in the papers listed below. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Here are the complete citations for the PAPERS in the SpecIal Issue, Icarus Volume 316 (December 2018): Williams, D.A., D.L. Buczkowski, S.C. Mest, J.E.C. Scully, T. Platz, T. Kneissl, 2018, Introduction: The geological mapping of Ceres, Icarus, 316, 1-13, https://doi.org/10.1016/j.icarus.2017.05.004. Ruesch, O., L.A. McFadden, D.A. Williams, K.H.G. Hughson, J.H. Pasckert, J. Scully, T. Kneissl, T. Roatsch, T. Platz, F. Preusker, N. Schmedemann, S. Marchi, H. Hiesinger, R. Jaumann, A. Nathues, C.A. Raymond, C.T. Russell, 2018, Geology of Ceres’ north pole quadrangle with Dawn FC imaging data, Icarus, 316, 14-27, https://doi.org/10.1016/j.icarus.2017.09.036. Pasckert, J.H., H. Hiesinger, O. Ruesch, D.A. Williams, T. Kneissl, S.C. Mest, D.L. Buczkowski, J.E.C. Scully, N. Schmedemann, R. Jaumann, T. Roatsch, F. Preusker, A. Nass, A. Nathues, M. Hoffman, M. Schaefer, M.C. De Sanctis, C.A. Raymond, C.T. Russell, 2018. Geologic mapping of the Ac-2 Coniraya Quadrangle of Ceres from NASA’s Dawn Mission: Implications for a heterogeneously composed crust, Icarus, 316, 28-45, https://doi.org/10.1016/j.icarus.2017.06.015. Scully, J.E.C., D.L. Buczkowski, A. Neesemann, D.A. Williams, S.C. Mest, C. A. Raymond, K.H.G. Hughson, T. Kneissl, J. H. Pasckert, O. Ruesch, A. Frigeri, A. Nass, S. Marchi, J-P. Combe, N. Schmedemann, B.E. Schmidt, H.T. Chilton, C. T. Russell, A.I. Ermakov, R. Jaumann, M. Hoffmann, A. Nathues, C. M. Pieters, T. Platz, F. Preusker, T. Roatsch, M. Schaefer, 2018. Ceres’ Ezinu quadrangle: A heavily cratered region with evidence for localized subsurface water ice and the context for Occator crater, Icarus, 316, 46-62, https://doi.org/10.1016/j.icarus.2017.10.038. Hughson, K.H.G., C.T. Russell, D.A. Williams, D.L. Buczkowski, S.C. Mest, J.H. Pasckert, J.E.C. Scully, J.-P. Combe, T. Platz, O. Ruesch, F. Preusker, R. Jaumann, A. Nass, T. Roatsch, A. Nathues, M. Schaefer, B.E. Schmidt, H.T. Chilton, A. Ermakov, L.A. McFadden, 2018, The Ac-H-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes, Icarus, 316, 63-83, https://doi.org/10.1016/j.icarus.2017.09.035. Krohn, K., R. Jaumann, K.A. Otto, F. Schulzeck, A. Neesemann, A. Nass, K. Stephan, F. Tosi, R.J. Wagner, F. Zambon, I. von der Gathen, D.A. Williams, D.L. Buczkowski, M.C. De Sanctis, E. Kersten, K.-D. Matz, S.C. Mest, C.M. Pieters, F. Preusker, T. Roatsch, J.E.C. Scully, C.T. Russell, C. A. Raymond, 2018, The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani, Icarus, 316, 84-98, https://doi.org/10.1016/j.icarus.2017.09.014. Williams, D.A., T. Kneissl, A. Neesemann, S.C. Mest, E. Palomba, T. Platz, A. Nathues, A. Longobardo, J.E.C. Scully, A. Ermakov, R. Jaumann, D.L. Buczkowski, M. Schäfer, G. Thangjam, C.M. Pieters, T. Roatsch, F. Preusker, S. Marchi, N. Schmedemann, H. Hiesinger, A. Frigeri, C.A. Raymond, C.T. Russell, 2018, The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres’ oldest impact basin, Icarus, 316, 99-113, https://doi.org/10.1016/j.icarus.2017.08.015. Frigeri, A., M. Mirino, Y. Chemin, D.A. Williams, D.L. Buczkowski, J.E.C. Scully, J. Castilo-Rogez, R. Park, N. Schmedemann, A. Nass, F.G. Carrozzo, E. Ammannito, M.C. De Sanctis, 2018. The geology of the Nawish quadrangle of Ceres: The rim of an ancient basin, Icarus, 316, 114-127, https://doi.org/10.1016/j.icarus.2018.08.015. Buczkowski, D.L., D.A. Williams, J.E.C. Scully, S.C. Mest, D.A. Crown, P.M. Schenk, R. Jaumann, T. Roatsch, F. Preusker, T. Platz, A. Nathues, M. Hoffman, M. Schaefer, S. Marchi, M.C. De Sanctis, C.A. Raymond, C.T. Russell, 2018. The geology of the Occator Quadrangle of dwarf planet Ceres: Floor-fractured craters and other geomorphic evidence of cryomagmatism, Icarus, 316, 128-139, https://doi.org/10.1016/j.icarus.2017.05.025. Platz, T., A. Nathues, H.G. Sizemore, D.A. Crown, M. Hoffmann, M. Schaefer, N. Schmedemann, T. Kneissl, A. Neesemann, S.C. Mest, D.L. Buczkowski, O. Ruesch, K.H.G. Hughson, A. Nass, D.A. Williams, F. Pruesker, 2018. Geological mapping of the Ac-10 Rongo Quadrangle of Ceres, Icarus, 316, 140-153, https://doi.org/10.1016/j.icarus.2017.08.001. Schulzeck, F., K. Krohn, I.v.d. Gathen, N. Schmedemann, K. Stephan, R. Jaumann, D.A. Williams, D.L. Buczkowski, S.C. Mest, J.E.C. Scully, E. Kersten, K.-D. Matz, A. Nass, F. Preusker, T. Roatsch, C.A. Raymond, C.T. Russell, 2018. Geologic mapping of the Ac-11 Sintana quadrangle: Assessing diverse crater morphologies, Icarus, 316, 154-166, https://doi.org/10.1016/j.icarus.2017.12.007. Crown, D.A., H.G. Sizemore, R.A. Yingst, S.C. Mest, T. Platz, D.C. Berman, N. Schmedemann, D.L. Buczkowski, D.A. Williams, T. Roatsch, F. Preusker, C.A. Raymond, C.T. Russell, and the Dawn Science Team, 2018. Geologic mapping of the Urvara and Yalode Qudrangles of Ceres, Icarus, 316, 167-190, https://doi.org/10.1016/j.icarus.2017.08.004. McFadden, L.A, D.R. Skillman, N. Memarsadeghi, U. Carsenty, S.E. Schröder, J.-Y. Li, S. Mottola, M. Mutchler, B. McLean, S.P. Joy, C.A. Polanskey, M.D. Rayman, P.D. Fieseler, M.V. Sykes, A. Nathues, P. Gutiérrez-Marques, H.U. Keller, C.A. Raymond, C.T. Russell, 2018. Dawn mission’s search for satellites of Ceres: Intact protoplanets don’t have satellites, Icarus, 316, 191-204, https://doi.org/10.1016/j.icarus.2018.02.017. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- For Cartoraphy and GIS issues contact> Andrea Nass andrea.nass@dlr.de German Aerospace Center (DLR), Berlin, Germany For more information contact: David A. Williams David.Williams@asu.edu School of Earth and Space Exploration Arizona State University Tempe, Arizona, USA